首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dentin sialoprotein (DSP) is cleaved from dentin sialophosphoprotein (DSPP) and most abundant dentinal non-collagenous proteins in dentin. DSP is believed to participate in differentiation and mineralization of cells. In this study, we first constructed recombinant human DSP (rhDSP) in Escherichia coli (E. coli) and investigated its odontoblastic differentiation effects on human dental pulp cells (hDPCs). Cell adhesion activity was measured by crystal violet assay and cell proliferation activity was measured by MTT assay. To assess mineralization activity of rhDSP, Alizarin Red S staining was performed. In addition, the mRNA levels of collagen type ? (Col ?), alkaline phosphatase (ALP), and osteocalcin (OCN) were measured due to their use as mineralization markers for odontoblast-/osteoblast-like differentiation of hDPCs. The obtained rhDSP in E. coli was approximately identified by SDS-PAGE and Western blot. Initially, rhDSP significantly enhanced hDPCs adhesion activity and proliferation (p<0.05). In Alizarin Red S staining, stained hDPCs increased in a time-dependent manner. This odontoblastic differentiation activity was also verified through mRNA levels of odontoblast-related markers. Here, we first demonstrated that rhDSP may be an important regulatory ECM in determining the hDPCs fate including cell adhesion, proliferation, and odontoblastic differentiation activity. These findings indicate that rhDSP can induce growth and differentiation on hDPCs, leading to improve tooth repair and regeneration.  相似文献   

2.
3.
4.
Bone marrow stromal cells (BMSCs) have been extensively used for tissue engineering. However, the effect of Ca2+ on the viability and osteogenic differentiation of BMSCs has yet to be evaluated. To determine the dose-dependent effect of Ca2+ on viability and osteogenesis of BMSCs in vitro, BMSCs were cultured in calcium-free DMEM medium supplemented with various concentrations of Ca2+ (0, 1, 2, 3, 4, and 5 mM) from calcium citrate. Cell viability was analyzed by MTT assay and osteogenic differentiation was evaluated by alkaline phosphatase (ALP) assay, Von Kossa staining, and real-time PCR. Ca2+ stimulated BMSCs viability in a dose-dependent manner. At slightly higher concentrations (4 and 5 mM) in the culture, Ca2+ significantly inhibited the activity of ALP on days 7 and 14 (P < 0.01 or P < 0.05), significantly suppressed collagen synthesis (P < 0.01 or P < 0.05), and significantly elevated calcium deposition (P < 0.01) and mRNA levels of osteocalcin (P < 0.01 or P < 0.05) and osteopontin (P < 0.01 or P < 0.05). Therefore, elevated concentrations of extracellular calcium may promote cell viability and late-stage osteogenic differentiation, but may suppress early-stage osteogenic differentiation in BMSCs.  相似文献   

5.
6.
7.
NG2+ cells have been proven to differentiate into odontoblasts in vivo, and their contribution to odontoblasts is significantly increased, especially after tooth injury. However, their characteristics in vitro, especially under an inflammatory environment, are still not fully understood. Therefore, this study aimed to explore their proliferation, migration, and odontoblastic differentiation ability after treatment with lipopolysaccharide (LPS) in vitro. In our study, NG2 + cells were isolated from the human dental pulp by magnetic‐activated cell sorting, and these isolated cells were proven to be NG2 + by immunostaining. When compared with human dental pulp cells (hDPCs), the NG2 + cells showed no significant differences in cell migration with or without LPS incubation, but their proliferative ability was weaker. When treated with LPS, NG2 + cells expressed elevated levels of pro‐inflammatory cytokines including interleukin‐1β (IL‐1β), IL‐6, IL‐8, and tumor necrosis factor‐α, and among these, the expression of IL‐1β and IL‐6 were higher than that of hDPCs. Their multipotent differentiation potential was confirmed by the induction of odontoblastic and adipogenic differentiation, and LPS increased their odontoblastic differentiation capacity. In the odontoblastic differentiation process, Wnt5a, BMP2, and BMP7 mRNA were increased, while the canonical Wnt‐related genes were decreased. In conclusion, the LPS stimulation promotes the migration, proliferative, and odontoblastic differentiation ability of NG2 + cells from the human dental pulp in vitro, and bone morphogenetic protein and the noncanonical Wnt pathway may be involved in their odontoblastic differentiation. These results indicated their special roles in tooth injury repair and potential application in pulp regeneration.  相似文献   

