首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The 325-residue outer membrane protein, OmpA, of Escherichia coli, like most other outer membrane proteins with known sequence, contains no long stretch of hydrophobic amino acids. A synthetic oligonucleotide, encoding the sequence Leu-Ala-Leu-Val, was inserted four times between the codons for amino acid residues 153 and 154 and two, three, or four times between the codons for residues 228 and 229, resulting in the OmpA153-4, OmpA-228-2, -3, and -4 proteins, respectively. In the first case, the lipophilic sequence anchored the protein in the plasma membrane. In the OmpA228 proteins, 16 but not 12 or 8 lipophilic residues most likely also acted as an anchor. By removal of the NH2-terminal signal peptide, the function of the insert in OmpA153-4 was converted to that of a signal-anchor sequence. Possibly due to differences in amino acid sequences surrounding the insert, no signal function was observed with the insert in OmpA228-4. Production of the OmpA153-4 protein, with or without the NH2-terminal signal sequence, resulted in a block of export of chromosomally encoded OmpA. Clearly, long hydrophobic regions are not permitted within proteins destined for the bacterial outer membrane, and these proteins, therefore, have had to evolve another mechanism of membrane assembly.  相似文献   

2.
Summary The gene ompA encodes a major outer membrane protein of Escherichia coli. Localized mutagenesis of the part of the gene corresponding to the 21-residue signal sequence and the first 45 residues of the protein resulted in alterations which caused cell lysis when expressed. DNA sequence analyses revealed that in one mutant type the last CO2H-terminal residue of the signal sequence, alanine, was replaced by valine. The proteolytic removal of the signal peptide was much delayed and most of the unprocessed precursor protein was fractioned with the outer membrane. However, this precursor was completely soluble in sodium lauryl sarcosinate which does not solubilize the OmpA protein or fragments thereof present in the outer membrane. Synthesis of the mutant protein did not inhibit processing of the OmpA or OmpF proteins. In the other mutant type, multiple mutational alterations had occurred leading to four amino acid substitutions in the signal sequence and two affecting the first two residues of the mature protein. A reduced rate of processing could not be clearly demonstrated. Membrane fractionation suggested that small amounts of this precursor were associated with the plasma membrane but synthesis of this mutant protein also did not inhibit processing of the wild-type OmpA or OmpF proteins. Several lines of evidence left no doubt that the mature, mutant protein is stably incorporated into the outer membrane. It is suggested that the presence, in the outer membrane, of the mutant precursor protein in the former case, or of the mutant protein in the latter case perturbs the membrane architecture enough to cause cell death.  相似文献   

3.
We studied whether information required for export is present within the mature form of the Escherichia coli 325-residue outer membrane protein OmpA. We had previously analyzed overlapping internal deletions in the ompA gene, and the results allowed us to conclude that if such information exists it must be present repeatedly within the membrane part of the protein encompassing amino acid residues 1 to 177 (R. Freudl, H. Schwarz, M. Klose, N. R. Movva, and U. Henning, EMBO J. 4:3593-3598, 1985). A deletion which removed the codons for amino acid residues 1 to 229 of the OmpA protein was constructed. In this construct the signal sequence was fused to the periplasmic part of the protein. The resulting protein, designated Pro-OmpA delta 1-229, was processed, and the mature 95-residue protein accumulated in the periplasm. Hence, information required for export does not exist within the OmpA protein.  相似文献   

