首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Engineering the plant cell factory for secondary metabolite production   总被引:8,自引:0,他引:8  
Plant secondary metabolism is very important for traits such as flower color, flavor of food, and resistance against pests and diseases. Moreover, it is the source of many fine chemicals such as drugs, dyes, flavors, and fragrances. It is thus of interest to be able to engineer the secondary metabolite production of the plant cell factory, e.g. to produce more of a fine chemical, to produce less of a toxic compound, or even to make new compounds, Engineering of plant secondary metabolism is feasible nowadays, but it requires knowledge of the biosynthetic pathways involved. To increase secondary metabolite production different strategies can be followed, such as overcoming rate limiting steps, reducing flux through competitive pathways, reducing catabolism and overexpression of regulatory genes. For this purpose genes of plant origin can be overexpressed, but also microbial genes have been used successfully. Overexpression of plant genes in microorganisms is another approach, which might be of interest for bioconversion of readily available precursors into valuable fine chemicals. Several examples will be given to illustrate these various approaches. The constraints of metabolic engineering of the plant cell factory will also be discussed. Our limited knowledge of secondary metabolite pathways and the genes involved is one of the main bottlenecks. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Metabolic engineering of plant secondary products   总被引:5,自引:0,他引:5  
Plants interact with their environment by producing a diverse array of secondary metabolites. Many of these compounds are valued for their medicinal, industrial or agricultural properties. Other secondary products are toxic or otherwise undesirable and can reduce the commercial value of crops. Gene transfer technology offers new opportunities to modify directly plant secondary product synthesis through metabolic engineering. This article reviews some of the strategies which have been used to increase or decrease the synthesis of specific plant metabolites, as well as methods for expanding the biosynthetic capabilities of individual species.  相似文献   

3.
Several plant isoquinoline alkaloids (PIAs) possess powerful pharmaceutical and biotechnological properties. Thus, PIA metabolism and its fascinating molecules, including morphine, colchicine and galanthamine, have attracted the attention of both the industry and researchers involved in plant science, biochemistry, chemical bioengineering and medicine. Currently, access and availability of high‐value PIAs [commercialized (e.g. galanthamine) or not (e.g. narciclasine)] is limited by low concentration in nature, lack of cultivation or geographic access, seasonal production and risk of overharvesting wild plant species. Nevertheless, most commercial PIAs are still extracted from plant sources. Efforts to improve the production of PIA have largely been impaired by the lack of knowledge on PIA metabolism. With the development and integration of next‐generation sequencing technologies, high‐throughput proteomics and metabolomics analyses and bioinformatics, systems biology was used to unravel metabolic pathways allowing the use of metabolic engineering and synthetic biology approaches to increase production of valuable PIAs. Metabolic engineering provides opportunity to overcome issues related to restricted availability, diversification and productivity of plant alkaloids. Engineered plant, plant cells and microbial cell cultures can act as biofactories by offering their metabolic machinery for the purpose of optimizing the conditions and increasing the productivity of a specific alkaloid. In this article, is presented an update on the production of PIA in engineered plant, plant cell cultures and heterologous micro‐organisms.  相似文献   

4.
Plant cell culture provides a viable alternative over whole plant cultivation for the production of secondary metabolites. In order to successfully cultivate the plant cells at large scale, several engineering parameters such as, cell aggregation, mixing, aeration, and shear sensitivity are taken into account for selection of a suitable bioreactor. The media ingredients, their concentrations and the environmental factors are optimized for maximal synthesis of a desired metabolite. Increased productivity in a bioreactor can be achieved by selection of a proper cultivation strategy (batch, fed-batch, two-stageetc.), feeding of metabolic precursors and extraction of intracellular metabolites. Proper understanding and rigorous analysis of these parameters would pave the way towards the successful commercialization of plant cell bioprocesses.  相似文献   

5.
Microorganisms have been the main sources for the production of chemicals. Production of chemicals requires the development of low-cost and higher-yield processes. Towards this goal, microbial strains with higher levels of production should be first considered. Metabolic engineering has been used extensively over the past two to three decades to increase production of these chemicals. Advances in omics technology and computational simulation are allowing us to perform metabolic engineering at the systems level. By combining the results of omics analyses and computational simulation, systems biology allows us to understand cellular physiology and characteristics, which can subsequently be used for designing strategies. Here, we review the current status of metabolic engineering based on systems biology for chemical production and discuss future prospects.  相似文献   

