首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some biomineral analogues (concepts of individual, species, ontogeny, phylogeny, system of species) originating from Linnaeus’s “Systema Naturae” are briefly considered. They are shown to be due to the common structural morphological and evolutionary approaches in recent biology and mineralogy. Mineralogy is successful in the structural morphological analysis, while biology is used in evolutionary considerations of individuals and species. The analysis of biomineral analogues is useful for both sciences. The logical concept of tolerance spaces is suggested to accurately describe biological and mineral diversities.  相似文献   

2.
蕨类植物的起源演化:对"古老"类群的重新审视   总被引:1,自引:0,他引:1  
李春香  王怿  孙晓燕 《生命科学》2007,19(2):245-249
一般认为,蕨类植物是一群非常古老的植物,其演化历史可以追溯到4亿多年前。近十几年来,由于多种研究手段的应用,特别是分子系统学的异军突起,在蕨类植物起源演化方面取得了重要进展,使我们可以重新审视这一古老植物类群的演化历史。本文与传统观点相对比,简述了蕨类植物在分类范畴、起源演化及其重要类群间的系统演化关系方面的最新进展。  相似文献   

3.
Our understanding of insect development and evolution has increased greatly due to recent advances in the comparative developmental approach. Modern developmental biology techniques such as in situ hybridization and molecular analysis of developmentally important genes and gene families have greatly facilitated these advances. The role of the comparative developmental approach in insect systematics is explored in this paper and we suggest two important applications of the approach to insect systematics--character dissection and morphological landmarking. Existing morphological characters can be dissected into their genetic and molecular components in some cases and this will lead to more and richer character information in systematic studies. Character landmarking will he essential to systematic studies for clarifying structures such as shapes or convergences, which are previously hard to analyze anatomical regions. Both approaches will aid greatly in expanding our understanding of homology in particular, and insect development in general.  相似文献   

4.
The past few years of research in human evolutionary genetics have provided novel insights and questions regarding how human adaptations to recent selective pressures have taken place. Here, we review the advances most relevant to understanding human evolution in response to pathogen-induced selective pressures. Key insights come from theoretical models of adaptive evolution, particularly those that consider spatially structured populations, and from empirical population genomic studies of adaptive evolution in humans. We also review the CCR5-Δ32 HIV resistance allele as a case study of pathogen resistance in humans. Taken together, the results make clear that the human response to pathogen-induced selection pressures depends on a complex interplay between the age of the pathogen, the genetic basis of potential resistance phenotypes, and how population structure impacts the adaptive process in humans.  相似文献   

5.
Evo-devo and the evolution of social behavior   总被引:4,自引:0,他引:4  
The integration of evolutionary biology with developmental genetics into the hybrid field of 'evo-devo' resulted in major advances in understanding multicellular development and morphological evolution. Here we show how insights from evo-devo can be applied to study the evolution of social behavior. We develop this idea by reviewing studies that suggest that molecular pathways controlling feeding behavior and reproduction in solitary insects are part of a 'genetic toolkit' underlying the evolution of a particularly complex form of social behavior, division of labor among workers in honeybee colonies. The evo-devo approach, coupled with advances in genomics for non-model genetic organisms, including the recent sequencing of the honeybee genome, promises to advance our understanding of the evolution of social behavior.  相似文献   

6.
Established theories on the evolution of the diverse life histories of marine metazoans, specifically invertebrates, were developed in the absence of rigorous phylogenetic methods. With improved estimates of evolutionary relationships for various marine invertebrate groups, based on phylogenetic systematics, we can now critically evaluate the assumptions upon which these theories are based. Several studies emphasizing a phylogenetic systematics approach have recently examined the evolutionary transitions among reproductive traits and challenge us to reconsider the generality of the assumptions made about life history evolution. The results point towards exciting possibilities for a better understanding of the great diversity of reproductive and developmental modes we observe in marine invertebrates today.  相似文献   

