首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new stemodinoside, stemodin-alpha-L-arabinofuranoside (5), was isolated from the plant Stemodia maritima. Incubation of stemodin (2) with Rhizopus oryzae ATCC 11145 gave 2 alpha,7 beta,13(S)-trihydroxystemodane (17) and 2 alpha,3 beta,13(S),16 alpha-tetrahydroxystemodane (18) whilst stemodinone (8) afforded 6 alpha,13(S)-dihydroxystemodan-2-one (19). The bioconversion of 2 beta,13(S)-dihydroxystemodane (10) by the fungus yielded 2 beta,7 beta,13(S)-trihydroxystemodane (20) whereas stemod-12-en-2-one (9) provided 7 beta,17-dihydroxystemod-12-en-2-one (21). The results provide useful information about the relationship between the functional groups of the substrates and their potential for bioconversion.  相似文献   

2.
Diterpenes and sesquiterpenes from the bark of Taxus yunnanensis   总被引:3,自引:0,他引:3  
Two taxane-type diterpenes, 10beta-acetoxy-2alpha,5alpha,7beta,9alpha-tetrahydroxytaxa-4(20),11-dien-13-one and 2alpha-acetoxy-9alpha-benzoyloxy-5alpha,7beta,10beta,15-tetrahydroxy-11(15-->1)- abeotaxa-4(20),11-dien-13-one, and two new drimane-type sesquiterpenes, 1beta-acetoxy-7-drimen-11alpha-ol-12,11-lactone and 1beta-acetoxy-11,12-epoxy-6-drimen-8alpha,11alpha-diol, were isolated from the bark of Taxus yunnanensis together with 35 known taxane-type diterpenes, a known drimane-type sesquiterpene and a known flavanone.  相似文献   

3.
Incubation of stemodin (1) with Mucor plumbeus ATCC 4740 resulted in the formation of 2alpha,6beta,13-trihydroxystemodane (2), 2alpha,3beta,13-trihydroxystemodane (3), 2alpha,11beta,13-trihydroxystemodane (4) and 2alpha,13,14-trihydroxystemodane (5), while stemodinone (7) afforded 6alpha,13-dihydroxystemodan-2-one (8) and 6alpha,12alpha,13-trihydroxystemodan-2-one (9). Metabolites obtained from the bioconversion of stemarin (11) were 8,13,19-trihydroxystemarane (12) and 2alpha,13,19-trihydroxystemarane (13). 19-N,N-Dimethylcarbamoxy-13-hydroxystemarane (14) was not transformed by the fungus. Stemodin (1) was incubated with Whetzelinia sclerotiorum ATCC 18687 to produce 2alpha,7beta,13-trihydroxystemodane (6) and 2alpha,11beta,13-trihydroxystemodane (4). Stemodinone (7) was converted to 7beta,13-dihydroxystemodan-2-one (10). Compounds 2, 4, 9, 10, 12 and 13 have not been previously reported.  相似文献   

4.
Martin GD  Reynolds WF  Reese PB 《Phytochemistry》2004,65(15):2211-2217
Incubation of 2alpha,13(R)-dihydroxystemodane (3) with Rhizopus oryzae ATCC 11145 gave 2alpha,7beta,13(R)-trihydroxystemodane (11) while biotransformation of 13(R)-hydroxystemodan-2-one (5) yielded 6alpha,13(R)-dihydroxystemodan-2-one (12) and 7beta,13(R)-dihydroxystemodan-2-one (13). Bioconversion of 2beta,13(R)-dihydroxystemodane (7) with Rhizopus afforded 2beta,7,13(R)-trihydroxystemodane (14). The results complement data from our previous work and provide more information about the effect of functional groups of stemodane substrates on the site of hydroxylation.  相似文献   

