首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Transmembrane ion currents in isolated single smooth muscle cells (SMC) from the guinea pigtaenia coli were investigated using a whole-cell mode of the patch-clamp technique. Currents induced by depolarizing shifts in the membrane potential from its holding level of −60 mV contained an initial inward phase (Ca2+ current), which in 30–40 msec was followed by an outward phase. It was shown that outward current was carried by K ions and consisted at least of three components: one Ca2+-independent K+ current of delayed rectifier (KV) and two Ca2+-dependent K+ currents. The latter can be further divided into the apamin-sensitive (SK) and charybdotoxin-sensitive (BK) currents. It was found that relative contributions of these three components in total outward current at 0 mV were 35–45%, 5–15%, and 45–55% for KV, SK, and BK currents, respectively. A potential-dependent current carried by Ci ions was also found. This Cl current had inward direction within the range of potentials below the chloride equilibrium potential (E Cl) and outward direction above theE Cl. The magnitude of Cl current was significantly lower than the magnitude of total K+ current.  相似文献   

2.
This paper provides the first study of voltage-sensitive membrane currents present in heart myocytes from cephalopods. Whole cell patch clamp recordings have revealed six different ionic currents in myocytes freshly dissociated from squid cardiac tissues (branchial and systemic hearts). Three types of outward potassium currents were identified: first, a transient outward voltage-activated A-current (IA), blocked by 4-aminopyridine, and inactivated by holding the cells at a potential of −40 mV; second, an outward, voltage-activated, delayed rectifier current with a sustained time course (IK); and third, an outward, calcium-dependent, potassium current (IK(Ca)) sensitive to Co2+ and apamin, and with the characteristic N-shaped current voltage relationship. Three inward voltage-activated currents were also identified. First, a rapidly activating and inactivating, sodium current (INa), blocked by tetrodotoxin, inactivated at holding potentials more positive than −40 mV, and abolished when external sodium was replaced by choline. Second, an L-type calcium current (ICa,L) with a sustained time course, suppressed by nifedipine or Co2+, and enhanced by substituting Ca2+ for Ba2+ in the external medium. The third inward current was also carried by calcium ions, but could be distinguished from the L-type current by differences in its voltage dependence. It also had a more transient time course, was activated at more negative potentials, and resembled the previously described low-voltage-activated, T-type calcium current. Accepted: 24 September 1999  相似文献   

3.
Summary Human peripheral blood monocytes cultured for varying periods of time were studied using whole-cell and single-channel patch-clamp recording techniques. Whole-cell recordings revealed both an outward K current activating at potentials >20 mV and an inwardly rectifying K current present at potentials negative to –60 mV. Tail currents elicited by voltage steps that activated outward current reversed nearE K, indicating that the outward current was due to a K conductance. TheI–V curve for the macroscopic outward current was similar to the mean single-channelI–V curve for the large conductance (240 pS in symmetrical K) calcium-activated K channel present in these cells. TEA and charybdotoxin blocked the whole-cell outward current and the single-channel current. Excised and cell-attached single-channel data showed that calcium-activated K channels were absent in freshly isolated monocytes but were present in >85% of patches from macrophages cultured for >7 days. Only 35% of the human macrophages cultured for >7 days exhibited whole-cell inward currents. The inward current was blocked by external barium and increased when [K] o increased. Inward-rectifying single-channel currents with a conductance of 28 pS were present in cells exhibiting inward whole-cell currents. These single-channel currents are similar to those described in detail in J774.1 cells (L.C. McKinney & E.K. Gallin,J. Membrane Biol. 103:41–53, 1988).  相似文献   