6.
Microorganisms have been the main sources for the production of chemicals. Production of chemicals requires the development of low-cost and higher-yield processes. Towards this goal, microbial strains with higher levels of production should be first considered. Metabolic engineering has been used extensively over the past two to three decades to increase production of these chemicals. Advances in omics technology and computational simulation are allowing us to perform metabolic engineering at the systems level. By combining the results of omics analyses and computational simulation, systems biology allows us to understand cellular physiology and characteristics, which can subsequently be used for designing strategies. Here, we review the current status of metabolic engineering based on systems biology for chemical production and discuss future prospects.  相似文献   

7.
植物细胞培养技术提高次生代谢物产量的方法(综述)   总被引:4,自引:0,他引:4  
介绍植物细胞培养技术提高次生代谢物产量的方法。  相似文献   

8.
ABSTRACT

Vitamin C (L-ascorbic acid; AsA) is the major soluble antioxidant found in plants and is also an essential component of human nutrition. Although numerous biotechnological methods have been exploited to increase its yield, pressures such as commercial competition and environmental concerns make it urgent to find a new way for industrial production of plant-derived AsA. Engineering plant AsA has now become feasible because of our increased understanding of its biosynthetic pathway. Several possible strategies could be followed to increase AsA production, such as overcoming the rate limiting steps in the biosynthetic pathway, promoting recycling, and reducing catabolism. For these purposes, genes of plant, microbial and animal origins have been successfully used. Several examples will be given to illustrate these various approaches. The existing and potential achievements in increasing AsA production would provide the opportunity for enhancing nutritional quality and stress tolerance of crop plants.  相似文献   

9.
10.
Biotechnology for the production of plant secondary metabolites   总被引:8,自引:2,他引:8  
Verpoorte  R.  Contin  A.  Memelink  J. 《Phytochemistry Reviews》2002,1(1):13-25
The production of plant secondary metabolites by means of large-scale culture of plant cells in bioreactors is technically feasible. The economy of such a production is the major bottleneck. For some costly products it is feasible, but unfortunately some of the most interesting products are only in very small amounts or not all produced in plant cell cultures. Screening, selection and medium optimization may lead to 20- to 30-fold increase in case one has producing cultures. In case of phytoalexins, elicitation will lead to high production. But for many of the compounds of interest the production is not inducible by elicitors. The culture of differentiated cells, such as (hairy) root or shoot cultures, is an alternative, but is hampered by problems in scaling up of such cultures. Metabolic engineering offers new perspectives for improving the production of compounds of interest. This approach can be used to improve production in the cell culture, in the plant itself or even production in other plant species or organisms. Studies on the production of terpenoid indole alkaloids have shown that the overexpression of single genes of the pathway may lead for some enzymes to an increased production of the direct product, but not necessarily to an increased alkaloid production. On the other hand feeding of such transgenic cultures with early precursors showed an enormous capacity for producing alkaloids, which is not utilized without feeding precursors. Overexpression of regulatory genes results in the upregulation of a series of enzymes in the alkaloid pathway, but not to an improved flux through the pathway, but feeding loganin does result in increased alkaloid production if compared with wild-type cells. Indole alkaloids could be produced in hairy root cultures of Weigelia by overexpression of tryptophan decarboxylase and strictosidine synthase. Alkaloids could be produced in transgenic yeast overexpressing strictosidine synthase and strictosidine glucosidase growing on medium made out the juice of Symphoricarpus albus berries to which tryptamine is added. Metabolic engineering thus seems a promising approach to improve the production of a cell factory.  相似文献   