8.
The abilities of kolaviron and selenium (either separately or in combination) to prevent hydrogen peroxide-induced alterations in cell viability and activation were investigated. The cell line U937 was incubated with the antioxidants (i.e. kolaviron or selenium) for 24?h before exposure to hydrogen peroxide and cell viability was assessed via trypan blue dye exclusion assay. The U937 cells were also transformed to the macrophage form, incubated with the antioxidants before exposure to hydrogen peroxide. Subsequently, production of nitric oxide and pro-inflammatory cytokines were assessed as indices of macrophage activation. The myoblast cell line H9c2 was also incubated with Se and kolaviron for 24?h before exposure to hydrogen peroxide. Cell viability and generation of reactive oxygen species (ROS) were assessed via MTT and DCHF assays. The results revealed that hydrogen peroxide significantly reduced (p?<?0.05) the viability of U937 cells which was ameliorated by kolaviron and selenium. Kolaviron and selenium also reduced hydrogen peroxide-induced secretion of nitric oxide, TNF-α, IL-1 and IL-6 by transformed U937 cells. Hydrogen peroxide also significantly reduced (p?<?0.05) the viability of H9c2 cells which was significantly restored by kolaviron. Though selenium had no effect on the proliferation of H9c2 cells, co-treatment with kolaviron significantly reduced hydrogen peroxide-induced alterations. Both kolaviron and selenium also reduced hydrogen peroxide-mediated ROS production by H9c2 cells. In all cases, the combined action of kolaviron and selenium offered greater amelioration of the hydrogen peroxide-induced alterations than their separate effects (p?<?0.05) but may not be synergistic or additive.  相似文献   

9.
Zinc deficiency impairs the hepatic lipid metabolism. Previous studies were focused on the negative effects of zinc deficiency on the hepatic lipid metabolism. A few studies investigated the effects of high zinc levels on the lipid metabolism in hepatocytes. In this study, rat hepatocytes were cultured and treated with different and high concentrations of zinc to investigate the effects of high zinc levels on the lipid synthesis in hepatocytes in vitro. The levels of hepatocytes functional markers, including alkaline phosphatase, lactate dehydrogenase, and albumin, were significantly higher in the zinc treatment groups than in the control group (p?<?0.05, p?<?0.01). The mRNA and protein levels of sterol regulatory element-binding protein 1c (SREBP-1c) were significantly higher in the zinc treatment groups than in the control group (p?<?0.05, p?<?0.01). Furthermore, the mRNA expression levels of acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase (FAS) were significantly higher in the medium- and high-dose zinc treatment groups than in the control group (p?<?0.01). The mRNA levels of stearoyl-CoA desaturase-1 (SCD-1) were significantly higher in the high-dose group (p?<?0.01). These results indicate that high levels of zinc increase hepatocytes activity and SREBP-1c expression, which upregulate the expression of ACC1, FAS, and SCD-1, thereby improving the lipid metabolism in the hepatocytes.  相似文献   

