首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic excitation, at 2 Hz for 6-7 weeks, of the predominantly fast-twitch canine latissimus dorsi muscle promoted the expression of phospholamban, a protein found in sarcoplasmic reticulum (SR) from slow-twitch and cardiac muscle but not in fast-twitch muscle. At the same time that phospholamban was expressed, there was a switch from the fast-twitch (SERCA1) to the slow-twitch (SERCA2a) Ca(2+)-ATPase isoform. Antibodies against Ca(2+)-ATPase (SERCA2a) and phospholamban were used to assess the relative amounts of the slow-twitch/cardiac isoform of the Ca(2+)-ATPase and phospholamban, which were found to be virtually the same in SR vesicles from the slow-twitch muscle, vastus intermedius; cardiac muscle; and the chronically stimulated fast-twitch muscle, latissimus dorsi. The phospholamban monoclonal antibody 2D12 was added to SR vesicles to evaluate the regulatory effect of phospholamban on calcium uptake. The antibody produced a strong stimulation of calcium uptake into cardiac SR vesicles, by increasing the apparent affinity of the Ca2+ pump for calcium by 2.8-fold. In the SR from the conditioned latissimus dorsi, however, the phospholamban antibody produced only a marginal effect on Ca2+ pump calcium affinity. These different effects of phospholamban on calcium uptake suggest that phospholamban is not tightly coupled to the Ca(2+)-ATPase in SR vesicles from slow-twitch muscles and that phospholamban may have some other function in slow-twitch and chronically stimulated fast-twitch muscle.  相似文献   

2.
H W Kim  Y S Ch  H R Lee  S Y Park  Y H Kim 《Life sciences》2001,70(4):367-379
Diabetic cardiomyopathy has been suggested to be caused by abnormal intracellular Ca2+ homeostasis in the myocardium, which is partly due to a defect in calcium transport by the cardiac sarcoplasmic reticulum (SR). In the present study, the underlying mechanism for this functional derangement was investigated with respect to SR Ca2+-ATPase and phospholamban (the inhibitor of SR Ca2+-ATPase). The maximal Ca2+ uptake and the affinity of Ca2+-ATPase for Ca2+ were decreased, and exogenous phosphorylation level of phospholamban was higher in streptozotocin-induced diabetic rat SR. Levels of both mRNA and protein of phospholamban were significantly increased in the diabetic hearts, whereas those of SR Ca2+-ATPase were significantly decreased. Consequently, the relative phospholamban/Ca2+-ATPase ratio was 1.88 in the diabetic hearts, and these changes were correlated with changes in the rates of SR Ca2+ uptake. However, phosphatase pretreatment of phospholamban for dephosphorylation of the sites phosphorylated in vivo did not change the levels of subsequent phospholamban phosphorylation in either control or diabetic rat hearts. The above data indicated that the increased phospholamban phosphorylation was not due to autonomic dysfunction but possibly due to increased phospholamban expression. These findings suggest that reduction of the SR Ca2+-ATPase level would contribute to decreased rates of SR Ca2+ uptake and that this function is further impaired by the enhanced inhibition by phospholamban due to its increased expression in the diabetic heart.  相似文献   

3.
T Wang 《Biochemistry》1987,26(25):8360-8365
A five-syringe quench-flow apparatus was used in the transient-state kinetic study of intermediary phosphoenzyme (EP) decomposition in a Triton X-100 purified dog cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase at 20 degrees C. Phosphorylation of the enzyme by ATP in the presence of 100 mM K+ for 116 ms gave 32% ADP-sensitive E1P, 52% ADP- and K+-reactive E2P, and 16% unreactive residual EPr. The EP underwent a monomeric, sequential E1P 17 s-1----E2P 10.5 s-1----E2 + Pi transformation and decomposition in the ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid quenched Ca2+-devoid medium. The calculated rate constant for the total EP (i.e., E1P + E2P) dephosphorylation was 7.8 s-1. The E1P had an affinity for ADP with an apparent Kd congruent to 100 microM. When the EP was formed in the absence of K+ for 116 ms, no appreciable amount of the ADP-sensitive E1P was detected. The EP comprised about 80% ADP- and K+-reactive E2P and 20% residual EPr, suggesting a rapid E1P----E2P transformation. Both the E2P's formed in the presence and absence of K+ decomposed with a rate constant of about 19.5 s-1 in the presence of 80 mM K+ and 2 mM ADP, showing an ADP enhancement of the E2P decomposition. The results demonstrate mechanistic differences in monomeric EP transformation and decomposition between the Triton X-100 purified cardiac SR Ca2+-ATPase and deoxycholate-purified skeletal enzyme [Wang, T. (1986) J. Biol. Chem. 261, 6307-6319].  相似文献   