5.
Lamm AS  Reynolds WF  Reese PB 《Phytochemistry》2006,67(11):1088-1093
Stemodane and stemarane diterpenes isolated from the plant Stemodia maritima and their dimethylcarbamate derivatives were fed to growing cultures of the fungi Cunninghamella echinulata var. elegans ATCC 8688a and Phanerochaete chrysosporium ATCC 24725. C. echinulata transformed stemodin (1) to its 7alpha-hydroxy- (2), 7beta-hydroxy- (3) and 3beta-hydroxy- (4) analogues. 2alpha-(N,N-Dimethylcarbamoxy)-13-hydroxystemodane (6) gave 2alpha-(N,N-dimethylcarbamoxy)-6alpha,13-dihydroxystemodane (7) and 2alpha-(N,N-dimethylcarbamoxy)-7alpha,13-dihydroxystemodane (8). Stemodinone (9) yielded 14-hydroxy-(10) and 7beta-hydroxy- (11) congeners along with 1, 2 and 3. Stemarin (13) was converted to the hitherto unreported 6alpha,13-dihydroxystemaran-19-oic acid (18). 19-(N,N-Dimethylcarbamoxy)-13-hydroxystemarane (14) yielded 13-hydroxystemaran-19-oic acid (17) along with the two metabolites: 19-(N,N-dimethylcarbamoxy)-2beta,13-dihydroxystemarane (15) and 19-(N,N-dimethylcarbamoxy)-2beta,8,13-trihydroxystemarane (16). P. chrysosporium converted 1 into 3, 4 and 2alpha,11beta,13-trihydroxystemodane (5). The dimethylcarbamate (6) was not transformed by this microorganism. Stemodinone (9) was hydroxylated at C-19 to give 12. Both stemarin (13) and its dimethylcarbamate (14) were recovered unchanged after incubation with Phanerochaete.  相似文献   

6.
3 beta-Benzoyloxy-14 alpha,15 alpha-epoxy-5 alpha-cholest-7-ene (1) is a key intermediate in the synthesis of C-7 and C-15 oxygenated sterols. Treatment of 1 with benzoyl chloride resulted in the formation of 3 beta,15 alpha-bis-benzoyloxy-7 alpha-chloro-5 alpha-cholest-8(14)-ene (2). Reaction of 2 with LiAlH4 or LiAlD4 resulted in the formation of 5 alpha-cholest-7-ene-3 beta,15 alpha-diol (3a) or [14 alpha-2H]5 alpha-cholest-7-ene-3 beta,15 alpha-diol (3b). Diol 3b was selectively oxidized by Ag2CO3/celite to [14 alpha-2H]5 alpha-cholest-7-en-15 alpha-ol-3-one (4). Treatment of 1 with MeMgI/CuI gave 7 alpha-methyl-5 alpha-cholest-8(14)-ene-3 beta,15 alpha-diol (5). Selective oxidation of 5 with pyridinium chlorochromate (PCC)/pyridine or oxidation with PCC resulted in the formation of 7 alpha-methyl-5 alpha-cholest-8(14)-en-3 beta-ol-15-one (6) and 7 alpha-methyl-5 alpha-cholest-8(14)-ene-3,15-dione, respectively. Reduction of 6 with LiAlH4 yielded 5 and 7 alpha-methyl-5 alpha-cholest-8(14)-ene-3 beta,15 beta-diol (6). Reaction of 1 with benzoic acid/pyridine gave 3 beta,7 alpha-bis-benzoyloxy-5 alpha-cholest-8(14)-en-15 alpha-ol (9). Treatment of 9 with LiAlH4 or ethanolic KOH resulted in the formation of 5 alpha-cholest-8(14)-ene-3 beta,7 alpha,15 alpha-triol (10). Dibenzoate 9, upon brief treatment with mineral acid, gave 3 beta-benzoyloxy-5 alpha-cholest-8(14)-ene-15-one (11). Oxidation of 9 with PCC yielded 3 beta,7 alpha-bis-benzoyloxy-5 alpha-cholest-8(14)-ene-15-one (12). Ketone 12 was also prepared by the selective hydride reduction of 5 alpha-cholest-8(14)-en-7 alpha-ol-3,15-dione (13) to give 5 alpha-cholest-8(14)-ene-3 beta,7 alpha-diol-15-one (14), which was then treated with benzoyl chloride to produce 12.  相似文献   