4.
The distal part of the long tail fibers of the Escherichia coli phage T4 consists of a dimer of protein 37. A fragment of the corresponding gene, encoding 253 amino acids, was inserted into several different sites within the cloned gene for the 325-residue outer membrane protein OmpA. In plasmid pTU T4-5 the fragment was inserted once and in pTU T4-10 tandemly twice between the codons for residues 153 and 154 of the OmpA protein. In pTU T4-22 two fragments were present, in tandem, between the codons for residues 45 and 46 of this protein. In pIN T4-6 one fragment was inserted into the ompA gene immediately following the part encoding the signal sequence. The corresponding mature proteins consist, in this order, of 605, 860, 835, and 279 amino acid residues. All precursor proteins were processed and translocated across the plasma membrane. Hence, not only can the OmpA protein serve as a vehicle for export of a nonsecretory protein, but the signal sequence alone can also mediate export of such a protein. Export of the pro-OmpA protein depends on the SecA protein. Export of the tail fiber fragment expressed from pIN T4-6 remained SecA dependent. Thus, the secA pathway in this case is chosen by the signal peptide. It is proposed that a signal peptide can mediate translocation of nonsecretory proteins as long as they are export-compatible. The inability of a signal sequence to mediate export of some proteins appears to be due to export incompatibility of the protein rather than to the absence of information, within the mature part of the polypeptide, which would be required for translocation.  相似文献   

5.
R Freudl  H Schwarz  M Klose  N R Movva    U Henning 《The EMBO journal》1985,4(13A):3593-3598
Information, in addition to that provided by signal sequences, for translocation across the plasma membrane is thought to be present in exported proteins of Escherichia coli. Such information must also exist for the localization of such proteins. To determine the nature of this information, overlapping inframe deletions have been constructed in the ompA gene which codes for a 325-residue major outer membrane protein. In addition, one deletion, encoding only the NH2-terminal part of the protein up to residue 160, was prepared. The location of each product was determined by immunoelectron microscopy. Proteins missing residues 4-45, 43-84, 46-227, 86-227 or 160-325 of the mature protein were all efficiently translocated across the plasma membrane. The first two proteins were found in the outer membrane, the others in the periplasmic space. It has been proposed that export and sorting signals consist of relatively small amino acid sequences near the NH2 terminus of an outer membrane protein. On the basis of sequence homologies it has also been suggested that such proteins possess a common sorting signal. The locations of the partially deleted proteins described here show that a unique export signal does not exist in the OmpA protein. The proposed common sorting signal spans residues 1-14 of OmpA. Since this region is not essential for routing the protein, the existence of a common sorting signal is doubtful. It is suggested that information both for export (if existent) and localization lies within protein conformation which for the former process should be present repeatedly in the polypeptide.  相似文献   

6.
A series of overlapping deletions has been constructed in the ompA gene which encodes the 325-residue Escherichia coli outer membrane protein OmpA. Immunoelectron microscopy showed that the OmpA fragments were either located in the periplasmic space or were associated with the outer membrane. Apparently an area between residues 154 and 180 is required for this association; all proteins missing this area were found to be periplasmic. The nature of this association remained unknown; no membrane-protected tryptic fragments could be identified for any of these polypeptides. Hybrid genes were constructed encoding parts of the periplasmic maltose binding protein and an area of the ompA gene coding for residues 154-274. The corresponding proteins were not localized to the outer membrane but remained attached to the outer face of the plasma membrane, possibly because the normal mechanism of release from this membrane was impaired. In the OmpA protein the conspicuous sequence Ala180-Pro-Ala-Pro-Ala-Pro-Ala-Pro187 exists. Frameshift mutants were constructed to eliminate this sequence. There was no effect on the incorporation of the mutant proteins into the outer membrane. Thus, this "hinge" region is not involved in sorting. A proposal suggesting the existence of a sorting signal common to several outer membrane proteins (Benson, S. A., Bremer, E., and Silhavy, T. J. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 3830-3834) was subsequently rejected (Bosch, D., Leunissen, J., Verbakel, J., de Jong, M., van Erp, H., and Tommassen, J. (1986) J. Mol. Biol. 189, 449-455; Freudl, R., Schwarz, H., Klose, M., Movva, N. R., and Henning, U. (1985) EMBO J. 4, 3593-3598). Although it is not known whether or not the outer membrane association observed represents a step in the normal sorting mechanism, it is concluded that it remains an open question whether or not a sorting signal, as proposed originally, exists in outer membrane proteins.  相似文献   

