首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The helper T cell clone 3H.25 is specific for hen egg white lysozyme and the class II MHC molecule I-Ab. This TH cell has three rearrangements in the beta-chain gene family-a V beta-D beta-J beta 1 and a D beta 2-J beta 2 rearrangement on one homolog and a D beta 1-J beta 2 rearrangement on the other. These observations demonstrate that this functional T lymphocyte expresses only a single V beta gene segment and, accordingly, exhibits allelic exclusion of beta-chain gene expression. The rearranged 3H.25 V beta gene segment is the same as that expressed in a T helper cell specific for cytochrome c and an I-Ek MHC molecule. Thus, there is no simple correlation between the V beta gene segment and antigen specificity or MHC restriction.  相似文献   

2.
Complexity of T cell receptor recognition sites for defined alloantigens   总被引:2,自引:0,他引:2  
Three monoclonal antibodies react with the T cell receptor on the tumor line HPB-ALL and in addition with 3 to 13% of human peripheral blood T cells of normal donors. These antibodies are shown to react with an epitope encoded by the V beta 5 family of T cell receptor beta-chain variable region gene segments. Cells expressing V beta 5 gene segments can have cytotoxic or helper function, be of the T4+ or T8+ phenotype, and have specificity for either class I or class II major histocompatibility complex alloantigens. Seven T cell clones were generated, which express V beta 5 and are specific for the HLA-A2 molecule. With the use of these clones, we illustrate how isoelectric focusing can be used to analyze T cell receptor alpha- and beta-chain structure. The seven clones recognize five distinct conformational determinants on HLA-A2. They procure different binding sites by the use of different alpha-chains, J beta sequences, or both.  相似文献   

3.
T cell receptor beta-chain selection in human allograft rejection   总被引:8,自引:0,他引:8  
We have analyzed a series of T cell lines established from renal needle biopsies taken from renal allograft recipients with clinical signs of rejection. These T cells show strong cytotoxicity directed against donor HLA and their proliferative capacity in vitro is highly correlated with irreversible graft rejection. A total of 10 of 12 lines examined by Southern blot analysis using a J beta C beta DNA probe show predominant beta-chain rearrangements. In one instance DNA was isolated from cell lines generated from sequential biopsies taken from the same patient at different times of rejection. These lines show the same predominant beta-chain rearrangements. To determine whether these predominant rearrangements are due to expansion of a single clone or different T cell clones rearranging similar beta-chains, the same blots were analyzed with a J gamma probe. Cell line MH3 shows two predominant beta-chain rearrangements and at least seven of eight possible rearranged gamma-chain bands, implying that multiple clones share similar beta-chains. In contrast, the cell line King shows a single beta-chain and a single gamma-chain rearrangement. Many of the other cell lines fall between these two extremes, indicating that both beta-chain selection and clonal dominance are operating during graft rejection, resulting in the appearance of predominant beta-chain rearrangements.  相似文献   

4.
Expressible HLA class II alpha- and beta-chain cDNA were used for DNA-mediated gene transfer to produce L cell transfectants expressing single types of human class II molecules. Cloned transfectants expressing nine different class II molecules were isolated: DR alpha: DR1 beta I, DR alpha: DR4 beta I, DR alpha: DR5 beta I, DR alpha: DR5 beta III (DRw52), DR alpha: DR7 beta I, DR alpha: DR4/7 beta IV (DRw53), DQ7 alpha: DQw2 beta, DQ7 alpha: DQw3 beta, and DPw4 alpha: DPw4 beta. These class II-expressing transfectants were used to analyze by flow cytometry the molecular specificities of 20 anti-class II mAb. These analyes indicate that some mAb are more broadly reactive than was previously thought based on immunochemical studies. In contrast, the narrow molecular specificities of other anti-class II mAb were confirmed by this approach. Transfectants expressing human class II molecules should be valuable reagents for studies of B cell and T cell defined epitopes on these molecules.  相似文献   