4.
Summary This review summarizes studies on the structural organization of Ca2+-ATPase in the sarcoplasmic reticulum membrane in relation to the function of the transport protein. Recent advances in this field have been made by a combination of protein-chemical, ultrastructural, and physicochemical techniques on membraneous and detergent solubilized ATPase. A particular feature of the ATPase (Part I) is the presence of a hydrophilic head, facing the cytoplasm, and a tail inserted in the membrane. In agreement with this view the protein is moderately hydrophobic, compared to many other integral membrane proteins, and the number of traverses of the 115 000 Dalton peptide chain through the lipid may be limited to 3–4.There is increasing evidence (Part II) that the ATPase is self-associated in the membrane in oligomeric form. This appears to be a common feature of many transport proteins. Each ATPase peptide seems to be able to perform the whole catalytic cycle of ATP hydrolysis and Ca2+ transport. Protein-protein interactions seem to have a modulatory effect on enzyme activity and to stabilize the enzyme against inactivation.Phospholipids (Part III) are not essential for the expression of enzyme activity which only requires the presence of flexible hydrocarbon chains that can be provided e.g. by polyoxyethylene glycol detergents. Perturbation of the lipid bilayer by the insertion of membrane protein leads to some immobilization of the lipid hydrocarbon chains, but not to the extent envisaged by the annulus hypothesis. Strong immobilization, whenever it occurs, may arise from steric hindrance due to protein-protein contacts. Recent studies suggest that breaks in Arrhenius plots of enzyme activity primarily reflect intrinsic properties of the protein rather than changes in the character of lipid motion as a function of temperature.  相似文献   

5.
Recent studies have demonstrated phosphorylation of the cardiac and slow-twitch muscle isoform (SERCA2a) of the sarcoplasmic reticulum (SR) Ca2+-ATPase (at Ser38) by a membrane-associated Ca2+/calmodulin-dependent protein kinase (CaM kinase). Analysis of the functional consequence of Ca2+-ATPase phosphorylation in the native SR membranes, however, is complicated by the concurrent phosphorylation of the SR proteins phospholamban (PLN) which stimulates Ca2+ sequestration by the Ca2+-ATPase, and the ryanodine receptor-Ca2+ release channel (RYR-CRC) which likely augments Ca2+ release from the SR. In the present study, we achieved selective phosphorylation of the Ca2+-ATPase by endogenous CaM kinase in isolated rabbit cardiac SR vesicles utilizing a PLN monoclonal antibody (PLN AB) which inhibits PLN phosphorylation, and the RYR-CRC blocking drug, ruthenium red, which inhibits phosphorylation of RYR-CRC. Analysis of the Ca2+ concentration-dependence of ATP-energized Ca2+ uptake by SR showed that endogenous CaM kinase mediated phosphorylation of the Ca2+-ATPase, in the absence of PLN and/or RYR-CRC phosphorylation, results in a significant increase (approximately 50-70%) in the Vmax of Ca2+ sequestration without any change in the k0.5 for Ca2+ activation of the Ca2+ transport rate. On the other hand, treatment of SR with PLN AB (which mimics the effect of PLN phosphorylation by uncoupling Ca2+-ATPase from PLN) resulted in approximately 2-fold decrease in k0.5 for Ca2+ without any change in Vmax of Ca2+ sequestration. These findings suggest that, besides PLN phosphorylation, direct phosphorylation of the Ca2+-ATPase by SR-associated CaM kinase serves to enhance the speed of cardiac muscle relaxation.  相似文献   