7.
Siddiqui BS  Ilyas F  Rasheed M  Begum S 《Phytochemistry》2004,65(14):2077-2084
The continued studies on the constituents of the fresh leaves and stem bark of Plumeria obtusa Linn. have led to the isolation and characterization of four new triterpenoids, dammara-12,20(22)Z-dien-3-one (1), dammara-12,20(22)Z-dien-3beta-ol (2), olean-12-en-3beta,27-diol (3), and 27-hydroxyolean-12-en-3-one (4) and 12 known compounds, which included eight triterpenoids; dammara-3beta,20(S),25-triol (5), urs-12-en-3beta-hydroxy-27-Z-feruloyloxy-28-oic acid (6), 3beta-hydroxyolean-12-en-28-oic acid (7), 3beta,27-dihydroxylupan-29-ene (8), 3beta-hydroxylupan-29-en-28-oic acid (9), 3beta-hydroxyursan-12-en-28-oic acid (11), 3beta-hydroxy-27-p-coumaroyloxy-olea-12-en-28-oic acid (12) and urs-12-en-3-one (15); an iridoid 1alpha-plumieride (10); a cardenolide 3alpha,14beta-dihydroxy-17beta-card-20(22)-enolide (13); a fatty acid ester methyl n-octadecanoate (14) and a steroid 3beta-hydroxy-delta5-stigmastane (16). The new constituents were characterized through spectroscopic studies including 1D (1H and 31C NMR) and 2D (COSY-45, NOESY, J-resolved, HMQC and HMBC) NMR and chemical transformations. This is the first report on the isolation of dammarane triterpenoids from P. obtusa. Compounds 5 and 6 are hitherto unreported from P. obtusa. The known compounds were identified by comparison of their spectral data with those reported in the literature.  相似文献   

8.
Incubation of stemodin (1) in cultures of Aspergillus niger ATCC 9142 resulted in the production of 2alpha,3beta,13-trihydroxystemodane (2), 2alpha,7beta,13-trihydroxystemodane (3) and 2alpha,13,16beta-trihydroxystemodane (4), while stemodinone (5) afforded 13,18-dihydroxystemodan-2-one (6) and 13,16beta-dihydroxystemodan-2-one (7). Four novel metabolites were obtained from the bioconversion of stemarin (8) by the fungus, namely 18-hydroxystemaran-19-oic acid (9), 7beta,18-dihydroxystemaran-19-oic acid (10), 7alpha,18,19-trihydroxystemarane (11) and 1beta-hydroxystemaran-19-oic acid (12). 19-N,N-Dimethylcarbamoxy-13-hydroxystemarane (13) was also transformed to afford 19-N,N-dimethylcarbamoxy-13,17xi,18-trihydroxystemarane (14).  相似文献   

9.
The microbial transformation of mesterolone (= (1alpha,5alpha,17beta)-17-hydroxy-1-methylandrostan-3-one; 1), by a number of fungi yielded (1alpha,5alpha)-1-methylandrostane-3,17-dione (2), (1alpha,3beta,5alpha,17beta)-1-methylandrostane-3,17-diol (3), (5alpha)-1-methylandrost-1-ene-3,17-dione (4), (1alpha,5alpha,15alpha)-15-hydroxy-1-methylandrostane-3,17-dione (5), (1alpha,5alpha,6alpha,17beta)-6,17-dihydroxy-1-methylandrostan-3-one (6), (1alpha,5alpha,7alpha,17beta)-7,17-dihydroxy-1-methylandrostan-3-one (7), (1alpha,5alpha,11alpha,17beta)-11,17-dihydroxy-1-methylandrostan-3-one (8), (1alpha,5alpha,15alpha, 17beta)15,17-dihydroxy-1-methylandrostan-3-one (9), and (5alpha,15alpha,17beta)-15,17-dihydroxy-1-methylandrost-1-en-3-one (10). Metabolites 5-10 were found to be new compounds. All metabolites, except 2, 3, 6, and 7, exhibited potent anti-inflammatory activity. The structures of these metabolites were characterized on the basis of spectroscopic studies, and the structure of 5 was also determined by single-crystal X-ray-diffraction analysis.  相似文献   