4.
Xenopus laevis oocytes are commonly used to study the biophysical and pharmacological properties of foreign ion channels and receptors, but little is known about those endogenously expressed in their enveloping layer of follicular cells (FCs). Whole-cell recordings and the perforated patch-clamp technique in cultured FCs held at −60 mV revealed that ATP (20–250 μM) generates inward currents of 465 ± 93 pA (mean ± standard error) in ∼60% of the FCs studied, whereas outward currents of 317 ± 100 pA were found in ∼5% of the cells. The net effect of ATP on the FCs was to activate both mono- and biphasic inward currents, with an associated increase in membrane chloride conductance. Two-microelectrode voltage-clamp recordings of nude oocytes held at −60 mV disclosed that ATP elicited biphasic inward currents, corresponding to the well-known Fin and Sin-like currents. ATP receptor antagonists like suramin, TNP-ATP, and RB2 did not inhibit any of these responses. On the other hand, when using wholecell recordings, 1 μM Ang II yielded smooth inward currents of 157 ± 45 pA in ∼16% of the FC held at −60 mV. The net Ang II response, mediated by the activation of the AT1 receptor, was a chloride current inhibited by 10 nM ZD7155. This study will help to better understand the roles of ATP and Ang II receptors in the physiology of X. laevis oocytes.  相似文献   

5.
H. Stoeckel  K. Takeda 《Protoplasma》2002,220(1-2):0079-0087
Summary.  Plasmalemmal ionic currents from enzymatically isolated protoplasts of suspension-cultured tobacco ‘Bright Yellow-2’ cells were investigated by whole-cell patch-clamp techniques. In all protoplasts, delayed rectifier outward K+ currents having sigmoidal activation kinetics, no inactivation, and very slow deactivation kinetics were activated by step depolarization. Tail current reversal potentials were close to equilibrium potential EK when external [K+] was either 6 or 60 mM. Several channel blockers, including external Ba2+, niflumic acid, and 5-nitro-2-(3-phenylpropylamino)-benzoic acid, inhibited this outward K+ current. Among the monovalent cations tested (NH4 +, Rb+, Li+, Na+), only Rb+ had appreciable permeation (PRb/PK = 0.7). In addition, in 60 mM K+ solutions, a hyperpolarization-activated, time-dependent, inwardly rectifying K+ current was observed in most protoplasts. This inward current activated very slowly, did not inactivate, and deactivated quickly upon repolarization. The tail current reversal potential was very close to EK, and other monovalent cations (NH4 +, Rb+, Li+, Na+) were not permeant. The inward current was blocked by external Ba2+ and niflumic acid. External Cs+ reversibly blocked the inward current without affecting the outward current. The amplitude of the inward rectifier K+ current was generally small compared to the amplitude of the outward K+ current in the same cell, although this was highly variable. Similar amplitudes for both currents occurred in only 4% of the protoplasts in control conditions. Microfilament-depolymerizing drugs shifted this proportion to about 12%, suggesting that microfilaments participate in the regulation of K+ currents in tobacco ‘Bright Yellow-2’ cells. Received December 7, 2001; accepted April 15, 2002; published online July 4, 2002 RID="*" ID="*" Correspondence and reprints: Pharmacologie et Physicochimie, UMR CNRS 7034, Faculté de Pharmacie, Université Louis Pasteur, 74 route du Rhin, BP 24, 67401 Illkirch, France. Abbreviations: TBY-2 Tobacco ‘Bright Yellow-2’; DHCB dihydrocytochalasin B; IKin inward rectifier K+ current; IKout outward K+ current; MFs microfilaments; MTs microtubules; NPPB 5-nitro-2-(3-phenylpropylamino)-benzoic acid.  相似文献   

6.
Summary Membrane ionic currents were measured in pregnant rat uterine smooth muscle under voltage clamp conditions by utilizing the double sucrose gap method, and the effects of conditioning pre-pulses on these currents were investigated. With depolarizing pulses, the early inward current was followed by a late outward current. Cobalt (1mm) abolished the inward current and did not affect the late outward currentper se, but produced changes in the current pattern, suggesting that the inward current overlaps with the initial part of the late outward current. After correction for this overlap, the inward current reached its maximum at about +10 mV and its reversal potential was estimated to be +62 mV. Tetraethylammonium (TEA) suppressed the outward currents and increased the apparent inward current. The increase in the inward current by TEA thus could be due to a suppression of the outward current. The reversal potential for the outward current was estimated to be –87 mV. Conditioning depolarization and hyperpolarization both produced a decrease in the inward current. Complete depolarization block occurred at a membrane potential of –20 mV. Conditioning hyperpolarization experiments in the presence of cobalt and/or TEA revealed that the decrease in the inward current caused by conditioning hyperpolarization was a result of an increase in the outward current overlapping with the inward current. It appears that a part of the potassium channel population is inactivated at the resting membrane potential and that this inactivation is removed by hyperpolarization.  相似文献   