5.
The variable region genes of the T cell receptor (TCR) alpha and beta chains are assembled by somatic recombination of separate germline elements. During thymocyte development, gene rearrangements display both an ordered progression, with beta chain formation preceding alpha chain, and allelic exclusion, with each cell containing a single functional beta chain rearrangement. Although considerable evidence supports the view that the individual loci are regulated independently, signaling molecules that may participate in controlling TCR gene recombination remain unidentified. Here we report that the lymphocyte-specific protein tyrosine kinase p56lck, when overexpressed in developing thymocytes, provokes a reduction in V beta--D beta rearrangement while permitting normal juxtaposition of other TCR gene segments. Our data support a model in which p56lck activity impinges upon a signaling process that ordinarily permits allelic exclusion at the beta-chain locus.  相似文献   

6.
The human TCR beta-chain gene complex includes at least 57 variable (V) gene segments, a number estimated using a combination of Southern blots of conventional and pulsed field gels, sequence analysis of cDNA clones, and from the analysis of genomic cosmid and phage clones. This number includes six TCR beta-chain V genes in four new families identified here by sequence analysis of clones derived from a human TCR beta-chain specific cDNA library. Comparison of the sequences of the new V beta genes with previously reported V beta sequences reveals predicted similarities but less than 75% nucleic acid identity that establishes them as new V beta families. One of the new V beta gene families includes three genes and the other three are single member families. Identification of these six new V beta genes falling into four V beta families brings the total number of transcribed human V beta families to 24 and makes it possible to refine the estimate of the total number of human TCR V beta genes to 57.  相似文献   

7.
T cell receptor (TCR) gamma gene rearrangements were examined in panels of human T cell clones expressing TCR alpha/beta or gamma/delta heterodimers. Over half of the alpha/beta+ clones had both chromosomes rearranged to C gamma 2 but this was the case for only 20% of the gamma/delta+ clones. While more than half of the gamma/delta+ clones showed a V9JP rearrangement, this configuration was absent from all 49 alpha/beta+ clones analysed. However, this was not a result of all rearrangements being to the more 3' J gamma genes as 11 alpha/beta+ clones had rearrangement(s) to JP1, the most 5' J gamma gene segment. Both alpha/beta+ and gamma/delta+ clones showed a similar pattern of V gamma gene usage in rearrangements to J gamma 1 or J gamma 2 with a lower proportion of the more 3' genes being rearranged to J gamma 2 than for the more 5' genes. Several alpha/beta+ and several gamma/delta+ clones had noncoordinate patterns of rearrangement involving both C gamma 1 and C gamma 2. Eleven out of fourteen CD8+ clones tested had both chromosomes rearranged to C gamma 2 whereas all clones derived from CD4-8- cells and having unconventional phenotypes (CD4-8- or CD4+8+) had at least one C gamma 1 rearrangement. Twelve out of twenty-seven CD4+ clones also had this pattern, suggesting that CD4-8+ clones had a tendency to utilize more 3' J gamma gene segments than CD4+ clones. There was some evidence for interdonor variation in the proportions of TCR gamma rearrangements to C gamma 1 or C gamma 2 in alpha/beta+ clones as well as gamma/delta+ clones. The results illustrate the unique nature of the V9JP rearrangement in gamma/delta+ clones and the possible use of a sequential mechanism of TCR gamma gene rearrangements during T cell differentiation is discussed.  相似文献   

8.
cDNA clones corresponding to the DPw4 alpha- and DPw4 beta-chains were isolated from a cDNA library prepared from a DPw4 homozygous cell line, their nucleotide sequences were determined, and the corresponding amino acid sequences were deduced. This DPw4 alpha-chain is identical to the conserved DP alpha-chains from DPw4 and DPw2 haplotypes, although the DPw4 beta-chain (referred to as DPw4b beta) differs from all reported DP beta-chain sequences. The DPw4b beta-chain differs from the reported DPw4 beta sequence (referred to as DPw4a beta) at three amino acid positions in the first domain (36, 55, and 56). The DPw4b beta-chain sequence differs from the DPw2 beta-chain sequence only at position 69 in the first domain, suggesting that the lysine at position 69 in DPw4b beta and the glutamic acid at position 69 in DPw2 beta contribute to the epitopes that define "DPw4-ness" and "DPw2-ness," respectively. In addition, the patterns of sequence identities and differences among the DPw4b beta-, DPw4a beta-, DPw2 beta-, and DPw3 beta-chains suggest that the DPw4b beta sequence arose via a gene conversion event or a point mutation. The I-LR1 mAb, which was previously found to bind only to DPw2, DPw3, and DR5 molecules, binds to an L cell transfectant expressing the DPw4 alpha:DPw4b beta molecule. The DPw4b beta sequence provides the first evidence for structural heterogeneity within the DPw4 specificity.  相似文献   