7.
The major outer membrane protein (MOMP) of Haemophilus ducreyi is an OmpA homolog that migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels as three species with apparent molecular weights ranging from 37,000 to 43,000. Monoclonal antibodies directed against this macromolecule were used to identify recombinant clones containing fragments of the gene encoding this protein. Nucleotide sequence analysis of these fragments confirmed that the MOMP encoded by the intact gene (momp) was a member of the OmpA family of outer membrane proteins. Construction of an isogenic H. ducreyi mutant unable to express the MOMP led to the discovery of a second outer membrane protein which migrated at the same rate on SDS-PAGE gels as the MOMP. N-terminal amino acid sequence analysis of this second protein revealed that its N terminus was nearly identical to that of the MOMP and also had homology with members of the OmpA family. Nucleotide sequence analysis of the region downstream from the momp gene revealed the presence of a partial open reading frame encoding a predicted OmpA-like protein. A modification of anchored PCR technology was used to obtain the nucleotide sequence of this downstream gene which was shown to encode a second OmpA homolog (OmpA2). The N-terminal amino acid sequence of OmpA2 was identical to that of the OmpA-like protein detected in the momp mutant. The H. ducreyi MOMP and OmpA2 proteins, which comigrated on SDS-PAGE gels and which were encoded by the tandem arranged momp and ompA2 genes, were 72% identical.  相似文献   

8.
The 325-residue OmpA protein is one of the major outer membrane proteins of Escherichia coli K-12. A model, in which this protein crosses the membrane eight times in an antiparallel beta-sheet conformation and in which regions around amino acids 25, 70, 110 and 154 are exposed at the cell surface, had been proposed. Linkers were inserted into the ompA gene with the result that OmpA proteins, carrying non-OmpA sequences between residues 153 and 154 or 160 and 162, were synthesized. Intact cells possessing these proteins were treated with proteases. Insertion of 15 residues between residues 153 and 154 made the protein sensitive to proteinase K and the sizes of the two cleavage products were those expected following proteolysis at the area of the insertion. Addition of at least 17 residues between residues 160 and 162 left the protein completely refractory to protease action. Thus, the former area is cell surface exposed while the latter area appears not to be. The insertions did not cause a decrease in the concentration of the hybrid proteins as compared to that of the OmpA protein, and in neither case was synthesis of the protein deleterious to cell growth. It is suggested that this method may serve to carry peptides of practical interest to the cell surface and that it can be used to probe surface-located regions of other membrane proteins.  相似文献   

9.
Pulse-chase experiments were performed to follow the export of the Escherichia coli outer membrane protein OmpA. Besides the pro-OmpA protein, which carries a 21-residue signal sequence, three species of ompA gene products were distinguishable. One probably represented an incomplete nascent chain, another the mature protein in the outer membrane, and the third, designated imp-OmpA (immature processed), a protein which was already processed but apparently was still associated with the plasma membrane. The pro- and imp-OmpA proteins could be characterized more fully by using a strain overproducing the ompA gene products; pro- and imp-OmpA accumulated in large amounts. It could be shown that the imp- and pro-OmpA proteins differ markedly in conformation from the OmpA protein. The imp-OmpA, but not the pro-OmpA, underwent a conformational change and gained phage receptor activity upon addition of lipopolysaccharide. Utilizing a difference in detergent solubility between the two polypeptides and employing immunoelectron microscopy, it could be demonstrated that the pro-OmpA protein accumulated in the cytoplasm while the imp-OmpA was present in the periplasmic space. The results suggest that the pro-OmpA protein, bound to the plasma membrane, is processed, and the resulting imp-OmpA, still associated with the plasma membrane, recognizes the lipid A moiety of the lipopolysaccharide. The resulting conformational change may then force the protein into the outer membrane.  相似文献   