7.
The resting potassium current (I KI ) in gerbil dissociated type I vestibular hair cells has been characterized under various ionic conditions in whole cell voltage-clamp. When all K+ in the patch electrode solution was replaced with Na+, (Na+) in or Cs+, (Cs+) in , large inward currents were evoked in response to voltage steps between −90 and −50 mV. Activation of these currents could be described by a Hodgkin-Huxley-type kinetic scheme, the order of best fit increasing with depolarization. Above ∼−40 mV currents became outward and inactivated with a monoexponential time course. Membrane resistance was inversely correlated with external K+ concentration. With (Na+) in , currents were eliminated when K+ was removed from the external solution or following extracellular perfusion of 4-aminopyridine, indicating that currents flowed through I KI channels. Also, reduction of K+ entry through manipulation of membrane potential reduced the magnitude of the outward current. Under symmetrical Cs+, 0 K+ conditions I KI is highly permeable to Cs+. However, inward currents were reduced when small amounts of external K+ were added. Higher concentrations of K+ resulted in larger currents indicating an anomalous mole fraction effect in mixtures of external Cs+ and K+. Received: 23 June 1999/Revised: 27 September 1999  相似文献   

8.
A voltage-dependent but Ca2+-independent regulation of N-methyl-D-aspartate (NMDA) receptor outward activity was studied at the single channel level using outside-out patches of cultured mouse cortical neurons. Unlike the inward activity associated with Ca2+ and Na+ influx, the NMDA receptor outward K+ conductance was unaffected by changes in Ca2+ concentration. Following a depolarizing pre-pulse, the single channel open probability (NP o), amplitude, and open duration of the NMDA inward current decreased, whereas the same pre-depolarization increased those parameters of the NMDA outward current (pre-pulse facilitation). The outward NP o was increased by the pre-pulse facilitation, disregarding Ca2+ changes. The voltage–current relationships of the inward and outward currents were shifted by the pre-depolarization toward opposite directions. The Src family kinase inhibitor, PP1, and the Src kinase antibody, but not the anti-Fyn antibody, blocked the pre-pulse facilitation of the NMDA outward activity. On the other hand, a hyperpolarizing pre-pulse showed no effect on NMDA inward currents but inhibited outward currents (pre-pulse depression). Application of Src kinase, but not Fyn kinase, prevented the pre-pulse depression. We additionally showed that a depolarization pre-pulse potentiated miniature excitatory synaptic currents (mEPSCs). The effect was blocked by application of the NMDA receptor antagonist AP-5 during depolarization. These data suggest a voltage-sensitive regulation of NMDA receptor channels mediated by Src kinase. The selective changes in the NMDA receptor-mediated K+ efflux may represent a physiological and pathophysiological plasticity at the receptor level in response to dynamic changes in the membrane potential of central neurons.  相似文献   