10.
Four ent-kaurenoic acid derivatives, 2beta,16alpha,17-trihydroxy-ent-kauran-19-oic acid (1), 3beta,16alpha,17-trihydroxy-ent-kauran-19-oic acid (2), 11alpha,15beta-dihydroxy-7-O-beta-d-glucopyranosyl-ent-kaur-16-en-19-oic acid (3) and 1alpha,15beta-dihydroxy-7-O-beta-d-glucopyranosyl-ent-kaur-16-en-19-oic acid (4), were isolated together with five known compounds, 1,5-dicaffeoyl-quinic acid (5), 2-O-glucosyloxy-4-methoxy-cinnamic acid (6), phenethyl alcohol glucoside (7), phenethyl-1-O-beta-d-apiofuranosyl (1-->2) beta-d-glucopyranoside (sayaendoside) (8) and 3,6-dihydroxy-beta-ion-9-ol (9) from the 50% aqueous acetone extract of the aerial parts of Mikania hirsutissima DC. (Compositae). Compounds 1-9 were tested for their proliferative activity toward peripheral blood mononuclear cells (hPBMC); compounds 1 and 2 showed significant activity (43.8% and 36.7%, at 100 microM, respectively) on the lymphocyte.  相似文献   

11.
Starting from the D-homo lactones of androst-4-en-3-one 3 and 4, prepared from 1 and 2, the new 17a homolactones 5-12, 14 and 15, were synthesized. The 4-hydroxy compounds 9 and 10 were obtained through the reaction of 4alpha,5alpha- (5 and 7) and 4beta,5beta- (6 and 8) epoxides with formic acid. The epoxides 5 and 6 were prepared from compound 3, and epoxides 7 and 8 from compound 4 by oxidation with H(2)O(2) under basic conditions. Compound 1 served as a starting substance for obtaining lactones 11-13. Oxidation of compound 1 with m-chloroperbenzoic acid yielded 11 and 12, but compound 13 gave 14. Compound 15 was obtained from 13 by oxidation with H(2)O(2) under basic conditions. The structures of epoxides 6 and 14 were confirmed by X-ray structural analysis. Cytotoxic activity against three tumor cell lines (human breast adenocarcinoma ER+, MCF-7, human breast adenocarcinoma ER-, MDA-MB-231, and prostate cancer PC3) was evaluated. Compounds 6 and 14 showed strong activity against PC3, the IC(50) being 10.6 and 2.2 microM, respectively, whereas compounds 3 and 8 showed strong activity against MDA-MB-231 (IC(50) is 9.3 and 3.6 microM, respectively). Aromatase inhibition assay showed that the tested compounds 9, 10, and 14 possess lower activity compared to formestane.  相似文献   