10.
Expression of mutant ompA genes, encoding the 325 residue Escherichia coli outer membrane protein OmpA, caused an inhibition of synthesis of the structurally unrelated outer membrane porins OmpC and OmpF and of wild-type OmpA, but not of the periplasmic beta-lactamase. There was no accumulation of precursors of the target proteins and the inhibitory mechanism operated at the level of translation. So far only alterations around residue 45 of OmpA have been found to affect this phenomenon. Linkers were inserted between the codons for residues 45 and 46. A correlation between size and sequence of the resulting proteins and presence or absence of the inhibitory effect was not found, indicating that the added residues acted indirectly by altering the conformation of other parts of the mutant OmpA. To be effective, the altered polypeptides had to be channelled into the export pathway. Internal deletions in effector proteins, preventing incorporation into the membrane, abolished effector activity. The results suggest the existence of a periplasmic component that binds to OmpA prior to membrane assembly; impaired release of this factor from mutant OmpA proteins may trigger inhibition of translation. The factor could be a See B-type protein, keeping outer membrane proteins in a form compatible with membrane assembly.  相似文献   

11.
Synthesis of OmpA protein of Escherichia coli K12 in Bacillus subtilis   总被引:5,自引:0,他引:5  
We have inserted a C-terminally truncated gene of the major outer membrane protein OmpA of Escherichia coli downstream from the promoter and signal sequence of the secretory alpha-amylase of Bacillus amyloliquefaciens in a secretion vector of Bacillus subtilis. B. subtilis transformed with the hybrid plasmid synthesized a protein that was immunologically identified as OmpA. All the protein was present in the particulate fraction. The size of the protein compared to the peptide synthesized in vitro from the same template indicated that the alpha-amylase derived signal peptide was not removed; this was verified by N-terminal amino acid sequence determination. The lack of cleavage suggests that there was little or no translocation of OmpA protein across the cytoplasmic membrane. This is an unexpected difference compared with periplasmic proteins, which were both secreted and processed when fused to the same signal peptide. A requirement of a specific component for the export of outer membrane proteins is suggested.  相似文献   

12.
Hybrid genes were constructed. One, ompA153-dfr, encoded the precursor of the 325 residue Escherichia coli outer membrane protein OmpA up to residue 153 which was fused to the complete 186-residue dihydrofolate reductase of the mouse. The other, ompA219-lacZ, coded for the same precursor up to residue 219 which was fused to 1017 COOH-terminal residues of the 1023-residue subunit of the beta-galactosidase of E. coli. Full expression of the ompA153-dfr gene caused accumulation of its precursor and of that of the chromosomally encoded OmpA protein. When the amount of product was reduced, no pro-OmpA and very little pro-hybrid protein accumulated. The precursor was processed and the mature protein was fully accessible to trypsin in permeabilized cells. Expression of the ompA219-lacZ gene led to the presence of the hybrid protein at only 20-30% of the amount expected. About 20% of it appeared to be incorporated in the outer membrane. All of the hybrid was quantitatively accessible to trypsin in permeabilized cells. When the hybrid gene was overexpressed, the protein was found associated with the plasma membrane in the cytosol. It is concluded that both beta-galactosidase and dihydrofolate reductase could quantitatively traverse the plasma membrane, provided the amounts synthesized were sufficiently small.  相似文献   

13.
The membrane part of the 325-residue outer membrane protein OmpA of Escherichia coli encompasses residues 1-177. This part is thought to cross the membrane eight times in antiparallel beta-strands, forming four loops of an amphipathic beta-barrel. With the aim of gaining some insight into the mechanism of sorting, i.e. the way the protein recognizes and assembles into its membrane, a set of point mutants in the ompA gene has been generated. Selection for toxicity of ompA expression following mutagenesis with sodium bisulfite yielded genes with multiple base pair substitutions, the majority of which resulted in amino acid substitutions in the membrane moiety of the protein. None of the altered proteins was blocked in membrane incorporation. A proline residue exists at or near each of the presumed turns at the inner side of the outer membrane. Using oligonucleotide-directed mutagenesis, each of them was replaced by a leucine residue which is thought to be a turn blocking residue. None of these proteins had lost the ability to be incorporated into the membrane. Apparently, leucine residues are tolerated at turns in this protein. To interfere with the formation of antiparallel beta-strands, four double mutants were prepared: ompA-ON3 (Ala11----Pro, Leu13----Pro), -ON4 (Ala11----Asp, Leu13----Pro), -ON5 (Gly160----Val, Leu162----Arg), and -ON6 (Leu164----Pro, Val166----Asp). The former three proteins and even quadruple mutants consisting of a combination of ompA-ON2 or -ON4 with -ON5 were not defective in membrane assembly. In contrast, the OmpA-ON6 protein was translocated across the plasma membrane but could not be incorporated into the outer membrane. It is concluded that at least one rather small area of the polypeptide is of crucial importance for the assembly of OmpA into the outer membrane.  相似文献   