11.
UV-B辐射增强对陆地植物次生代谢的影响   总被引:10,自引:6,他引:10  
薛慧君  岳明 《西北植物学报》2004,24(6):1131-1137
平流层臭氧的减薄已导致地表中波紫外辐射(UV-B,280~320nm)增强,由于UV-B能被许多生物大分子如蛋白质和核酸吸收并引起分子构象的变化,因此可对植物的各方面产生影响。本文将近年来特别是近5年的UV-B辐射增强对植物次生代谢物影响的研究工作进行了综述。主要包括:UV-B辐射增强对植物紫外吸收物的影响和可能的机制;环境因子的复合作用对植物紫外吸收物的影响和可能的机制;UV-B辐射增强对次生代谢物影响的生态学意义。并对该领域未来的研究作了展望。  相似文献   

12.
谷氨酸棒状杆菌是目前微生物发酵生产L-缬氨酸的主要工业菌株。文中首先在谷氨酸棒状杆菌VWB-1中敲除了alaT (丙氨酸氨基转移酶),获得突变菌株VWB-2,作为出发菌株。进而对L-缬氨酸合成途径关键酶——乙酰羟酸合酶 (ilvBN) 的调节亚基进行定点突变 (ilvBN1M13),解除L-缬氨酸对该酶的反馈抑制。然后辅助过量表达L-缬氨酸合成途径关键基因ilvBN1M13、乙酰羟酸异构酶 (ilvC)、二羟酸脱水酶 (ilvD)、支链氨基酸氨基转移酶 (ilvE),加强通往L-缬氨酸的碳代谢流,提高菌株的L-缬氨酸水平。最后,基于过量表达L-缬氨酸转运蛋白编码基因brnFE及其调控蛋白编码基因lrp1,提高细胞的L-缬氨酸转运能力。最终获得工程菌株VWB-2/pEC-XK99E-ilvBN1M13CE-lrp1-brnFE在5 L发酵罐中的L-缬氨酸产量达到461.4 mmol/L,糖酸转化率达到0.312 g/g葡萄糖。  相似文献   

13.
Glycosyltransferases are members of the multigene superfamily in plants that can transfer single or multiple activated sugars to a range of plant molecules, resulting in the glycosylation of plant compounds. Although the activities of many glycosyltransferases and their products have been recognized for a long time, only in recent years were some glycosyltransferase genes identified and a few functionally characterized in detail. Glycosylation is thought to be one of the most important modification reactions towards plant secondary metabolites, and plays a key role in maintaining cell homeostasis, thus likely participating in the regulation of plant growth, development and in defense responses to stress environments. With advances in plant genome projects and the development of novel technologies in analyzing gene function, significant progress could be made in gaining new insights into the properties and precise biological roles of plant secondary product glycosyltransferases, and the new knowledge will have extensive application prospects in the catalytic synthesis of glycoconjugates and metabolic engineering of crops. In this review, we summarize the current research, highlighting the possible biological roles, of plant secondary metabolite glycosyltransferases and discuss their potential applications as well as aspects to be further studied in the near future.  相似文献   

14.
Glycosyltransferases are members of the multigene superfamily in plants that can transfer single or multiple activated sugars to a range of plant molecules,resulting in the glycosylation of plant compounds.Although the activities of many glycosyltransferases and their products have been recognized for a long time,only in recent years were some glycosyltransferase genes identified and a few functionally characterized in detail.Glycosylation is thought to be one of the most important modification reactions towards plant secondary metabolites,and plays a key role in maintaining cell homeostasis,thus likely participating in the regulation of plant growth,development and in defense responses to stress environments.With advances in plant genome projects and the development of novel technologies in analyzing gene function,significant progress could be made in gaining new insights into the properties and precise biological roles of plant secondary product glycosyltransferases,and the new knowledge will have extensive application prospects in the catalytic synthesis of glycoconjugates and metabolic engineering of crops.In this review,we summarize the current research,highlighting the possible biological roles,of plant secondary metabolite glycosyltransferases and discuss their potential applications as well as aspects to be further studied in the near future.  相似文献   

15.
植物次生代谢产物的生态学意义   总被引:21,自引:0,他引:21  
概述了植物次生代谢产物的生态学意义,包括增强植物抵御病虫害的侵袭、适应生存环境以及促进植物自身的生存和繁衍等方面的重要作用  相似文献   

