首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptide chemical ligation chemistries, which allow the chemoselective coupling of unprotected peptide fragments, are useful tools for synthesizing native polypeptides or unnatural peptide‐based macromolecules. We show here that the phenylthiocarbonyl group can be easily introduced into peptides on α or ε amino groups using phenylthiochloroformate and standard solid‐phase method. It reacts chemoselectively with cysteinyl peptides to give an alkylthiocarbamate bond. S,N‐shift of the alkylaminocarbonyl group from the Cys side chain to the α‐amino group did not occur. The method was used for linking two peptide chains through their N‐termini, for the synthesis of a cyclic peptide or for the synthesis of di‐ or tetravalent multiple antigenic peptides (MAPs). Thiocarbamate ligation is thus complementary to thioether, thioester or disulfide ligation methods. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Multifunctional, topological template molecules such as linear and cyclic peptides have been used for the attachment of peptide strands to form novel protein models of, for example, 4-alpha-helix bundles. The concept of carbohydrates as templates for de novo design of potential protein models has been previously described and these novel chimeric compounds were termed carbopeptides. Here, a second generation strategy in which carbopeptides are synthesized by chemoselective ligation of a peptide aldehyde to an aminooxy-functionalized alpha-D-galactopyranoside is described. This template was prepared by per-O-acylation of methyl alpha-D-galactopyranoside with N,N-Boc2-aminooxyacetic acid to form a tetra-functionalized template, followed by treatment with TFA-CH2Cl2 to release the aminooxy functionality. The peptide aldehydes Fmoc-Ser-Gly-Gly-H and H-Ala-Leu-Ala-Lys-Leu-Gly-Gly-H were synthesized by a BAL strategy. Four identical copies of peptide aldehyde were smoothly attached to the template by chemoselective ligation to form a 2.1 and a 2.9 kDa carbopeptide, respectively.  相似文献   

3.
Hydrazone/thioether ligation reactions show promise for the synthesis of clustered glycosides-antigen conjugates. Due to its propensity to aggregate, tetanus toxoid-derived epitopic peptide TT(830-846) was elected to further evaluate this three-component ligation process. This difficult sequence was supplemented by a hydrazine or a glyoxylyl group either at its C- or N-terminus. The peptide-hydrazines or peptide-aldehydes thus obtained were coupled with glyoxylyl- (or hydrazino-) N-chloroacetylated-L-lysinyl trees and 2-thioethyl-alpha-D-mannopyranoside. As anticipated the ligations were controlled by the nature of the peptide and proved difficult for the C-terminal aldehyde derivative. However, when the process was performed in absence of buffer and using mannitol as a dispersing agent, all combinations finally led to the expected glycoconjugates in 40-60% purified yields.  相似文献   

4.
A new amino acid derivative with a diol side-chain, L-2-amino-4,5-dihydroxy-pentanoic acid (Adi), has been prepared from L-allylglycine by suitable protection, for use in peptide synthesis, as Fmoc-L-Adi(Trt)2. This building block enables the introduction of a side-chain aldehyde at any position in a given peptide sequence without use of specialized side-chain protection schemes. The aldehyde is revealed by mild oxidation with sodium periodate, circumventing the problematic release of reactive peptidic aldehydes in TFA solution. Peptides with aldehyde side-chains are useful for chemo-selective ligation, reacting selectively with oxyamines to yield oxime links, while all other peptide functions can be left unprotected. The utility of the new building block has been demonstrated by the synthesis of peptide dimers and a cyclo-peptide.  相似文献   

5.
RNA–polypeptide complexes (RNPs), which play various roles in extant biological systems, have been suggested to have been important in the early stages of the molecular evolution of life. At a certain developmental stage of ancient RNPs, their RNA and polypeptide components have been proposed to evolve in a reciprocal manner to establish highly elaborate structures and functions. We have constructed a simple model system, from which a cooperative evolution system of RNA and polypeptide components could be developed. Based on the observation that several RNAs modestly accelerated the chemical ligation of the two basic peptides. We have designed an RNA molecule possessing two peptide binding sites that capture the two peptides. This designed RNA can also accelerate the peptide ligation. The resulting ligated peptide, which has two RNA-binding sites, can in turn function as a trans-acting factor that enhances the endonuclease activity catalyzed by the designed RNA.  相似文献   