9.
Summary 1. Using conventional two-microelectrode voltage-clamp techniques we studied the effects of inorganic mercury (HgCl2) on acetylcholine-, carbachol-, and glutamate-activated currents onAplysia neurons. Hg2+ was applied with microperfusion.2. Acetylcholine and carbachol activated an inward, sodium-dependent current in the anterior neurons of the pleural ganglion. The medial neurons gave a biphasic current to acetylcholine and carbachol, which was outward at resting membrane potential. The faster component was Cl dependent and reversed at about –60 mV, while the slower component was K+ dependent and reversed at greater than –80 mV.3. Hg2+ (0.1–10 µM) caused a dramatic increase in the acetylcholine- and carbachol-induced inward current in anterior neurons and the fast Cl current in medial neurons. With only a 1-min preapplication of Hg2+, the acetylcholine- or carbachol-activated sodium or chloride currents were increased to 300% and the effect was only partly reversible. The threshold concentration was 0.1 µM Hg2+.4. Contrary to the effects on sodium and chloride currents, concentrations of 0.1–10 µM Hg2+ caused a complete and irreversible blockade of K+-dependent acetylcholine and carbachol currents. The block of the potassium current was relatively fast and increased with time. The concentration of HgCl2 that gave a half-maximal blockade of the carbachol-activated potassium current was 0.89 µM. The chloride-dependent current elicited by glutamate on medial neurons was increased by HgCl2 as well.5. These results suggest that actions at agonist-activated channels must be considered as contributing to mercury neurotoxicity. It is possible that the toxic actions of Hg2+ on synaptic transmission at both pre- and postsynaptic sites are important factors in the mechanism of Hg2+ toxicity.  相似文献   

10.
Effects of exogenous adenosine 5′-triphosphate (ATP) on dissociated guinea pig ileum submucous neurons were studied using a conventional whole-cell patch-clamp technique. With the holding potential of −50 mV, application of 50–1,000 μM ATP evoked an inward current (ATP-induced current) in most (90%) of the tested neurons (n-35). ATP-induced currents were observed regardless of whether or not guanosine 5′-triphosphate (GTP, 0.2 mM) and ATP (2 mM) were present in the intracellular solution, or GTP was replaced with equimolar concentration of guanosine 5′-O-3-thiotriphosphate (n-5). In 26 of 29 neurons studied, which responded to ATP, applications of 50–1,000 μM ATP induced slowly declining currents. ATP receptors did not appear to be completely desensitized during a long pulse (up to 4 min) of 200 μM ATP. Suramin (200 μM) accelerated an increase to peak of the current induced by 200 μM ATP without affecting the maximum response amplitude (n−4_. In about 10% of the neuronsn−3), 50 μM ATP evoked rapidly declining (about 1 sec) currents. Application of 100 μM α,β-Me-ATP to these neurons evoked similar responses. The above results suggest that submucous neurons express two specific subtypes of ionotropic P2x-purinoceptors, which might be involved in distinct excitatory processes in these neurons.  相似文献   

11.
Interneurons of the substantia gelatinosa (SG) form a complex synaptic network in the dorsal horn of the spinal cord. The properties of miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs, respectively) were studied in spinal cord slices of 3- to 4-week-old rats. The reversal potentials of the currents were close to 0 mV for excitatory and –70 mV for inhibitory events. Under recording conditions close to physiological ones (holding potential –40 mV, temperature 32°C, low intracellular [Cl]), the mean rise times of these currents were, respectively, 1.0 and 1.8 msec. The decay of the currents was monoexponential in the majority of occurrences (94 and 91.4%), with a time constant (τ) of 2.7 msec for mEPSCs and 7.2 msec for mIPSCs. A part (8.6%) of mIPSCs had an additional slow component with τ = 30.1 msec. All mEPSCs were blocked by 10 mM CNQX, an antagonist of the AMPA/kainate subtype of glutamate receptors. Monoexponential mIPSCs were blocked by 1 mM strychnine, an antagonist of glycine receptors, while two-component mIPSCs required the additional presence of 10 mM bicuculline, a blocker of GABAA receptors. Only two cells of 23 (~9%) demonstrated pure GABA-ergic mIPSCs (τ = 26.2 msec). It is concluded that, under physiological conditions, AMPA/kainate but not NMDA receptors mediate excitatory synaptic transmission in SG neurons. Synaptic inhibition is mediated predominantly by glycine receptors, with mild fractions of IPSCs provided by GABA-ergic transmission and GABA/glycine co-release.  相似文献   