6.
Sarcoplasmic reticulum (SR) Ca2+-ATPase was purified from dog cardiac and rabbit skeletal muscle using Triton X-100 at optimal ratios of 0.5 for cardiac and 0.5 to 1.0 for skeletal SR. The yields of Ca2+-ATPase were 4 to 5 and 1 to 2.2 mg/100 mg of cardiac and skeletal SR protein, respectively. The enzyme activities were 547 +/- 67 mumol ADP/mg/h for cardiac and 1192 +/- 172 mumol ADP/mg/h for skeletal Ca2+-ATPase. Removal of excess Triton X-100 increased the enzyme activities to 719 +/- 70 and 1473 +/- 206 mumol ADP/mg/h, respectively. The residual content of Triton X-100 for cardiac and skeletal Ca2+-ATPase was 20 and 5 mol/mol of enzyme, respectively. Maximum levels of phosphoenzyme were 4.4 +/- 0.2 and 5.6 +/- 0.6 nmol/mg in each case. A single protein band of 100 kDa was obtained for each purified Ca2+-ATPase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The preparations were stable at -80 degrees C for 5 months in the presence of 1 mM Ca2+. The phospholipid content of the purified enzyme was 2-fold greater than that of native cardiac and skeletal SR microsomes. Repeated washing of the purified enzyme preparation did not alter the phospholipid content or the specific activities.  相似文献   

7.
8.
Coll KE  Johnson RG  McKenna E 《Biochemistry》1999,38(8):2444-2451
A strong connection with nucleotide activation of Ca2+ATPase and phospholamban inhibition has been found. Phospholamban decreases the number of activatable Ca2+ATPase without affecting substrate affinity or the ability of nucleotide to serve its dual modulatory roles, i.e., catalytic and regulatory. Low concentrations of certain nucleotide mimetics, quercetin, tannin, and ellagic acid, with structural similarity to adenine can unmask phospholamban's inhibitory effect while concurrently acting as competitive inhibitors of nucleotide binding. Micromolar concentrations of tannin (EC50 approximately 0.3 microM) and ellagic acid (EC50 approximately 3 microM) stimulated Ca2+ uptake and calcium-activated ATP hydrolysis at submicromolar Ca2+ in isolated cardiac sarcoplasmic reticulum (SR). Stimulation of Ca2+ATPase was followed by pronounced inhibiton at only slightly higher tannin concentrations (IC50 approximately 3 microM), whereas inhibitory effects by ellagic acid were observed at much greater concentrations (IC50 > 300 microM) than the EC50. A complex relationship between compound, SR protein, and MgATP concentration is a major determining factor in the observed effects. Stimulation was only observed under conditions of phospholamban regulation, while the inhibitory effects were observed in cardiac SR at micromolar Ca2+ and in skeletal muscle SR, which lacks phospholamban. Maximal stimulation of Ca2+ATPase was identical to that observed with the anti-phospholamban monoclonal antibody 1D11. Both compounds appear to relieve the Ca2+ATPase from phospholamban inhibition, thereby increasing the calcium sensitivity of the Ca2+ATPase like that observed with phosphorylation of phospholamban or treatment with monoclonal antibody 1D11. Tannin, even under stimulatory conditions, is a competitive inhibitor of MgATP with a linear Dixon plot. The subsequent inhibitory action of higher tannin concentrations results from competition of tannin with the nucleotide binding site of the Ca2+ATPase. In contrast, ellagic acid produced a curvilinear Dixon plot suggesting partial inhibition of nucleotide activation. The data suggest that nucleotide activation of Ca2+ATPase is functionally coupled to the phospholamban interaction site. These compounds through their interaction with the adenine binding domain of the nucleotide binding site prevent or dissociate phospholamban regulation. Clearly, this portion of Ca2+ATPase needs further study to elucidate its role in phospholamban inhibition.  相似文献   

9.
The Ca2(+)-ATPase in cardiac sarcoplasmic reticulum (SR) is under regulation by phospholamban, an oligomeric proteolipid. To determine the molecular mechanism by which phospholamban regulates the Ca2(+)-ATPase, a reconstitution system was developed, using a freeze-thaw sonication procedure. The best rates of Ca2+ uptake (700 nmol/min/mg reconstituted vesicles compared with 800 nmol/min/mg SR vesicles) were observed when cholate and phosphatidylcholine were used at a ratio of cholate/phosphatidylcholine/Ca2(+)-ATPase of 2:80:1. The EC50 values for Ca2+ were 0.05 microM for both Ca2+ uptake and Ca2(+)-ATPase activity in the reconstituted vesicles compared with 0.63 microM Ca2+ in native SR vesicles. Inclusion of phospholamban in the reconstituted vesicles was associated with a significant inhibition of the initial rates of Ca2+ uptake at pCa 6.0. However, phosphorylation of phospholamban by the catalytic subunit of the cAMP-dependent protein kinase reversed the inhibitory effect on the Ca2+ pump. Similar findings were observed when a peptide, corresponding to amino acids 1-25 of phospholamban, was used. These findings indicate that phospholamban is an inhibitor of the Ca2(+)-ATPase in cardiac SR and phosphorylation of phospholamban relieves this inhibition. The mechanism by which phospholamban inhibits the Ca2+ pump is unknown, but our findings with the synthetic peptide suggest that a direct interaction between the Ca2(+)-ATPase and the hydrophilic portion of phospholamban may be one of the mechanisms for regulation.  相似文献   