12.
Bläs B  Zapp J  Becker H 《Phytochemistry》2004,65(1):127-137
Eleven ent-clerodanes, 13-hydroxy-cis-ent-cleroda-3,14-diene, 15-hydroxy-cis-ent-cleroda-3,13(E)-diene, 1beta,12:15,16-diepoxy-cis-ent-cleroda-13(16),14-dien-18alpha,6alpha-olide, 8beta,12:15, 16-diepoxy-cis-ent-cleroda-13(16),14-dien-18alpha,6alpha-olide, 1beta,16:15,16-diepoxy-cis-ent-cleroda-12,14-dien-18alpha,6alpha-olide, 7beta,12:8beta,12-diepoxy-15-hydroxy-cis-ent-cleroda-13-en-16,15:18alpha,6alpha-diolide, 7beta,12:8beta,12-diepoxy-16-hydroxy-cis-ent-cleroda-13-en-15,16:18alpha,6alpha-diolide, 1alpha-acetoxy-8beta,12-epoxy-15-hydroxy-cis-ent-cleroda-13-en-16,15:18alpha,6alpha-diolide, 1beta,12-epoxy-16-hydroxy-cis-ent-cleroda-13-en-15,16:18alpha,6alpha-diolide, 8beta,12-epoxy-15-hydroxy-trans-cleroda-13-en-16,15:18alpha,6alpha-diolide, 8beta,12-epoxy-16-hydroxy-trans-cleroda-13-en-15,16:18alpha,6alpha-diolide along with the known clerodane diterpenes anastreptin and orcadensin have been isolated from the liverwort Adelanthus lindenbergianus (Lehm.) Mitt. Furthermore, three eudesmane sesquiterpenes together with the known (-)-1beta,10-epoxyaristolan, 3,4-seco-4(23),20(29)-lupadien-3,28-dicarboxylic acid dimethyl ester and two acetophenone derivatives were identified by spectroscopic methods, essentially MS and NMR experiments.  相似文献   

13.
Manguro LO  Okwiri SO  Lemmen P 《Phytochemistry》2006,67(24):2641-2650
An investigation of an ethyl acetate extract of Embelia schimperi leaves has led to the isolation of 10 oleanane-type triterpenes characterized as 3beta,16alpha-di-O-acetyl-13beta, 28-epoxyoleanane (1), 3beta-acetyl-16-oxo-13beta, 28-epoxyoleanane (2), 3beta-acetyl-16alpha-hydroxy-13beta, 28-epoxyoleanane (3), 3beta-acetyl-16alpha-hydroxyoleanane-13beta, 28-olide (4), 3beta-acetyl-28-hydroxy-16-oxo-12-oleanene (5), 3beta, 28-di-O-acetyl-16alpha-hydroxy-12-oleanene (6), 3beta-acetyl-11alpha, 28-dihydroxy-16-oxo-12-oleanene (7), 3beta, 11alpha, 16alpha, 28-tetrahydroxy-12-oleanene (8), 3beta-acetyl-16alpha, 28alpha-dihydroxy-13beta, 28-oxydooleanane (9) and 3beta, 28alpha-dihydroxy-16-oxo-13beta, 28-oxydooleanane (10). The known compounds isolated from the same extract included 3beta, 16alpha-dihydroxy-13beta, 28-epoxyoleanane (protoprimulagenin A) (11), 3beta-hydroxy-16-oxo-13beta, 28-epoxyoxyoleanane (aegicerin) (12), 3, 16-dioxo-13beta, 28-epoxyoleanane (embilionone) (13), 3beta, 28-dihydroxy-16-oxo-12-oleanene (schimperinone) (14), taraxerone (15), taraxerol (16) and stigmasterol (17). Structure elucidations were carried out spectroscopically.  相似文献   

14.
Three flavonoids, 5,7,2',3',4'-pentamethoxyflavone (1), 2'-hydroxy-2,4',6'-tri methoxychalcone (2) and dihydroskullcapflavone I (3), together with 17,19,20-trihydroxy-5beta, 8alpha H, 9beta H,10alpha-labd-13-en-16,15-olactone (4), a known diterpenoid and six known flavonoids, 5-hydroxy-7,8-dimethoxyflavanone (5), 5-hydroxy-7,8,2',3',4'-pentamethoxyflavone (6), 5,2'-dihydroxy-7-methoxyflavanone (7), 5,2'-dihydroxy-7,8-dimethoxyflavone (8), 5,2'-dihydroxy-7-methoxyflavone (9) and 5,2'-dihydroxy-7-methoxyflavone 2'-O-beta-D-glucopyranoside (10) were isolated from the whole plant of Andrographis lineata. The structures of these compounds were elucidated on the basis of spectral and chemical studies.  相似文献   