10.
Ligands of 18 kDa mitochondrial translocator protein (TSPO) differ in their cellular effects. We hypothesize that different TSPO ligands might exert different cellular responses. Therefore, following previous studies that showed different cellular responses to two specific TSPO ligands, PK 11195 and protoporphyrin IX, in human osteoblast-like cells in vitro, we now report the cellular response to another specific TSPO ligand, FGIN-1-27 (10?5 M) (MW 436 kDa), in order to characterize the effects of each TSPO ligand. We found in primary culture of the human osteoblast-like cells that cell numbers were decreased by an average of 30 % (p?<?0.001) following exposure to 10?5 M of FGIN-1-27 in comparison to vehicle controls. Cellular [18F]-FDG incorporation and ATP content were suppressed, by an average of 43 % (p?<?0.001) and 83 % (p?<?0.001), respectively. Mitochondrial mass and ΔΨm increased by an average of 26 % (p?<?0.01) and 425 % (p?<?0.0001) respectively. Lactate dehydrogenase activity was enhanced in culture media by 60 % (p?<?0.05), indicating overall cell death, while no increase in apoptotic levels was observed. Cellular proliferation, as determined by BrdU assay, was not affected. Synthesis of mRNA of TSPO, VDAC 1, and hexokinase 2 decreased in 0.3, 0.3 and 0.5 fold respectively, with accompanying decreases in protein expression of TSPO and Voltage Dependent Anion Channel 1 by 23 % (p?<?0.001) and 98 % (p?<?0.001), respectively, but without changes in hexokinase 2 protein expression. Thus it appears that 10?5 M FGIN-1-27 reduces cell viability, cell metabolism, and mitochondrial function. Previously we found similar effects of PK 11195 on mitochondrial function and cell metabolism and of protoporphyrin IX on cell death in primary osteoblast-like cells.  相似文献   

11.
Pretreatment with diazoxide, KATP channel opener, increases tissue tolerance against ischemia reperfusion (IR) injury. In clinical settings pretreatment is rarely an option therefore we evaluated the effect of post-ischemic treatment with diazoxide on skeletal muscle IR injury. Rats were treated with either saline, diazoxide (KATP opener; 40?mg/kg) or 5-hydroxydecanoate (5-HD; mitochondrial KATP inhibitor; 40?mg/kg) after skeletal muscle ischemia (3?h) and reperfusion (6, 24 or 48?h). Tissue contents of malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) activities, Bax and Bcl-2 protein expression and muscle histology were determined. Apoptosis was examined (24 and 48?h) after ischemia. IR induced severe histological damage, increased MDA content and Bax expression (24 and 48?h; p?<?0.01) and decreased CAT and SOD activities (6 and 24?h, p?<?0.01 and 48?h, p?<?0.05), with no significant effect on Bcl-2 expression. Diazoxide reversed IR effects on MDA (6 and 24?h; p?<?0.05), SOD (6 and 24?h; p?<?0.01) and CAT (6 and 48?h, p?<?0.05 and 24?h p?<?0.01) and tissue damage. Diazoxide also decreased Bax (24 and 48?h; p?<?0.05) and increased Bcl-2 protein expression (24 and 48?h; p?<?0.01). Post-ischemic treatment with 5-HD had no significant effect on IR injury. Number of apoptotic nuclei in IR and 5-HD treated groups significantly increased (p?<?0.001) while diazoxide decreased apoptosis (p?<?0.01). The results suggested that post-ischemic treatment with diazoxide decrease oxidative stress in acute phase which modulates expression of apoptotic proteins in the late phase of reperfusion injury. Involvement of KATP channels in this effect require further evaluations.  相似文献   

12.
Wang J  Liu B  Gu S  Liang J 《Cell proliferation》2012,45(2):121-131
Objectives: The Wnt signalling pathway has been shown to play an important role in tooth development, however its effects with stem cells from the apical papilla (SCAP) have remained unclear. The purpose of this study was to determine effects of Wnt/β‐catenin on proliferation and differentiation of SCAP in vitro. Materials and methods: SCAP were obtained, identified and cultured. Cell proliferation, alkaline phosphatase (ALP) activity, mRNA expression of mineralization‐related genes and mineralized nodule formation were measured in presence or absence of various concentrations of lithium chloride. Results: MTT assay and flow cytometry demonstrated that Wnt/β‐catenin activity could promote proliferation of SCAP. Real‐time PCR analysis found that Wnt/β‐catenin strongly upregulated expression of dentine sialophosphoprotein, osteocalcin and ALP in SCAP after incubation with mineralization induction medium, while ALP and alizarin red staining indicated that Wnt/β‐catenin enhanced ALP activity and formation of mineralized nodules. Conclusion: Our results suggest that canonical Wnt/β‐catenin signalling promotes proliferation and odonto/osteogenic differentiation of SCAP.  相似文献   