16.
维生素是维持人体生命活动必需的一类有机物质,机体本身一般不能合成或合成量不足,因此需经食物或其他强化产品获取。目前,维生素产品已广泛应用于医药、食品添加剂、饲料添加剂、化妆品等领域,而且全球对维生素的需求也是呈逐年增长态势。维生素的生产方法主要包括化学合成法和生物合成法。化学合成法通常安全隐患大、反应条件严苛、废物污染严重,相比之下,代谢工程生产维生素绿色环保安全、能耗低,因此建立微生物细胞工厂具有重大的科学意义和应用需求。文中回顾了近30年来代谢工程在维生素生产领域的研究进展,详细阐述了水溶性维生素(维生素B1、B2、B3、B5、B6、B7、B9、B12和维生素C的前体)和脂溶性维生素(维生素A、维生素D的前体、维生素E和维生素K)的生物合成研究现状,并对其发酵生产的瓶颈进行了探讨,最后对合成生物技术创建维生素生产菌种进行了展望。  相似文献   

17.
The genetic manipulation of both the mevalonic acid (MVA) and methylerythritol-4-phosphate (MEP) pathways, leading to the formation of isopentenyl diphosphate (IPP), has been achieved in tomato using 3-hydroxymethylglutaryl CoA (hmgr-1) and 1-deoxy-d-xylulose-5-phosphate synthase (dxs) genes, respectively. Transgenic plants containing an additional hmgr-1 from Arabidopsis thaliana, under the control of the cauliflower mosaic virus (CaMV) 35S constitutive promoter, contained elevated phytosterols (up to 2.4-fold), but IPP-derived isoprenoids in the plastid were unaltered. Transgenic lines containing a bacterial dxs targeted to the plastid with the tomato dxs transit sequence resulted in an increased carotenoid content (1.6-fold), which was inherited in the next generation. Phytoene and beta-carotene exhibited the greatest increases (2.4- and 2.2-fold, respectively). Extra-plastidic isoprenoids were unaffected in these lines. These data are discussed with respect to the regulation, compartmentalization and manipulation of isoprenoid biosynthetic pathways and their relevance to plant biotechnology.  相似文献   

18.
The yeast Torulopsis glabrata CCTCC M202019, which is used for industrial pyruvate production, was chosen to explore the suitability of engineering this multi-vitamin auxotrophic yeast for increased malate production. Various metabolic engineering strategies were used to manipulate carbon flux from pyruvate to malate: (i) overexpression of pyruvate carboxylase and malate dehydrogenase; (ii) identification of the bottleneck in malate production by model iNX804; (iii) simultaneous overexpression of genes RoPYC, RoMDH and SpMAE1. Using these strategies, 8.5 g L–1 malate was accumulated in the engineered strain T.G-PMS, which was about 10-fold greater than that of the control strain T.G-26. The results presented here suggest that T. glabrata CCTCC M202019 is a promising candidate for industrial malate production.  相似文献   

19.
20.
The production of secondary metabolites is a major mechanism used by beneficial rhizobacteria to antagonize plant pathogens. These bacteria have evolved to coordinate the production of different secondary metabolites due to the heavy metabolic burden imposed by secondary metabolism. However, for most secondary metabolites produced by bacteria, it is not known how their biosynthesis is coordinated. Here, we showed that PhlH from the rhizobacterium Pseudomonas fluorescens is a TetR-family regulator coordinating the expression of enzymes related to the biosynthesis of several secondary metabolites, including 2,4-diacetylphloroglucinol (2,4-DAPG), mupirocin, and pyoverdine. We present structures of PhlH in both its apo form and 2,4-DAPG-bound form and elucidate its ligand-recognizing and allosteric switching mechanisms. Moreover, we found that dissociation of 2,4-DAPG from the ligand-binding domain of PhlH was sufficient to allosterically trigger a pendulum-like movement of the DNA-binding domains within the PhlH dimer, leading to a closed-to-open conformational transition. Finally, molecular dynamics simulations confirmed that two distinct conformational states were stabilized by specific hydrogen bonding interactions and that disruption of these hydrogen bonds had profound effects on the conformational transition. Our findings not only reveal a well-conserved route of allosteric signal transduction in TetR-family regulators but also provide novel mechanistic insights into bacterial metabolic coregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号