15.
Nine triterpene saponins (1-9) were isolated from leaves and stems of Silphium radula Nutt. (Asteraceae). Their structures were determined by extensive 1D ((13)C, (1)H, DEPT, TOCSY) and 2D NMR (NOESY, HSQC, HMBC) and ESI-MS studies. The compounds were identified as 3beta,6beta,16beta-trihydroxyolean-12-en-23-al-3-O-beta-glucopyranosyl-16-O-beta-glucopyranoside (1), urs-12-ene-3beta,6beta,16beta-triol-3-O-beta-galactopyranosyl-(1-->2)-beta-glucopyranoside (2), 3beta,6beta,16beta-trihydroxyolean-12-en-23-oic acid-3-O-beta-glucopyranosyl-16-O-beta-glucopyranoside (3), urs-12-ene-3beta,6beta,16beta,21beta-tetraol-3-O-beta-glucopyranoside (4), olean-12-ene-3beta,6beta,16beta,21beta-tetraol-3-O-beta-glucopyranoside (5), olean-12-ene-3beta,6beta,16beta,21beta,23-pentaol-3-O-beta-glucopyranosyl-16-O-beta-glucopyranoside (6), olean-12-ene-3beta,6beta,16beta-triol-3-O-beta-glucopyranosyl-16-O-alpha-arabinopyranosyl-(1-->2)-beta-glucopyranoside (7), olean-12-ene-3beta,6beta,16beta,23-tetraol-3-O-beta-glucopyranosyl-16-O-alpha-arabinopyranosyl-(1-->2)-beta-glucopyranoside (8), 3beta,6beta,16beta,21beta-tetrahydroxyolean-12-en-23-al-3-O-beta-glucopyranoside (9). The presence of a 6beta-hydroxyl function was not common in the oleanene or ursene class and the aglycones of these compounds were not found previously in the literature. Moreover, the cytotoxic activities of the isolated compounds were tested against human breast cancer cell line MDA-MB-231. Results showed that compound 2 decreased cell proliferation in a statistically significant manner at 25 microg/ml.  相似文献   

16.
Taxane diterpenoids from Taxus yunnanensis and Taxus cuspidata   总被引:4,自引:0,他引:4  
Shi QW  Oritani T  Kiyota H  Zhao D 《Phytochemistry》2000,54(8):829-834
Chemical examination of the seeds of the Chinese yew, Taxus runnanensis Cheng et L. K. Fu and the Japanese yew, Taxus cuspidata Sieb et Zucc, resulted in the isolation of four taxane diterpenoids. The structures of these taxoids were established as (12alpha)-2alpha-acetoxy-5alpha,9alpha, 10beta-trihydroxy-3,11-cyclotax-4(20)-en-13-one; 2alpha,7beta,13alpha-triacetoxy-5alpha, 9alpha-dihydroxy-2(3-->20)abeotaxa-4(20),11-dien-10-one; 9alpha,10beta-diacetoxy-5alpha-cinnamoyloxytaxa- 4(20),11-dien-13alpha-ol and the known 2alpha,7beta,9alpha,10beta,13-pentaacetoxytax a-4(20),12-diene-5alpha,11beta-diol on the basis of spectral analysis.  相似文献   

17.
Haridy MS  Ahmed AA  Doe M 《Phytochemistry》2006,67(14):1455-1459
Microbial transformation of 13R,14R,15-trihydroxylabd-7-ene (5) and 13R,14R,15-trihydroxylabd-8(17)-ene (6) by the fungus Debaryomyces hansenii gave 1 (13R,14R,15-trihydroxy-6-oxolabd-8-ene) and 3 (7alpha,13R,14R,15-tetrahydroxy-labd-8(17)-ene), respectively. While, microbial transformation of 5 by Aspergillus niger afforded 2 (3beta,13R,14R,15-tetrahydroxy-labd-7-ene), and 13R,14R,15-trihydroxylabd-8,17-ene (6) gave 3 and 4 (3R,14R,15-3-oxotetrahydroxy-labd-7-ene). The structures of the new compounds, 1 and 2, were assigned by 1D and 2D high-field NMR spectroscopic methods. Antimicrobial activity of these compounds were tested and their MIC were determined.  相似文献   