10.
Regulation of cardiac sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase   总被引:2,自引:0,他引:2  
Summary The two high affinity calcium binding sites of the cardiac (Ca2+ + Mg2+)-ATPase have been identified with the use of Eu3+. Eu3+ competes for the two high affinity calcium sites on the enzyme. With the use of laser-pulsed fluorescent spectroscopy, the environment of the two sites appear to be heterogeneous and contain different numbers of H2O molecules coordinated to the ion. The ion appears to be occluded even further in the presence of ATP. Using non-radiative energy transfer studies, we were able to estimate the distance between the two Ca2+ sites to be between 9.4 to 10.2 A in the presence of ATP. Finally, from the assumption that the calcium site must contain four carboxylic side chains to provide the 6–8 ligands needed to coordinate calcium, and based on our recently published data, we predict the peptidic backbone of the two sites.  相似文献   

11.
12.
A pure, enzymatically active Ca2+-dependent adenosine triphosphatase (Ca2+-ATPase) has been isolated from canine ventricular sarcoplasmic reticulum. In contrast to that derived from skeletal muscle, the Ca2+-ATPase from cardiac sarcoplasmic reticulum was more active when solubilization and subsequent purification took place in the presence of its substrates, Ca2+ and ATP. Cholate- or deoxycholate-solubilized Ca2+-ATPase is recovered following rapid glycerol dilution and centrifugation. The Ca2+-ATPase is stable and possesses hydrolytic capacities up to 4 mumol/mg/min. Sodium dodecyl sulfate-polyacrylamide gels reveal the presence of one protein in the range of 95,000 to 100,000 daltons. This method also yields purified Ca2+-ATPase from fast skeletal muscle of similar activities to those reported by other laboratories.  相似文献   

13.
The fast-twitch SERCA1 isoform of the sarcoplasmic reticulum Ca(2+)-ATPase was purified to homogeneity and conjugated to peroxidase. The SERCA1 probe showed high affinity binding to the immobilized monomeric enzyme, but not crosslinker-stabilized oligomers. This suggests a preferential complex formation via homo-dimerization, rather than interactions with established oligomeric structures.  相似文献   

14.
Favero, Terence G., David Colter, Paul F. Hooper, andJonathan J. Abramson. Hypochlorous acid inhibitsCa2+-ATPase from skeletal musclesarcoplasmic reticulum. J. Appl. Physiol. 84(2): 425-430, 1998.Hypochlorous acid(HOCl) is produced by polymorphonuclear leukocytes that migrate andadhere to endothelial cells as part of the inflammatory response totissue injury. HOCl is an extremely toxic oxidant that can react with avariety of cellular components, and concentrations reaching 200 µMhave been reported in some tissues. In this study, we show that HOClinteracts with the skeletal sarcoplasmic reticulumCa2+-adenosinetriphosphatase(ATPase), inhibiting transport function. HOCl inhibits sarcoplasmicreticulum Ca2+-ATPase activity ina concentration-dependent manner with a concentration required toinhibit ATPase activity by 50% of 170 µM and with completeinhibition of activity at 3 mM. A concomitant reduction infree sulfhydryl groups after HOCl treatment was observed, paralleling the inhibition of ATPase activity. It was also observed that HOCl inhibited the binding of the fluorescent probe fluoresceinisothiocyanate to the ATPase protein, indicating some structural damagemay have occurred. These findings suggest that the reactive oxygenspecies HOCl inhibits ATPase activity via a modification of sulfhydryl groups on the protein, supporting the contention that reactive oxygenspecies disrupt the normalCa2+-handling kinetics in musclecells.