13.
Iron homeostasis is controlled by hepcidin (Hpc) as well as other ways. Hpc expression is regulated by iron (Fe) storage and by inflammation, but the joint effect of both stimuli remains unclear. We studied the modulatory role of inflammatory agents (IL6 and LPS) over Hpc and DMT1 mRNA expression in HepG2 cells preloaded with Fe. HepG2 cells were preloaded with different Fe concentrations (holo-Tf or Fe-NTA) and then incubated with IL6 or LPS. We measured intracellular Fe levels by AAS with graphite furnace, transferrin receptor (TfR) by ELISA and mRNA relative abundance of Hpc and DMT1 by qRT-PCR. The maximum effect on Fe uptake was observed in cells incubated with 30?ng/ml IL6 (p?<?0.01) and 500?ng/ml LPS (p?<?0.05). In HepG2 cells preloaded with holo-Tf or Fe-NTA and challenged with IL6 and LPS, we observed a decreased: (a) Hpc mRNA relative abundance (two-way ANOVA: p?<?0.05 and p?<?0.001, respectively), (b) DMT1 mRNA relative abundance and TfR1 protein levels (two-way ANOVA: p?<?0.001), and (c) intracellular Fe concentration (two-way ANOVA: p?<?0.001 and p?<?0.01, respectively) compared to control cells incubated only with Fe (holo-Tf or Fe-NTA). Our results support the idea that Fe storage and inflammation act together to regulate Fe homeostasis and suggest a negative regulation in this hepatic cellular model to prevent excessive increases in Hpc.  相似文献   

14.
Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering.  相似文献   

15.
Long-term in vitro culture (16?days) of caprine ovarian cortical tissue was performed to test the effect of FSH and IGF-I on the viability and development of preantral follicles and mRNA expression for FSH and IGF-I receptors. Fragments were cultured in ??-MEM+ alone or supplemented with different combinations of FSH and IGF-I (sequential medium). The culture period was divided into two parts. Follicles were isolated and classified as normal or abnormal and primordial, primary or secondary. Viability of isolated follicles was determined by staining with Trypan Blue dye. Expression of FSHR and IGFR-1 mRNA was evaluated by qPCR. At day 8 of culture, more (P?<?0.05) follicles in treatments containing IGF-I alone or associated with FSH were normal and viable (overall mean, 81?% and 79?% respectively) than the treatments cultured with FSH or ??-MEM+ alone (68?% and 63?%). At day 16 of culture, treatments with FSH and/or IGF-I had more (P?<?0.05) viable follicles (69?%) than ??-MEM+ (38?%). The percentages of follicular development observed in the IGF-I/FSH, FSH+IGF-I/FSH+IGF-I and FSH/IGF-I treatments were similar but higher (P?<?0.05) than the other treatments. FSH and IGF-I during the entire culture period maximized (P?<?0.05) follicular and oocyte diameters and the percentage of secondary follicles (28?%). FSHR mRNA expression in the non-cultured control was similar to the treatment supplemented with FSH and IGF-I but higher (P?<?0.05) than ??-MEM+. IGFR-1 expression did not differ among treatments. Association of FSH and IGF-I in long-term in vitro culture promoted follicular development, maintaining FSHR mRNA expression.  相似文献   

16.