14.
The 325-residue OmpA protein is one of the major outer membrane proteins of Escherichia coli. It serves as the receptor for several T-even-like phages and is required for the action of certain colicins and for the stabilization of mating aggregates in conjugation. We have isolated two mutant alleles of the cloned ompA gene which produce a protein that no longer functions as a phage receptor. Bacteria possessing the mutant proteins were unable to bind the phages, either reversibly or irreversibly. However, both proteins still functioned in conjugation, and one of them conferred colicin L sensitivity. DNA sequence analysis showed that the phage-resistant, colicin-sensitive phenotype exhibited by one mutant was due to the amino acid substitution Gly leads to Arg at position 70. The second mutant, which contained a tandem duplication, encodes a larger product with 8 additional amino acid residues, 7 of which are a repeat of the sequence between residues 57 and 63. In contrast to the wild-type OmpA protein, this derivative was partially digested by pronase when intact cells were treated with the enzyme. The protease removed 64 NH2-terminal residues, thereby indicating that this part of the protein is exposed to the outside. It is argued that the phage receptor site is most likely situated around residues 60 to 70 of the OmpA protein and that the alterations characterized have directly affected this site.  相似文献   

15.
The mechanism of sorting, to the outer membrane, of the 325-residue Escherichia coli protein OmpA has been investigated. It is thought to traverse the membrane eight times in antiparallel beta-strands, forming an amphiphilic beta-barrel which encompasses residues 1 to about 170; the COOH-terminal moiety is periplasmic. A mutant, carrying the substitutions Leu164----Pro and Val166----Asp within the last beta-strand (residues 160-170), has been described which was unable to assemble in the membrane (Klose, M., MacIntyre, S., Schwarz, H., and Henning, U. (1988) J. Biol. Chem. 263, 13297-13302). Linkers were inserted between the codons for residues 164 and 165 of the mutant protein. Of 13 different genes recovered, five encoded proteins which had regained the ability to assemble in the membrane. The properties of the mutant proteins, together with a structure prediction method, indicate the following rules for the final beta-strand to be compatible with, or possibly initiate, membrane insertion: (i) it must be amphiphilic or hydrophobic while its primary structure as such is fairly unimportant, (ii) it must extend over at least 9 residues, and (iii) it must not contain a proline residue around its center. One of the genes recovered coded for OmpA up to residue 164 and then followed by 10 linker-encoded residues. This 174-residue polypeptide was assembled in the membrane but did not, in contrast to all other proteins, expose sites sensitive to trypsin at the inner face of the membrane. This behavior agrees perfectly well with the OmpA model.  相似文献   

16.
The 325-residue outer membrane protein OmpA of Escherichia coli has been proposed to consist of a membrane-embedded moiety (residues 1 to about 170) and a C-terminal periplasmic region. The former is thought to comprise eight transmembrane segments in the form of antiparallel β-strands, forming an amphiphilic β connected by exposed turns. Several questions concerning this model were addressed. Thus no experimental evidence had been presented for the turns at the inner leaflet of the membrane and it was not known whether or not the periplasmic part of the polypeptide plays a role in the process of membrane incorporation. Oligonucleotides encoding trypsin cleavage sites were inserted at the predicted turn sites of the ompA gene and it was shown that the encoded proteins indeed become accessible to trypsin at the modified sites. Together with previous results, these data also show that the turns on both sides of the membrane do not possess specifically topogenic information. In two cases one of the two expected tryptic fragments was lost and could be detected at low concentration in only one case. Therefore, bilateral proteolytic digestion of outer membranes can cause loss of β-strands and does not necessarily produce a reliable picture of protein topology. When ompA genes were constructed coding for proteins ending at residue 228 or 274, the membrane assembly of these proteins was shown to be partially defective with about 20% of the proteins not being assembled. No such defect was observed when, following the introduction of a premature stop codon, a truncated protein was produced ending with residue 171. It is concluded that (1) the proposed β-barrel structure is essentially correct and (2) the periplasmic part of OmpA does not play an active role in, but can, when present in mutant form, interfere with membrane assembly.  相似文献   