18.
Azuma T  Tanaka Y  Kikuzaki H 《Phytochemistry》2008,69(15):2743-2748
Three phenolic glycosides were isolated together with two known flavonol glycosides from the H2O-soluble fraction of rhizomes of Kaempferia parviflora. Their structures were determined to be rel-(5aS,10bS)-5a,10b-dihydro-1,3,5a,9-tetrahydroxy-8-methoxy-6H-benz[b]indeno[1,2-d]furan-6-one 5a-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-d-glucopyranoside] (1), its rel-5aS,10bR isomer (2), and (2R,3S,4S)-3-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-d-glucopyranosyl]-3'-O-methyl-ent-epicatechin-(2alpha-->O-->3,4alpha-->4)-(5aS,10bS)-5a,10b-dihydro-1,3,5a,9-tetrahydroxy-8-methoxy-6H-benz[b]indeno[1,2-d]furan-6-one 5a-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranoside] (3). The structures were elucidated on the basis of analyses of chemical and spectroscopic evidence.  相似文献   

19.
Chemical examination of the seeds of Chinese yew, Taxus yunnanensis Cheng et L. K. Fu resulted in the isolation of an 11(15-->1)abeotaxane, an 11(15-->1), 11(10-->9)bisabeotaxane and two 3,11-cyclotaxanes. The structures of these new taxoids were established as 13alpha-acetoxy-5alpha-cinnamoyloxy-11(15-->1)abeotaxa-4(20),11-diene-9alpha,10beta,15-triol (1), 20-acetoxy-2alpha-benzoyloxy-4alpha, 5alpha, 7beta, 9alpha, 13alpha-pentahydroxy-11(15-->1), 11(10-->9) bisabeotax-11-eno-10,15-lactone (2), 2alpha,10beta-diacetoxy-5alpha-cinnamoyloxy-9alpha-hydroxy-3,11 -cyclotax-4(20)-en-13-one (3) and 10beta-acetoxy-2alpha,5alpha,9alpha-trihydroxy-3,11-cyclotax-4(20)-en-13-one (4) on the basis of spectral analyses.  相似文献   

20.
The microbial modification of several trichothecene mycotoxins by trichothecene-producing strains of Fusarium nivale and F. solani was studied. These results were compared with the corresponding chemical modifications. The growing mycelia of Fusarium spp. did not convert 4beta-acetoxy-3alpha,7alpha, 15-trihydroxy-12, 13-epoxytrichothec-9-en-8-one (fusarenon) into 3alpha,4beta, 7alpha,15-tetrahydroxy-12,13-epoxy-trichothec-9-en-8-one (nivalenol), whereas 3alpha,4beta,7alpha,15-tetracetoxy-12,13-epoxytrichothec-9-en-8-one (tetraacetylnivalenol) was deacetylated to yield 3alpha-hydroxy-4beta,7alpha,15-triacetoxy-12,13-epoxytrichothec-9-en-8-one (4,7,15-triae-tylnivalenol), which was resistant to further deacetylation. T-2 toxin was transformed intoHT-2 toxin, and 8alpha-(3-methylbutyryloxy)-3alpha,4beta,-15-triacetoxy-12,13-epoxytrichothec-9-en-8-one (T-2 acetate) was transformed into HT-2 toxin via T-2 toxin. Chemical modification with ammonium hydroxide converted tetraacetylnivalenol into fusarenon via 4,7,15-triacetylnivalenol. 3alpha-7alpha,15-Triacetoxy-12,13-epoxytrichothec-9-en-8-one (triacetyldeoxynivalenol) gave deacetylation products lacking the C-7 or c-15 acetyl group in addition to 7alpha,15- diacetoxy-3alpha-hydroxy-12, 13-epoxytrichothec-9-en-8-one (7,15-diacetyldeoxynivalenol). These results demonstrate the regio-selectivity in microbial modification of trichothecenes. Based on the results and available knowledge concerning the transformation of trichothecenes, mechanisms for biological modifications of these mycotoxins are postulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号