Objectives

Female reproductive dysfunction occurs in patients with pathological loss of adipose tissue, i.e. lipodystrophy (LD). However, mechanisms remain largely unclear and treatment effects of adipocyte-derived leptin have not been assessed in LD animals.

Methods

In the current study, C57Bl/6 LD mice on a low-density lipoprotein receptor knockout background were treated with leptin or saline for 8?weeks and compared to non-LD controls.

Results

The number of pups born was 37% lower in breeding pairs consisting of LD female mice x non-LD male mice (n?=?3.3) compared to LD male mice x non-LD female mice (n?=?5.2) (p?<?0.05). Mean uterus weight was significantly lower in the saline-treated LD group (18.8?mg) compared to non-LD controls (52.9?mg; p?<?0.0001) and increased significantly upon leptin treatment (46.5?mg; p?<?0.001). The mean number of corpora lutea per ovary was significantly lower in saline-treated LD animals compared to non-LD controls (p?<?0.01) and was restored to non-LD control levels by leptin (p?<?0.05). Mechanistically, mRNA expression of ovarian follicle-stimulating hormone receptor (p?<?0.01) and estrogen receptor β (p?<?0.05), as well as of pituitary luteinizing hormone β subunit (p?<?0.001) and follicle-stimulating hormone β subunit (p?<?0.05), was significantly upregulated in LD mice compared to non-LD controls. In addition, mean time to vaginal opening as a marker of puberty onset was delayed by 12.5?days in LD mice (50.9?days) compared to non-LD controls (38.4?days; p?<?0.001).

Conclusions

Female LD animals show impaired fertility which is restored by leptin. Future studies should assess leptin as a subfertility treatment in human leptin-deficiency disorders.  相似文献   

17.
This study was performed to examine whether changes in subcutaneous adipose tissue (SCAT) metabolism indices after weight loss were related to the magnitude of weight regain. Nine men and ten premenopausal women whose body mass index ranged from 30 to 42 kg/m2, 35–48 years old, were studied before and after a 15-week weight loss program, as well as at a 17–22-month follow-up period. Although body composition was evaluated at all study periods, abdominal and femoral SCAT-lipoprotein lipase (LPL) and hormone-sensitive lipase (HSL) activities, and α2- and β-adrenoceptors (ARs) were measured before and after weight loss, exclusively. Although the SCAT-LPL activity did not change after weight loss in men, it tended to decrease in the femoral depot of women (p?=?0.06). SCAT-HSL activity remained unchanged after weight reduction in men, while the post-weight loss lipase activity tended to be higher in both regions of women (p?=?0.06). Although the post-weight loss number of β-ARs was higher irrespective of the fat depot (0.001?<?p?<?0.05), the number of α2-ARs was increased in the femoral (p?<?0.05), but not in the abdominal SCAT (p?=?0.08) after weight reduction, in men. Neither the α2- nor the β-AR density changed after weight reduction, in women. Abdominal SCAT-LPL activity after weight reduction was negatively related to weight regain indices, in women (?0.65?<?Rhô?<??0.75; 0.01?<?p?<?0.05). Both the post-weight loss abdominal SCAT α2-AR density and the α2-/β-AR balance were positively associated with weight regain indices, in men (0.69?<?Rhô?<?0.88; 0.01?<?p?<?0.05). These results suggest that selected SCAT metabolism indices could predict failure to weight loss maintenance, in both genders.  相似文献   

18.
Abstract

Microbial cells can rapidly form biofilm on endotracheal tubes (ETT) causing ventilator-associated pneumonia, a serious complication in patients receiving mechanical ventilation. A novel polyamide with a good balance of hydrophilic/hydrophobic moieties was used for the embedment of green-reduction silver nanoparticles (AgNPs) for the composite-coated ETT. The films were conformal with a thickness of ~ 17?±?3?µm accommodating high loading of 60?±?35?nm spherical-shaped AgNPs. The coated ETT resulted in a significant difference in reducing both planktonic growth and microbial adhesion of single and mixed-species cultures, compared with uncoated ETT (p?<?0.05). A time-kill assay demonstrated rapid bactericidal effects of the coating on bacterial growth and cell adhesion to ETT surface. Biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus, commonly encountered pathogens, was inhibited by > 96% after incubation for 72?h. Polyamide/AgNP composite-coated ETT provided a broad-spectrum activity against both Gram-positive and Gram-negative bacteria as well as Candida albicans and prolonged antimicrobial activity.  相似文献   