7.
Over the past decade, the morphological paradigm in the traditional field of systematics and evolutionary biology has been challenged and has actually been replaced by the molecular paradigm. In this study, an attempt is made to evaluate the current state of the problem concerning the relationship between the fundamentals of systematics and evolution. It is shown that the interrelatedness of evolution, ontogeny, systematics, and phylogenetics is deeply underestimated in the approaches used in recent research. Instead of considering the above fields of biology as separate categories, as is common in recent studies, the synthetic concept of ontogenetic systematics is proposed, which unifies them into an integrated process.  相似文献   

8.
Alexander Kowalevsky was one of the most significant 19th century biologists working at the intersection of evolution and embryology. The reinstatement of the Alexander Kowalevsky Medal by the St. Petersburg Society of Naturalists for outstanding contributions to understanding evolutionary relationships in the animal kingdom, evolutionary developmental biology, and comparative zoology is timely now that Evo-devo has emerged as a major research discipline in contemporary biology. Consideration of the intellectual lineage of comparative evolutionary embryology explicitly forces a reconsideration of some current conceptions of the modern emergence of Evo-devo, which has tended to exist in the shadow of experimental embryology throughout the 20th century, especially with respect to the recent success of developmental biology and developmental genetics. In particular we advocate a sharper distinction between the heritage of problems and the heritage of tools for contemporary Evo-devo. We provide brief overviews of the work of N. J. Berrill and D. T. Anderson to illustrate comparative evolutionary embryology in the 20th century, which provides an appropriate contextualization for a conceptual review of our research on the sea urchin genus Heliocidaris over the past two decades. We conclude that keeping research questions rather than experimental capabilities at the forefront of Evo-devo may be an antidote to any repeat of the stagnation experienced by the first group of evolutionary developmental biologists over one hundred years ago and acknowledges Kowalevsky's legacy in evolutionary embryology.  相似文献   

9.
One of the central, unresolved controversies in biology concerns the distribution of primitive versus advanced characters at different stages of vertebrate development. This controversy has major implications for evolutionary developmental biology and phylogenetics. Ernst Haeckel addressed the issue with his Biogenetic Law, and his embryo drawings functioned as supporting data. We re-examine Haeckel's work and its significance for modern efforts to develop a rigorous comparative framework for developmental studies. Haeckel's comparative embryology was evolutionary but non-quantitative. It was based on developmental sequences, and treated heterochrony as a sequence change. It is not always clear whether he believed in recapitulation of single characters or entire stages. The Biogenetic Law is supported by several recent studies -- if applied to single characters only. Haeckel's important but overlooked alphabetical analogy of evolution and development is an advance on von Baer. Haeckel recognized the evolutionary diversity in early embryonic stages, in line with modern thinking. He did not necessarily advocate the strict form of recapitulation and terminal addition commonly attributed to him. Haeckel's much-criticized embryo drawings are important as phylogenetic hypotheses, teaching aids, and evidence for evolution. While some criticisms of the drawings are legitimate, others are more tendentious. In opposition to Haeckel and his embryo drawings, Wilhelm His made major advances towards developing a quantitative comparative embryology based on morphometrics. Unfortunately His's work in this area is largely forgotten. Despite his obvious flaws, Haeckel can be seen as the father of a sequence-based phylogenetic embryology.  相似文献   

10.
The collection of evolutionary transformations known as the ‘major transitions’ or ‘transitions in individuality’ resulted in changes in the units of evolution and in the hierarchical structure of cellular life. Volvox and related algae have become an important model system for the major transition from unicellular to multicellular life, which touches on several fundamental questions in evolutionary biology. The Third International Volvox Conference was held at the University of Cambridge in August 2015 to discuss recent advances in the biology and evolution of this group of algae. Here, I highlight the benefits of integrating phylogenetic comparative methods and experimental evolution with detailed studies of developmental genetics in a model system with substantial genetic and genomic resources. I summarize recent research on Volvox and its relatives and comment on its implications for the genomic changes underlying major evolutionary transitions, evolution and development of complex traits, evolution of sex and sexes, evolution of cellular differentiation and the biophysics of motility. Finally, I outline challenges and suggest future directions for research into the biology and evolution of the volvocine algae.  相似文献   