12.
The primo-vascular (Bonghan) tissue has been identified in most tissues in the body, but its structure and functions are not yet well understood. We characterized electrophysiological properties of the cells of the primo-nodes (PN) on the surface of abdominal organs using a slice patch clamp technique. The most abundant were small round cells (~10 μm) without processes. These PN cells exhibited low resting membrane potential (−36 mV) and did not fire action potentials. On the basis of the current–voltage (I–V) relationships and kinetics of outward currents, the PN cells can be grouped into four types. Among these, type I cells were the majority (69%); they showed strong outward rectification in I–V relations. The outward current was activated rapidly and sustained without decay. Tetraethylammonium (TEA) dose-dependently blocked both outward and inward current (IC50, 4.3 mM at ±60 mV). In current clamp conditions, TEA dose-dependently depolarized the membrane potential (18.5 mV at 30 mM) with increase in input resistance. The tail current following a depolarizing voltage step was reversed at −27 mV, and transient outward current like A-type K+ current was not expressed at holding potential of −80 mV. Taken together, the results demonstrate for the first time that the small round PN cells are heterogenous, and that, in type I cells, TEA-sensitive current with limited selectivity to K+ contributed to resting membrane potential of these cells.  相似文献   

13.
Current-clamp studies of cultured leech Retzius cells revealed inward rectification in the form of slow voltage sags in response to membrane hyperpolarization. Sag responses were eliminated in Na+-free saline and blocked by Cs+, but not Ba2+. Voltage clamp experiments revealed a Cs+-sensitive inward current activated by hyperpolarization negative to −70 mV. Cs+ decreased the frequency of spontaneous impulses in Retzius cells of intact ganglia. Plateau potentials were evoked in Retzius cells following block of Ca2+ influx with Ni2+ and suppression of K+ currents with internal tetraethylammonium. Plateau potentials continued to be expressed with Li+ as the charge carrier, but were eliminated when Na+ was replaced with N-methyl-d-glucamine. A persistent Na+ current with similar pharmacology that activated positive to −40 mV and reached its peak amplitude near −5 mV was identified in voltage-clamp experiments. Inactivation of the persistent Na+ current was slow and incomplete. The current was revealed by slow voltage ramps and persisted for the duration of 5-s voltage steps. Persistent Na+ current may underlie Na+-dependent bursting recorded in neurons of intact ganglia exposed to Ca2+-channel blockers. Accepted: 22 September 1998  相似文献   

14.
Two sets of descending neurons primarily target the somata of neurons in the olfactory deutocerebrum of the spiny lobster, Panulirus argus. Hundreds to thousands of dopamine-like immunoreactive fibers originate in the lateral protocerebrum and terminate among the clustered somata of the olfactory deutocerebrum projection neurons (lateral soma cluster) and those of the olfactory deutocerebrum local interneurons (medial soma cluster). A pair of giant neurons with substance P-and FMRFamide-like immunoreactivity from the median protocerebrum terminate primarily in the lateral soma cluster, but also branch in the core of the olfactory lobe itself. Neurons of both types terminate in numerous bouton-like swellings. The terminals in the lateral cluster at least contain numerous, large, dense-core and small, clear vesicles. The terminals contact the somata and the primary neurites through both traditional chemical synapses and large zones of direct membrane appositions. In most instances, a vesicle-containing profile forms a triadic arrangement with a neurite and a soma the latter being frequently connected via large gap-junction-like structures. Rosette-like arrangements formed by a vesicle-containing profile surrounded by up to eight neurites are also common. Dissociated lateral cluster somata support both fast inward and sustained outward voltage-activated currents. Substance P, but not dopamine or FMRFamide-related peptides, alters the fast inward current. The somata of the olfactory projection neurons, and possibly those of the olfactory local interneurons, appear to serve an integrative, and not merely a supportive role in these invertebrate central neurons.  相似文献   