17.
A search was performed for a periplasmic molecular chaperone which may assist outer membrane proteins of Escherichia coli on their way from the cytoplasmic to the outer membrane. Proteins of the periplasmic space were fractionated on an affinity column with sepharose-bound outer membrane porin OmpF. A 17kDa polypeptide was the predominant protein retained by this column. The corresponding gene was found in a gene bank; it encodes the periplasmic protein Skp. The protein was isolated and it could be demonstrated that it bound outer membrane proteins, following SDS-PAGE, with high selectivity. Among these were OmpA, OmpC, OmpF and the maltoporin LamB. The chromosomal skp gene was inactivated by a deletion causing removal of most of the signal peptide plus 107 residues of the 141-residue mature protein. The mutant was viable but possessed much-reduced concentrations of outer membrane proteins. This defect was fully restored by a plasmid-borne skp gene which may serve as a periplasmic chaperone.  相似文献   

18.
19.
The signal sequence of the precursor of the Escherichia coli outer membrane protein OmpA was altered by oligonucleotide insertions into the corresponding gene. In one case, OmpA-S1, the hydrophobic core of the signal peptide, is reduced from 12 to 10 residues, and one positive charge is added near the NH2-terminus. In another case, OmpA-P1, the hydrophobic core is extended from 12 to 16 residues. The pro-OmpA protein is normally processed partially co- and partially posttranslationally. Processing of the pro-OmpA-S1 protein was entirely posttranslational and that of the pro-OmpA-P1 protein strictly cotranslational. Evidence is presented which strongly suggests that posttranslational processing reflects posttranslational translocation across the plasma membrane. The generation times of cells expressing pro-OmpA-P1 or pro-OmpA-S1 were identical and the pro-OmpA-S1 polypeptide could be chased into the mature protein in the absence of protein synthesis. Hence, it does not matter which mode of processing, or rather translocation, is used. The same oligonucleotides were inserted into the ompA gene of plasmid pRD87; a plasmid which leads to overproduction of the protein and to massive accumulation of both the mature protein and the precursor. In the OmpA signal sequence encoded by pRD87-P2 the hydrophobic core is extended from 12 to 20 residues. This peptide was also rapidly removed. Therefore, regardless of whether the hydrophobic core contains 12, 16, or 20 lipophilic residues, not only does the signal sequence always function correctly to mediate export, but in each case, the cleavage site is always accessible to the signal peptidase.  相似文献   

20.
Pseudomonas solanacearum is an important phytopathogen that produces a variety of extracellular enzymes. Previous reports suggested that one of these, a 43-kDa beta-1,4-endoglucanase (EGL), is initially synthesized with a 45-residue leader sequence that is removed during export. Experiments with globomycin presented here also suggest that the primary precursor of EGL (ppEGL) has a 45-residue leader sequence but that only the first 19 residues of the leader sequence are removed by signal peptidase II during initial export across the inner membrane. Further analysis suggested that the resultant 46-kDa intermediate precursor (pEGL) is a transient fatty acylated lipoprotein and is located on the periplasmic side of the inner membrane of P. solanacearum. Although Escherichia coli could synthesize ppEGL, modify it with palmitate, and remove the first 19 residues of the leader sequence during export across the inner membrane, only P. solanacearum could export pEGL across the outer membrane and remove the remaining 26 residues of the leader sequence producing the mature, extracellular EGL. The second step of the export process requires export machinery not present in E. coli. To our knowledge this represents the first example of a leader sequence with two distinct parts, one removed during export across the inner membrane and the other removed during export across the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号