19.
The mineralization of dental pulp stem cells is an important factor in the tissue engineering of teeth, but the mechanism is not yet obvious. This study aimed to identify the effect of Stathmin on the proliferation and osteogenic/odontoblastic differentiation of human dental pulp stem cells (hDPSCs) and to explore whether the Shh signalling pathway was involved in this regulation. First, Stathmin was expressed in the cytoplasm and on the cell membranes of hDPSCs by cell immunofluorescence. Then, by constructing a lentiviral vector, the expression of Stathmin in hDPSCs was inhibited. Treatment with Stathmin shRNA (shRNA‐Stathmin group) inhibited the ability of hDPSCs to proliferate, as demonstrated by a CCK8 assay and flow cytometry analysis, and suppressed the osteogenic/odontoblastic differentiation ability, as demonstrated by alizarin red S staining and osteogenic/odontoblastic differentiation‐related gene (ALP, BSP, OCN, DSPP) activity, compared to that of hDPSCs from the control shRNA group. Molecular analyses showed that the Shh/GLI1 signalling pathway was inhibited when Stathmin was silenced, and purmorphamine, the Shh signalling pathway activator, was added to hDPSCs in the shRNA‐Stathmin group, real‐time PCR and Western blotting confirmed that expression of Shh and its downstream signalling molecules PTCH1, SMO and GLI1 increased significantly. After activating the Shh signalling pathway, the proliferation of hDPSCs increased markedly, as demonstrated by a CCK8 assay and flow cytometry analysis; osteogenic/odontoblastic differentiation‐related gene (ALP, BSP, OCN, DSPP) expression also increased significantly. Collectively, these findings firstly revealed that Stathmin‐Shh/GLI1 signalling pathway plays a positive role in hDPSC proliferation and osteogenic/odontoblastic differentiation.  相似文献   

20.
Hesperidin found in citrus fruits has been reported to be a promising bioactive compound for maintaining an optimal bone status in ovariectomized rodent models. In this study, we examined the capacity of hesperetin (Hp) to affect the proliferation, differentiation and mineralization of rodent primary osteoblasts. Then, the impact of Hp on signalling pathways known to be implicated in bone formation was explored. We exposed osteoblasts to physiological concentrations of 1 μM Hp (Hp1) and 10 μM Hp (Hp10). Neither proliferation nor mineralization was affected by Hp at either dose during 19 days of exposure. Hp at both doses enhanced differentiation by significantly increasing alkaline phosphatase (ALP) activity from Day 14 of exposure (Day 19: Hp1: +9%, Hp10: +14.8% vs. control; P<.05). However, Hp did not induce an obvious formation of calcium nodules. The effect of Hp10 on ALP was inhibited by addition of noggin protein, suggesting a possible action of this flavanone through the bone morphogenetic protein (BMP) pathway. Indeed, Hp10 significantly induced (1.2- to 1.4-fold) mRNA expression of genes involved in this signalling pathway (i.e., BMP2, BMP4, Runx2 and Osterix) after 48 h of exposure. This was strengthened by enhanced phosphorylation of the complex Smad1/5/8. Osteocalcin mRNA level was up-regulated by Hp only at 10 μM (2.2 fold vs. control). The same dose of Hp significantly decreased osteopontin (OPN) protein level (50% vs. control) after 14 days of culture. Our findings suggest that Hp may regulate osteoblast differentiation through BMP signalling and may influence the mineralization process by modulating OPN expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号