9.
The HLA-D region of the human major histocompatibility complex encodes the genes for the alpha and beta chains of the DP, DQ and DR class II antigens. A cDNA clone encoding a new class II beta chain (designated DO) was isolated from a library constructed from mRNA of a mutant B-cell line having a single HLA haplotype. Complete cDNA clones encoding the four isotypic beta chains of the DR1, DQw1, DPw2 and putative DO antigens were sequenced. The DO beta gene was mapped in the D region by hybridization with DNA of HLA-deletion mutants. DO beta mRNA expression is low in B-cell lines but remains in mutant lines which have lost expression of other class II genes. Unlike other class II genes DO beta is not induced by gamma-interferon in fibroblast lines. The DO beta gene is distinct from the DP beta, DQ beta and DR beta genes in its pattern of nucleotide divergence. The independent evolution and expression of DO beta suggest that it may be part of a functionally distinct class II molecule.  相似文献   

10.
In the present study the transplant specific CTL repertoire of a patient (HLA:A1,3, B8,18, Cw5,7 DR3, DQw2, DPw3) with a long term surviving HLA mismatched kidney graft (HLA: A1,24 B8,27 Cw2,7, DR3, w13 DQw2,6 DPw1,3) has been investigated. This patient was unable to generate specific cytolytic activity against donor-derived PHA-blasts in the MLC in which donor spleen cells or B lymphoblastoid cell line were used as stimulator cells. In addition, the CTL precursor frequencies against donor alloantigens were very low (1/67,000). The patient had otherwise normal immune responses in vivo and in vitro and no signs of transplant rejection. Transplant specific CTL clones were generated in high frequencies (1/195) from T cell bulk cultures activated by PHA in the absence of any sensitization by donor Ag in vitro. The repertoire of 14 donor-reactive CTL clones (12 TCR-alpha beta+ and 2 TCR-gamma delta+) was analyzed. Two TCR-alpha beta+ CD8+ clones were specific for B27. Ten TCR-alpha beta+ CTL clones directed against class II HLA Ag were isolated. Seven of these were CD4+ and recognized DRw13 (3), DQw6 (3), and DPw1 (1), whereas three of these clones were CD4-CD8+ recognizing DRw13 (1) and DQw6 (2). In addition, two donor-specific TCR-gamma delta+ CTL clones were obtained recognizing HLA-A9(23,24) and DQw6. Our data indicate that the precursors of CTL clones specifically directed against donor class I or II HLA Ag are not deleted from the repertoire and that part of this reactivity resides in the TCR-gamma delta+ fraction.  相似文献   

11.
To study rearrangement of T cell receptor (TCR) genes, transgenic mice were generated with a TCR beta minilocus in germline configuration, containing three V beta, two D beta, fourteen J beta and two C beta gene segments and the TCR beta enhancer. Using the polymerase chain reaction as an analytical tool both partial DJ as well as complete VDJ rearrangements were seen, indicating that the minilocus contained all sequence elements required for rearrangment. Rearrangements of minilocus gene segments were restricted to T cells in the thymus and the periphery and did not occur in B cells. V beta 8.3 and V beta 5 sequences encoded by the minilocus were expressed on the surface of peripheral T cells at high frequencies. Transgenic mice with TCR minilocus genes will be a useful system to identify DNA sequence elements required for regulation of rearrangement in vivo.  相似文献   