15.
Summary We examined the variability of occurrence and frequency of voltage-dependent whole-cell currents in human peripheral blood monocyte-derived macrophages (HMDM) maintained in culture for up to three weeks. An increase in cell capacitance from an average value of 9 pF on the day of isolation to 117 pF at 14 days accompanied growth and differentiation in culture. The average resting potential was approximately –34 mV for cells beyond two days in culture. Cells exhibited a voltage-and time-dependent outward current upon membrane depolarization above approximately –30 mV, which appeared to be composed of a number of separate currents with variable expression from donor to donor. Three of these currents are carried by K+. The frequency of each outward current type was calculated for 974 cells obtained from 36 donors. The HMDMs in these studies exhibited two 4-aminopyridine (4-AP) sensitive, time-dependent outward currents (I A andI B ) that could be differentiated on the basis of the presence or absence of steady-state inactivation in the physiological potential range, time course of inactivation during maintained depolarization, as well as threshold of activation. The 4-AP-insensitive outward current activated at approximately 10 mV. One component of the 4-AP insensitive-outward current (I C ) could be blocked by external TEA and by the exchange of internal Cs+ or Na+ for K+. The probability of observingI B andI C appeared to be donor dependent. Following total replacement of internal K+ with Cs+, two additional currents could be identified (i) a delayed component of outward current (I D ) remained which could be blocked by low concentrations of external Zn2+ (4 m) and was insensitive to anion replacement in the external solution and (ii) a Cl current with a reversal potential which shifted in the presence of external anion replacement and which was irreversibly inhibited by the stilbene SITS. The activation of a prominent time-independent inward currents was often observed with increasing hyperpolarization. This inward current was blocked by external Ba2+ and corresponded to the inwardly rectifying K+ current. Neither inward nor outward current expression appeared dependent on whether cells were differentiated in adherent or suspension culture nor was there demonstrable differential current expression observed upon transition from suspension to adherent form.  相似文献   

16.
Summary Whole-cell sealed-on pipettes have been used to measure electrical properties of the plasmalemma surrounding protoplasts isolated from Black Mexican sweet corn shoot cells from suspension culture. In these protoplasts the membrane resting potential (V m ) was found to be –59±23 mV (n=23) in 1mm K o . The meanV m became more negative as [K] o decreased, but was more positive than the K+ equilibrium potential. There was no evidence of electrogenic pump activity. We describe four features of the current-voltage characteristic of the plasmalemma of these protoplasts which show voltagegated channel activity. Depolarization of the whole-cell membrane from the resting potential activates time- and voltage-dependent outward current through K+-selective channels. A local minimum in the outward current-voltage curve nearV m =150 mV suggests that these currents are mediated by two populations of K+-selective channels. The absence of this minimum in the presence of verapamil suggests that the activation of one channel population depends on the influx of Ca2+ into the cytoplasm. We identify unitary currents from two K+-selective channel populations (40 and 125 pS) which open when the membrane is depolarized; it is possible that these mediate the outward whole-cell current. Hyperpolarization of the membrane from the resting potential produces time- and voltage-dependent inward whole-cell current. Current activation is fast and follows an exponential time course. The current saturates and in some cases decreases at membrane potentials more negative than –175 mV. This current is conducted by poorly selective K+ channels, whereP Cl/P K=0.43±0.15. We describe a low conductance (20 pS) channel population of unknown selectivity which opens when the membrane is hyperpolarized. It is possible that these channels mediate inward whole-cell current. When the membrane is hyperpolarized to potentials more negative than –250 mV large, irregular inward current is activated. A third type of inward whole-cell current is briefly described. This activates slowly and with a U-shaped current-voltage curve over the range of membrane potentials –90<V m <0 mV.  相似文献   

17.
In an attempt to understand the processes mediating ion transport within the root, the patch clamp technique was applied to protoplasts isolated from the cortex and stele of maize roots and their plasma membrane conductances investigated. In the whole-cell configuration, membrane hyperpolarization induced a slowly activating inwardly rectifying conductance in most protoplasts isolated from the root cortex. In contrast, most protoplasts isolated from the stele contained a slowly activating outwardly rectifying conductance upon plasma membrane depolarization. The reversal potential of the inward current indicated that it was primarily due to the movement of K+; the outwardly rectifying conductance was comparatively less selective for K+. Membrane hyperpolarization beyond a threshold of about ?70 mV induced inward currents. When EK was set negative of this threshold, inward currents activated negative of EK and no outward currents were observed positive of EK. Outward currents in the stelar protoplasts activated at potentials positive of ?85 mV. However, when EK was set positive of ?85 mV a small inward current was also observed at potentials negative (and slightly positive) of the equilibrium potential for K+. Inwardly and outwardly rectifying K+ channels were observed in outside-out patches from the plasma membrane of cortical and stelar cells, respectively. Characterization of these channels showed that they were likely to be responsible for the macroscopic ‘whole-cell’ currents. Inward and outward currents were affected differently by various K+ channel blockers (TEA+, Ba2+ and Cs+). In addition, Ca2+ above 1 mM partially blocked the inward current in a voltage-dependent manner but had little effect on the outward current. It is suggested that the inwardly rectifying conductance identified in protoplasts isolated from the cortex probably represents an important component of the low-affinity K+ uptake mechanism (mechanism II) identified in intact roots. The outwardly rectifying conductance identified in protoplasts isolated from the stele could play a role in the release of cations into the xylem vessels for transport to the shoot.  相似文献   