6.
Beta-amyloid (Abeta) aggregates at low concentrations in vivo, and this may involve covalently modified forms of these peptides. Modification of Abeta by 4-hydroxynonenal (4-HNE) initially increases the hydrophobicity of these peptides and subsequently leads to additional reactions, such as peptide cross-linking. To model these initial events, without confounding effects of subsequent reactions, we modified Abeta at each of its amino groups using a chemically simpler, close analogue of 4-HNE, the octanoyl group: K16-octanoic acid (OA)-Abeta, K28-OA-Abeta, and Nalpha-OA-Abeta. Octanoylation of these sites on Abeta-(1-40) had strikingly different effects on fibril formation. K16-OA-Abeta and K28-OA-Abeta, but not Nalpha-OA-Abeta, had increased propensity to aggregate. The type of aggregate (electron microscopic appearance) differed with the site of modification. The ability of octanoyl-Abeta peptides to cross-seed solutions of Abeta was the inverse of their ability to form fibrils on their own (i.e. Abeta approximately Nalpha-OA-Abeta>K16-OA-Abeta>K28-OA-Abeta). By CD spectroscopy, K16-OA-Abeta and K28-OA-Abeta had increased beta-sheet propensity compared with Abeta-(1-40) or Nalpha-OA-Abeta. K16-OA-Abeta and K28-OA-Abeta were more amphiphilic than Abeta-(1-40) or Nalpha-OA-Abeta, as shown by lower "critical micelle concentrations" and higher monolayer collapse pressures. Finally, K16-OA-Abeta and K28-OA-Abeta are much more cytotoxic to N2A cells than Abeta-(1-40) or Nalpha-OA-Abeta. The greater cytotoxicity of K16-OA-Abeta and K28-OA-Abeta may reflect their greater amphiphilicity. We conclude that lipidation can make Abeta more prone to aggregation and more cytotoxic, but these effects are highly site-specific.  相似文献   

7.
Here we report a bi-directional and interchangeable three-segment peptide ligation of N, M, and C-segments, mimicking the reverse process of protein splicing to form, in tandem, a tripartite NMC-peptide using a synthetic intein, a role served by the M-segment with an N-terminal Ser or Thr and a C-terminal thioester.  相似文献   

8.
The non-codable amino acid O-amino-serine, Ams, has been prepared in both L- and D-forms as the orthogonally protected derivative, Fmoc-Ams(Boc)-OH (1 and 2). This new amino acid derivative is useful for chemoselective ligations. Under acidic conditions and in the presence of all other common amino acid functionalities, the oxyamine function selectively forms oxime linkages with aldehydes. The Ams residue has been incorporated into both ends of the peptide sequence Asp-Leu-Trp-Gln-Lys using standard SPPS. The deprotected peptide has been used for chemical ligation to afford a peptide dimer as well as a glycopeptide. Ams racemization was found to be negligible, as monitored by HPLC separation of Ams dipeptide diastereomers.  相似文献   

9.
Sun L  Rush J  Ghosh I  Maunus JR  Xu MQ 《BioTechniques》2004,37(3):430-6, 438, 440 passim
Peptide arrays are increasingly used to define antibody epitopes and substrate specificities of protein kinases. Their use is hampered, however, by ineffective and variable binding efficiency of peptides, which often results in low sensitivity and inconsistent results. To overcome these limitations, we have developed a novel method for making arrays of synthetic peptides on various membranes after ligating the peptide substrates to an intein-generated carrier protein. We have conducted screening for optimal carrier proteins by immunoreactivity and direct assessment of binding using a peptide derivatized at a lysine sidechain with fluorescein, CDPEK(fluorescein)DS. Ligation of a synthetic peptide antigen to a carrier protein, HhaI methylase, resulted in an improved retention of peptides and an increased sensitivity of up to 10(4)-fold in immunoassay- and epitope-scanning experiments. Denaturing the ligation products with 2% sodium dodecyl sulfate (SDS) or an organic solvent (20% methanol) prior to arraying did not significantly affect the immunoreactivity of the HhaI methylase-peptide product. Because the carrier protein dominates the binding of ligation products and contains one peptide reactive site, the amount of peptide arrayed onto the membranes can be effectively normalized. This technique was utilized in the alanine scanning of hemagglutinin (HA) antigen using two monoclonal antibodies, resulting in distinguishing the different antigen epitope profiles. Furthermore, we show that this method can be used to characterize the antibodies that recognize phosphorylated peptides. This novel approach allows for synthetic peptides to be uniformly arrayed onto membranes, compatible with a variety of applications.  相似文献   