12.
Expression of a beta-chain, as a pre-TCR, in T cell precursors prevents further rearrangements on the alternate beta allele through a strict allelic exclusion process and enables precursors to undergo differentiation. However, whether allelic exclusion applies to the TCR delta locus is unknown and the role of the gamma delta TCR in gamma delta lineage commitment is still unclear. Through the analysis of the rearrangement status of the TCR gamma, delta, and beta loci in human gamma delta T cell clones, expressing either the TCR V delta 1 or V delta 2 variable regions, we show that the rate of partial rearrangements at the delta locus is consistent with an allelic exclusion process. The overrepresentation of clones with two functional TCR gamma chains indicates that a gamma delta TCR selection process is required for the commitment of T cell precursors to the gamma delta lineage. Finally, while complete TCR beta rearrangements were observed in several V delta 2 T cell clones, these were seldom found in V delta 1 cells. This suggests a competitive alpha beta/gamma delta lineage commitment in the former subset and a precommitment to the gamma delta lineage in the latter. We propose that these distinct behaviors are related to the developmental stage at which rearrangements occur, as suggested by the patterns of accessibility to recombination sites that characterize the V delta 1 and V delta 2 subsets.  相似文献   

13.
Allelic sequence variation of the HLA DP-alpha and DP-beta genes has been analyzed in a panel of 34 DP-typed cell lines. The polymorphic second exon of these genes was specifically amplified in vitro by the polymerase chain reaction method, using the thermostable DNA polymerase of Thermus, aquaticus. The analysis of M13 clones containing the amplified DP-beta sequences revealed a total of 14 allelic variants. In general, specific allelic DP-beta sequences were associated with each of the defined DPw1-w6 types, with beta allele subtypes revealed for the DPw2 and DPw4 specificities. An additional six DP-beta alleles which did not correlate with any of the T cell-defined specificities (DP "blanks") were also identified. Only the two previously characterized alleles of DP-alpha were detected. These observations suggest that the T cell-defined DP specificities are determined by polymorphic residues on the beta-chain. The sequence polymorphisms in DP-beta are clustered in a few specific regions, and can be detected using sequence-specific oligonucleotide probes and polymerase chain reaction amplified DNA in a rapid dot-blot format. This approach provides a simple and informative method of DP typing. The DP-beta sequences derived from four DP-typed celiac disease patients were compared with the distribution of DP-beta alleles in control individuals.  相似文献   

14.
The state of T-cell receptor beta-chain gene rearrangement in human T-cell leukaemias has been analysed. All forms of leukaemia tested (T-CLL, ALL, PLL, Sezary syndrome and ATL) exhibit rearrangements of C beta genes confirming the clonality of these neoplasias. However we find no evidence for common gene rearrangements nor for restricted rearrangement patterns within this type of neoplasia. We find evidence of T-cells with C beta 1 and C beta 2 rearrangements, sometimes associated with Igh JH rearrangements, but several cases of T-cell leukaemia with a marker inversion of chromosome 14 (q11;q32) do not have Igh JH rearrangements. The results suggest that TCR beta gene rearrangement occurs early in T-cell ontogeny but that this rearrangement is most often irrelevant to leukaemogenesis.  相似文献   

15.
Both cDNA and genomic clones of the T cell receptor (TCR) alpha- and beta-chain genes of the alloreactive cytotoxic T lymphocyte (CTL) clone F3 were examined. Two distinct rearrangement events, one functional and one non-functional, were found for both the alpha and beta loci. Thus only a single functional TCR alpha beta heterodimer could be defined, consistent with allelic exclusion in the TCR genes. The V alpha gene employed by F3 is part of a six-member V alpha subfamily. Genomic clones containing each member of this subfamily were isolated and the V alpha nucleotide sequences determined. Five of these six genes are functional; these genes differ from each other by 7-14% at the amino acid level. A single dominant hypervariable region was defined within this subfamily, in contrast to the pattern of variability seen between V alpha genes in general.  相似文献   

16.
Thirty-one samples representing Hodgkin's and non-Hodgkin's lymphomas, angioimmunoblastic lymphadenopathy (AILD), and benign follicular hyperplasia in HIV infections were examined for rearrangements of the immunoglobulin (Ig) and T cell receptor (TcR) beta-chain gene loci. In 11 of 12 non-Hodgkin's lymphomas (classified as Burkitt lymphoma (2), centrocytic lymphoma (1), centrocytic-centroblastic lymphoma (5), centroblastic lymphoma (3], only rearranged Ig genes could be detected. The exceptional case was an unclassified high-grade lymphoma, which represented a rearrangement of the TcR beta-chain. We also examined DNA from lymphoid neoplasms in which the lineage of the malignant cell was still controversial. Rearrangement of the TcR could exclusively be demonstrated in all 3 cases of AILD. One Ig gene rearrangement and 4 TcR beta-chain rearrangements were found in 13 samples of Hodgkin's lymphomas (11 lymph nodes, 1 pleura effusion and 1 bone biopsy with proven infiltration). Examination of 3 cases of benign follicular hyperplasia in HIV infection represented one Ig rearrangement.  相似文献   