18.
1.  The effect of outward and inward water flows through the membrane on outward potassium currents of dialyzedHelix pomatia neurons was studied.
2.  An outward water flow increased the peak and sustained outward potassium currents and accelerated the kinetics of their activation. An inward water flow had quite opposite effects—it decreased the peak and sustained potassium currents and delayed the kinetics of their activation.
3.  The analysis of the effect of water flow on the conductance of potassium channels showed that an outward water flow increased both the potassium conductance at a given potential (gk) and the maximum potassium conductance (g k max ). An inward water flow again had the opposite effect—it decreased the potassium conductance at given potential and the maximum potassium conductance.
4.  Neither an outward nor an inward water flow significantly affected the fraction of open potassium channels at a given potential [n (V)].
5.  These data suggest that in dialyzed neurons the changes of outward potassium current during water flow through the membrane are due mainly to the changes in single-channel conductance and the time constant of current activation.
  相似文献   

19.
It has been hypothesized that chick accessory lobes (ALs) contain functional neurons and act as a sensory organ of equilibrium. It was reported that neurons located in an outer layer of ALs showed γ-aminobutyric acid (GABA)- and glutamic acid decarboxylase (GAD)-like immunoreactivity more strongly than centrally located neurons, which were surrounded by the GAD-immunoreactive terminals. We investigated effects of GABA on the electrical activity of AL neurons. About 50% of embryonic AL neurons exhibited spontaneous firing. In the on-cell recording, GABA, muscimol, and GABA in combination with CGP35348 inhibited this firing. In whole-cell voltage clamp recordings, GABA and muscimol evoked a transient current. The mean reversal potential of GABA-evoked currents was close to the theoretical reversal potential of Cl. These results indicate that GABA exerts the inhibitory effect on the firing through the activation of GABAA receptors. In addition, the intracellular concentration of Cl was estimated to be about 16 mM in measurements with the gramicidin-perforated configuration, indicating the physiological reversal potential of the GABA current was about −60 mV. In conclusion, AL neurons have an intrinsic mechanism to evoke the spontaneous firing, which can be arrested by the inhibitory mechanism through the activation of the GABAA receptors.  相似文献   

20.
The ionic currents across the plasmalemma of Nitellopsis obtusawere measured in voltage clamp experiments. Depolarization ofthe cell by 30–100 mV from the level of the resting potentialresulted in (1) a rapid inward current, (2) a subsequent slowinward current, and (3) a stationary outward current. The firstcurrent component changed sign at –20 to –30 mV.The second component decreased to a minimum at this clampedlevel. With increasing depolarizing steps some slow transientcurrent component reappeared without changing sign. This transientinward current occurred also when the potential was clampedeither at large depolarizing (+80 mV) or at large hyperpolarizing(–300 mV) potentials. In cases when the slow inward currentcomponent was evident cessation of protoplasmic streaming wasobserved. The ATPase inhibitor dicyclohexylcarbodiimide (DCCD)at a concentration of 2 x 10–5 M in the external mediuminhibited the slow transient inward current without affectingthe first rapid current component. It is suggested that theirreversible slow transient current component reflects the onsetof some active ion-transport system in the plasmalemma duringcell excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号