10.
Methods and strategies of peptide ligation.   总被引:3,自引:0,他引:3  
J P Tam  J Xu  K D Eom 《Biopolymers》2001,60(3):194-205
This review focuses on the concept, methods, and strategies of orthogonal peptide ligation. It updates our previous review in 1999 on the same subject matter in Biopolymers (Peptide Science, 1999, Vol. 51, p. 311). Orthogonal peptide ligation is an amino terminal specific method to couple chemically unprotected peptides or proteins derived from synthetic or biosynthetic sources. Unlike conventional chemical methods, peptide ligation methods do not require coupling reagents or protection schemes, but are achieved through a variable chemoselective capture step and then an invariable intramolecular acyl transfer reaction. It is also a convergent method with the fewest steps. More than a dozen orthogonal ligation methods have been developed based on captures by either imine or thioester chemistries to afford native and unusual amino acids at ligation sites of linear, branched, or cyclic peptides. The ligation strategies for multiple segments including sequential and tandem ligations are also discussed.  相似文献   

11.
A stable cross-linked hydrogel was formed under mild aqueous conditions using pseudoproline peptide ligation chemistry. A cysteine-terminated lysine dendron containing four cysteines and a PEG macromolecule modified with terminal ester aldehydes were prepared. Upon mixing, the two macromers gave a stable hydrogel. This hydrogel along with sutures was used to successfully secure a corneal transplant in vitro.  相似文献   

12.
Composition variation of a complex peptide mixture under enzymatic transformation can be tracked by mass spectrometry (MS). In this report, papain-catalyzed esterification of fibroin peptides was investigated at the individual peptide level using liquid chromatography-mass spectrometry with selected ion monitoring. Optimal conditions for maximizing ester formation were obtained using a water-to-pentanol ratio of 1:9 at pH 2.8 and 40°C; however, the optimum conditions varied for individual peptides. The optimum pH levels were 2.5 and 2.8 for the tetrapeptides with a tyrosine or a valine residue and those with alanine or serine residues, respectively. The optimum pH shifted to 3.4 for dipeptide esters with a tyrosine residue. Tetrapeptides had a relatively higher rate of esterification above 50°C. Alhough, the profiles of peptides and their esters in the esterification reaction were significantly affected by the reaction conditions, alanyl-glycine ester represented the largest fraction in the mixture under most reaction conditions. As demonstrated here, MS analysis of peptide mixtures can be used to elucidate specific reaction conditions for the enrichment of particular peptide products.  相似文献   

13.
Dimerization can be utilized to double the molecular weight of proteins and peptides and potentially increase their avidity of binding to target receptors. These dimerization effects may be utilized to increase in vivo half-lives in a manner similar to PEGylation and may also improve biological activity. In this paper, we report a new strategy for the synthesis of N-terminally linked protein and peptide homodimers utilizing native chemical ligation to conjugate a short dithioester linker to the N-terminal cysteines of protein and peptide monomers to form dimers in a single step. This strategy is general and has been applied to the production of dimers from three recombinantly expressed polypeptides, the IgG binding domain Protein G, an HIV entry inhibitor peptide C37H6, and human interleukin-1 receptor antagonist (IL-1ra). The biological activities of the C37H6 and IL-1ra dimers produced by these methods were retained or even slightly increased when compared to their corresponding monomers.  相似文献   