11.
The comparative and evolutionary analysis of molecular data has allowed researchers to tackle biological questions that have long remained unresolved. The evolution of DNA and amino acid sequences can now be modeled accurately enough that the information conveyed can be used to reconstruct the past. The methods to infer phylogeny (the pattern of historical relationships among lineages of organisms and/or sequences) range from the simplest, based on parsimony, to more sophisticated and highly parametric ones based on likelihood and Bayesian approaches. In general, molecular systematics provides a powerful statistical framework for hypothesis testing and the estimation of evolutionary processes, including the estimation of divergence times among taxa. The field of molecular systematics has experienced a revolution in recent years, and, although there are still methodological problems and pitfalls, it has become an essential tool for the study of evolutionary patterns and processes at different levels of biological organization. This review aims to present a brief synthesis of the approaches and methodologies that are most widely used in the field of molecular systematics today, as well as indications of future trends and state-of-the-art approaches.  相似文献   

12.
In just the past 20 years systematics has progressed from the sequencing of individual genes for a few taxa to routine sequencing of complete plastid and even nuclear genomes. Recent technological advances have made it possible to compile very large data sets, the analyses of which have in turn provided unprecedented insights into phylogeny and evolution. Indeed, this narrow window of a few decades will likely be viewed as a golden era in systematics. Relationships have been resolved at all taxonomic levels across all groups of photosynthetic life. In the angiosperms, problematic deep-level relationships have either been largely resolved, or will be resolved within the next several years. The same large data sets have also provided new insights into the many rapid radiations that have characterized angiosperm evolution. For example, all of the major lineages of angiosperms likely arose within a narrow window of just a few million years. At the population level, the ease of DNA sequencing has given new life to phylogeographic studies, and microsatellite analyses have become more commonplace, with a concomitant impact on conservation and population biology. With the wealth of sequence data soon to be available, we are on the cusp of assembling the first semi-comprehensive tree of life for many of the 15,000 genera of flowering plants and indeed for much of green life. Accompanying these opportunities are also enormous new computational/informatic challenges including the management and phylogenetic analysis of such large, sometimes fragmentary data sets, and visualization of trees with thousands of terminals.  相似文献   

13.
Deciphering relationships among the orders of placental mammals remains an important problem in evolutionary biology and has implications for understanding patterns of morphological character evolution, reconstructing the ancestral placental genome, and evaluating the role of plate tectonics and dispersal in the biogeographic history of this group. Until recently, both molecular and morphological studies provided only a limited and questionable resolution of placental relationships. Studies based on larger and more diverse molecular datasets, and using an array of methodological approaches, are now converging on a stable tree topology with four major groups of placental mammals. The emerging tree has revealed numerous instances of convergent evolution and suggests a role for plate tectonics in the early evolutionary history of placental mammals. The reconstruction of mammalian phylogeny illustrates both the pitfalls and the powers of molecular systematics.  相似文献   

14.
The past 30 years have seen a revolution in comparative biology. Before that time, systematics was not at the forefront of the biological sciences, and few scientists considered phylogenetic relationships when investigating evolutionary questions. By contrast, systematic biology is now one of the most vigorous disciplines in biology, and the use of phylogenies not only is requisite in macroevolutionary studies but also has been applied to a wide range of topics and fields that no one could possibly have envisioned 30 years ago. My message is simple: phylogenies are fundamental to comparative biology, but they are not the be-all and end-all. Phylogenies are powerful tools for understanding the past, but like any tool, they have their limitations. In addition, phylogenies are much more informative about pattern than they are about process. The best way to fully understand the past-both pattern and process-is to integrate phylogenies with other types of historical data as well as with direct studies of evolutionary process.  相似文献   