  相似文献   

15.
The integral membrane protein complex between phospholamban (PLN) and sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) regulates cardiac contractility. In the unphosphorylated form, PLN binds SERCA and inhibits Ca(2+) flux. Upon phosphorylation of PLN at Ser16, the inhibitory effect is reversed. Although structural details on both proteins are emerging from X-ray crystallography, cryo-electron microscopy, and NMR studies, the molecular mechanisms of their interactions and regulatory process are still lacking. It has been speculated that SERCA regulation depends on PLN structural transitions (order to disorder, i.e., folding/unfolding). Here, we investigated PLN conformational changes upon chemical unfolding by a combination of electron paramagnetic resonance and NMR spectroscopies, revealing that the conformational transitions involve mostly the cytoplasmic regions, with two concomitant phenomena: (1) membrane binding and folding of the amphipathic domain Ia and (2) folding/unfolding of the juxtamembrane domain Ib of PLN. Analysis of phosphorylated and unphosphorylated PLN with two phosphomimetic mutants of PLN (S16E and S16D) shows that the population of an unfolded state in domains Ia and Ib (T' state) is linearly correlated to the extent of SERCA inhibition measured by activity assays. Inhibition of SERCA is carried out by the folded ground state (T state) of the protein (PLN), while the relief of inhibition involves promotion of PLN to excited conformational states (Ser16 phosphorylated PLN). We propose that PLN population shifts (folding/unfolding) are a key regulatory mechanism for SERCA.  相似文献   

16.
The concentration of vanadate for half maximal inhibition of dog cardiac and rabbit skeletal SR Ca2+-ATPase was approximately 5 μM. Preincubation of the enzyme with vanadate resulted in greater inhibition. Effects of potassium on the inhibition were studied under various conditions.  相似文献   

17.
Frank K  Tilgmann C  Shannon TR  Bers DM  Kranias EG 《Biochemistry》2000,39(46):14176-14182
Phospholamban is an inhibitor of the sarcoplasmic reticulum Ca(2+) transport apparent affinity for Ca(2+) in cardiac muscle. This inhibitory effect of phospholamban can be relieved through its phosphorylation or ablation. To better characterize the regulatory mechanism of phospholamban, we examined the initial rates of Ca(2+)-uptake and Ca(2+)-ATPase activity under identical conditions, using sarcoplasmic reticulum-enriched preparations from phospholamban-deficient and wild-type hearts. The apparent coupling ratio, calculated by dividing the initial rates of Ca(2+) transport by ATP hydrolysis, appeared to increase with increasing [Ca(2+)] in wild-type hearts. However, in the phospholamban-deficient hearts, this ratio was constant, and it was similar to the value obtained at high [Ca(2+)] in wild-type hearts. Phosphorylation of phospholamban by the catalytic subunit of protein kinase A in wild-type sarcoplasmic reticulum also resulted in a constant value of the apparent ratio of Ca(2+) transported per ATP hydrolyzed, which was similar to that present in phospholamban-deficient hearts. Thus, the inhibitory effects of dephosphorylated phospholamban involve decreases in the apparent affinity of sarcoplasmic reticulum Ca(2+) transport for Ca(2+) and the efficiency of this transport system at low [Ca(2+)], both leading to prolonged relaxation in myocytes.  相似文献   

18.
L Dux 《FEBS letters》1985,183(1):177-181
The vanadate-induced crystallization of Ca2+-ATPase was analyzed on sarcoplasmic reticulum vesicles isolated between 10 and 28 days of development from pectoralis muscles of chicken. After exposure to Na3VO4 in a Ca2+-free medium, Ca2+-ATPase crystals begin to appear on portions of the surface of a few vesicles, isolated at 18 days of development. Thereafter, the number of vesicles containing Ca2+-ATPase crystals rapidly increases and after 1 week of postnatal development (28 days), it reaches the adult level of about 30% of the vesicle population. These observations are discussed with reference to the mechanism of Ca2+-ATPase crystallization and the regulation of sarcoplasmic reticulum biosynthesis.  相似文献   

19.
In recent years, expression of rabbit sarcoplasmic reticulum (SR) Ca2+-ATPase in heterologous systems has been a widely used strategy to study altered enzymes generated by site-directed mutagenesis. Various eukaryotic expression systems have been tested, all of them yielding comparable amounts of recombinant protein. However, the relatively low yield of recombinant protein obtained so far suggests that novel purification techniques will be required to allow further characterization of this enzyme based on direct ligand-binding measurements.  相似文献   

20.
Sarcoplasmic reticulum Ca2+-ATPase solubilized in monomeric form by nonionic detergent was reacted with CrATP in the presence of 45Ca2+. A Ca2+-occluded complex formed, which was stable during high performance liquid chromatography in the presence of excess non-radioactive Ca2+. The elution position corresponded to monomeric Ca2+-ATPase. It is concluded that a single Ca2+-ATPase polypeptide chain provides the full structural basis for Ca2+ occlusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号