14.
The preparation of two novel 2'-O-alkyl phosphoramidites bearing 1,2-diol and hydrazide functions for a chemoselective ligation is described. The former amidite was used to obtain 2'-modified oligodeoxyribonucleotides, which can be later oxidised by NaIO4 to generate 2'-aldehyde oligonucleotides. These were successfully conjugated to acceptor molecules. The latter amidite also showed good coupling yields, but the hydrazide function was demonstrated to be labile under basic deprotection conditions.  相似文献   

15.
Synthetic peptides are valuable tools in fundamental and applied biomedical research. On one hand, these molecules provide highly efficient access to competitive inhibitors of molecular interactions and enzyme substrates by rational design. On the other hand, peptides may serve as powerful vectors to mediate cellular uptake of molecules that otherwise enter cells only poorly. The coupling of both such functionalities provides access to molecules interfering with molecular processes inside the cell. However, the combination of several functionalities on one synthetic peptide may be compromised by problems associated with the synthesis of long peptides. Native chemical ligation enables the chemoselective coupling of fully deprotected functional building blocks. However, peptide thioesters are still not accessible by standard solid-phase peptide synthesis. Here, we demonstrate the cofunctionalization of a thioester-activated N-hydroxypropyl methacrylamide (HPMA) copolymer (28,500 Da) with the cell-penetrating peptide (CPP) nonaarginine and a bioactive peptide as independent building blocks by native chemical ligation. Nonaarginine was employed as a cell-penetrating peptide (CPP), a fluorescein-labeled analogue of a pro-apoptotic peptide as a biofunctional cargo. Incorporation of the fluorescein label enabled the highly sensitive quantification of the coupling stoichiometry by fluorescence correlation spectroscopy (FCS) using 0.4 pmol/12 ng of labeled construct. A construct only bearing the functional cargo peptide required cellular import by electroporation in order to show activity. In contrast, a construct combining all functionalities was active upon incubation of cells, validating the modular nature of the approach.  相似文献   

16.
17.
We have used a two histidine-containing synthetic peptide (Sharp et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 10465-10470) as a scaffold to bind Zn(II) chlorin e6 (ZnCe6) through histidine ligation. Protocols for the preparation and purification of the peptide using an Escherichia coli expression system are presented. Size-exclusion chromatography and circular dichroism measurements indicate that the peptide self-assembles into a four-helix bundle protein. Two variants of the peptide lacking either one or both of the histidine residues were used to demonstrate the stoichiometry of ZnCe6 binding. Comparison of the titration profiles determined by UV-vis spectroscopy for the purified one- and two-histidine peptides suggests that the two-histidine peptide can bind two ZnCe6. The binding stoichiometry of ZnCe6 was verified by gel chromatography and native gel electrophoresis using the peptide variant lacking histidine residues as the control. Like many other chlorophyll analogue molecules, ZnCe6 can be photooxidized. The light-induced electron transfer between the ZnCe6-peptide complex and the added phenyl-p-benzoquinone was measured using time-resolved EPR spectroscopy and shown to be faster and have a higher yield than the electron transfer between unbound ZnCe6 and quinone. The implications of constructing a ZnCe6-peptide complex in terms of artificial photosynthesis are discussed.  相似文献   

18.
Expressed protein ligation has become a frequently used technique to insert non-standard amino acids into proteins. The technique has been adapted to insert selenocysteine residues in place of cysteine residue in proteins, taking advantage of the similarity in the chemistries of sulfur and selenium. This replacement can confer unique structural and catalytic properties to enzymes and proteins. The development of this technique also allows for naturally occurring selenoproteins to be produced semisynthetically.  相似文献   

19.
20.
A bacterial consortium with complementary metabolic capabilities was formulated and specific removal rates were 0.14, 0.35, 0.04, and 0.39 h–1 for benzene, toluene, o-xylene, and m,p-xylene, respectively. When immobilized on a porous peat moss biofilter, removal of all five (= BTX) components was observed with rates of 1.8–15.4 g m–3 filter bed h–1. Elimination capacities with respect to the inlet gas concentrations of BTX and airflow rates showed diffusive regimes in the tested concentration range of (0.1–5.3 g m–3) and airflow (0.55–1.82 m3 m–2 h–1) except for o-xylene which reached its critical gas concentration at 0.3 g m–3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号