15.
Linnaeus listed and described (as Ostrea species) 20 recent pectinid species in the 10th edition of his Systema Naturae and one pectinid species in his Mantissa. These are now placed in 17 genera of the family Pectinidae. Nine species are cited to Museum Ludovicae Ulricae. Ten primary types are present in the Linnéan Society of London, and the same number in die Zoological Museum of die Uppsala University. Two lectotypes were designated recendy by Smith and Waller; 18 lectotypes and one neotype are selected herein. Nine of the species are type species of currently accepted pectinid genera. Seven new type localities are also designated for species which had unknown or erroneous type localities, and six are more restricted. Potential type material of eight species is also traced in the Gualtieri collection of the Museo di Storia Naturale e del Territorio at Certosi di Calci (Italy).  相似文献   

16.
Ronald Brady was the first philosopher to defend pattern cladistics as an independent scientific field. That independence was achieved through the decoupling of biological systematics from phylogenetics––that is, inferred evolutionary processes (e.g. character transformation). Brady saw parallels between biological systematics and Wolfgang von Goethe's Morphology, an empirical scientific field that incorporates human observation and perception to discover coherent morphological structures. Goethe's Morphology and pre-Darwinian systematics were independent from evolutionary narratives, a tradition that continued into the 20th Century through the work of biologists such as Agnes Arber. Most importantly, Brady provided the philosophical and historical foundations to an independent systematics by demonstrating the links between phenomenology, Goethe's Morphology and comparative biology.  相似文献   

17.
被子植物起源和早期演化研究的回顾与展望   总被引:7,自引:2,他引:7  
近年来,被子植物起源和早期演化研究,由于手段和技术的更新,资料大量积累,取得了许多重要进展,成为植物学领域的一大热点。本文对过去近五十年的研究作了回顾,并从分子系统学、分支系统学、花原基发生的形态学、花发育的分子遗传学及白垩纪花和其它生殖结构化石研究等五个方面对该领域在最近十几年的研究进展进行综述,最后,对今后如何开展这方面的工作作了简要评论。  相似文献   

18.
Research into Heliconius butterflies has made a significant contribution to evolutionary biology. Here, we review our understanding of the diversification of these butterflies, covering recent advances and a vast foundation of earlier work. Whereas no single group of organisms can be sufficient for understanding life's diversity, after years of intensive study, research into Heliconius has addressed a wide variety of evolutionary questions. We first discuss evidence for widespread gene flow between Heliconius species and what this reveals about the nature of species. We then address the evolution and diversity of warning patterns, both as the target of selection and with respect to their underlying genetic basis. The identification of major genes involved in mimetic shifts, and homology at these loci between distantly related taxa, has revealed a surprising predictability in the genetic basis of evolution. In the final sections, we consider the evolution of warning patterns, and Heliconius diversity more generally, within a broader context of ecological and sexual selection. We consider how different traits and modes of selection can interact and influence the evolution of reproductive isolation.  相似文献   

19.
Attainment of the biting jaw is regarded as one of the major novelties in the early history of vertebrates. Based on a comparison between lamprey and gnathostome embryos, evolutionary developmental studies have tried to explain this novelty as changes in the developmental patterning of the mandibular arch, the rostralmost pharyngeal arch, at the molecular and cellular levels. On the other hand, classical theories in the field of comparative morphology assumed the involvement of hypothetical premandibular arch(es) that ancestral animals would have possessed rostral to the mandibular arch, in the transition from agnathan to gnathostome states. These theories are highly biased toward the segmental scheme of the vertebrate head, and the concept of premandibular “arches” is no longer accepted by the current understanding. Instead, the premandibular domain has now become of interest in the understanding of cranial development, especially in its rostral part. As newer theories that consider involvement of the premandibular domain, the neoclassical and heterotopy theories are here compared from evolutionary developmental perspectives, in conjunction with the development of nasal and hypophyseal placodes, in the context of the evolutionary acquisition of the jaw. Given recent advances in understanding of the lamprey development, evolution of the Dlx code is also discussed together with the evolutionary scenario of jaw acquisition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号