17.
In the process of analyzing the contribution of nonproductive alpha- and beta-chain gene rearrangements to the allelic exclusion of TCR gene expression, we have found a novel type of aberrant alpha-gene rearrangement. In one alpha-allele of the mouse KB5-C20 T cell clone, a J alpha gene segment has been abutted precisely to a sequence that does not display any homology to known V and D gene segment. The appended sequence originates from within the V alpha locus and is located, in the germ-line, 1 kb upstream of a member of the V alpha 2-gene segment subfamily. No recombination signal sequences have been found contiguous to the recombination point. These observations indicate that in normal T lymphocytes, TCR alpha-genes may be affected by aberrant rearrangements similar to those that predominate in human T cell tumors containing chromosome 14 inversion or translocation. Furthermore, compilation of published data and cloning and sequencing of three additional alpha-alleles has allowed us to examine the status of alpha-loci in nine mouse T cell clones expressing functional alpha beta-heterodimers. Interestingly, in contrast to the situation observed at the beta-locus, only 1 of 18 analyzed alpha-alleles has retained a germ-line unrearranged configuration. In addition, in each T cell clone, alpha-rearrangements on homologous chromosomes were unevenly distributed over the J alpha region and shown to generally involve neighboring J alpha gene segments.  相似文献   

18.
Zhang Y  Shi M  Wen Q  Luo W  Yang Z  Zhou M  Ma L 《Cellular immunology》2012,274(1-2):19-25
Secondary rearrangements of the T cell receptor (TCR) represent a genetic correction mechanism which changes T cell specificity by re-activating V(D)J recombination in peripheral T cells. Murine T-cell hybridoma A1.1 was employed to investigate whether antigenic stimulation induced re-expression of recombinase genes and altered TCR Vβ expression. Following repeated antigenic stimulation, A1.1 cells were induced to re-express recombination activating gene (RAG)1 and terminal deoxynucleotidyl transferase (TdT) which are generally considered prerequisite to TCR gene rearrangement. Accompanied with the significant changes in TCR mRNA levels over time, it is suggested that secondary rearrangements may be induced in A1.1 cells, which represent a mature T cell clone capable of re-expressing RAG genes and possesses the prerequisite for secondary V(D)J rearrangement.  相似文献   

19.
A bovine genomic clone that hybridized to HLA-DQ beta cDNA was isolated and fragments containing the beta 1, beta 2 and transmembrane (TM) exons subcloned. The nucleotide sequences of the exons and flanking intron regions were determined. Comparisons of these exon nucleotide sequences and derived amino acid sequences to human class II beta-chain sequences showed that this gene is only 77% identical to HLA-DQ beta and about 75% identical to bovine DQ beta-like genes. The exon sequences were more divergent from other class II beta-chain genes. However, structural features such as conserved cysteines and regions of amino acids strongly suggest this to be a class II beta-chain gene. When exon-containing fragments were used as hybridization probes on Southern blots of bovine genomic DNA digested with Eco RI or Pvu II, each exon hybridized to a single band. Based on these results we have referred to this gene as a novel bovine class II beta-chain gene, BoLA-DIB.  相似文献   

20.
We describe nine T cell gamma variable (V) gene segments isolated from human DNA. These genes, which fall into two subgroups, are mapped in two DNA regions covering 54 kb and probably represent the majority of human V gamma genes. One subgroup (V gamma I) contains eight genes, consisting of four active genes and four pseudogenes. The single V gamma II gene is potentially active. Sequence analysis of the V gamma I genes shows variation clustered in hypervariable regions, but somatic variability is restricted to N-region diversity. Studies on rearrangement in T cell lines and in thymic DNA show that major rearrangements can be observed that are attributable to the five active V gamma genes. In addition, human cells with the phenotype of helper T cells can undergo productive V gamma-J gamma joining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号