首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The p53 tumor suppressor is activated in the cellular response to genotoxic stress. Transactivation of p53 target genes dictates cell cycle arrest and DNA repair or induction of apoptosis; however, a molecular mechanism responsible for these distinct functions remains unclear. Recent studies revealed that phosphorylation of p53 on Ser(46) was associated with induction of p53AIP1 expression, resulting in the commitment of the cell fate into apoptotic cell death. Moreover, upon exposure to genotoxic stress, p53DINP1 was expressed and recruited a kinase(s) to p53 that specifically phosphorylated Ser(46). Here, we show that the pro-apoptotic kinase, protein kinase C delta (PKCdelta), is involved in phosphorylation of p53 on Ser(46). PKCdelta-mediated phosphorylation is required for the interaction of PKCdelta with p53. The results also demonstrate that p53DINP1 associates with PKCdelta upon exposure to genotoxic agents. Consistent with these results, PKCdelta potentiates p53-dependent apoptosis by Ser(46) phosphorylation in response to genotoxic stress. These findings indicate that PKCdelta regulates p53 to induce apoptotic cell death in the cellular response to DNA damage.  相似文献   

3.
DNA damage response pathway in radioadaptive response   总被引:16,自引:0,他引:16  
Radioadaptive response is a biological defense mechanism in which low-dose ionizing irradiation elicits cellular resistance to the genotoxic effects of subsequent irradiation. However, its molecular mechanism remains largely unknown. We previously demonstrated that the dose recognition and adaptive response could be mediated by a feedback signaling pathway involving protein kinase C (PKC), p38 mitogen activated protein kinase (p38MAPK) and phospholipase C (PLC). Further, to elucidate the downstream effector pathway, we studied the X-ray-induced adaptive response in cultured mouse and human cells with different genetic background relevant to the DNA damage response pathway, such as deficiencies in TP53, DNA-PKcs, ATM and FANCA genes. The results showed that p53 protein played a key role in the adaptive response while DNA-PKcs, ATM and FANCA were not responsible. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K), mimicked the priming irradiation in that the inhibitor alone rendered the cells resistant against the induction of chromosome aberrations and apoptosis by the subsequent X-ray irradiation. The adaptive response, whether it was afforded by low-dose X-rays or wortmannin, occurred in parallel with the reduction of apoptotic cell death by challenging doses. The inhibitor of p38MAPK which blocks the adaptive response did not suppress apoptosis. These observations indicate that the adaptive response and apoptotic cell death constitute a complementary defense system via life-or-death decisions. The p53 has a pivotal role in channeling the radiation-induced DNA double-strand breaks (DSBs) into an adaptive legitimate repair pathway, where the signals are integrated into p53 by a circuitous PKC-p38MAPK-PLC damage sensing pathway, and hence turning off the signals to an alternative pathway to illegitimate repair and apoptosis. A possible molecular mechanism of adaptive response to low-dose ionizing irradiation has been discussed in relation to the repair of DSBs and implicated to the current controversial observations on the expression of adaptive response.  相似文献   

4.
5.
TNF-alpha elicits various responses including apoptosis, proliferation, and differentiation according to cell type. In neuronal PC12 cells, TNF-alpha induces moderate apoptosis while lipopolysarccaharide or trophic factor deprivation can potentiate apoptosis that is induced by TNF-alpha. TNF-alpha initiates various signal transduction pathways leading to the activation of the caspase family, NF-subk;B, Jun N-terminal kinase, and p38 MAPK via the death domain that contains the TNF-alpha receptor. Inhibition of translation using cycloheximide greatly enhanced the apoptotic effect of TNF-alpha. This implies that the induction of anti-apoptotic genes for survival by TNF-alpha may be able to protect PC12 cells from apoptosis. Accordingly, Bcl-2, an anti-apoptotic Bcl-2 family member, was highly expressed in response to TNF-alpha. In this study, we examined the anti-apoptotic role of p38 MAPK that is activated by TNF-alpha in neuronal PC12 cells. The phosphorylation of p38 MAPK in response to TNF-alpha slowly increased and lasted several hours in the PC12 cell and DRG neuron. This prolonged and slow phosphorylation of p38 MAPK was distinct from other non-neuronal cells. The specific inhibitor of p38 MAPK, SB202190, significantly enhanced the apoptosis that was induced by TNF-alpha in PC12 cells. This indicates that the activation of p38 MAPK could protect PC12 cells from apoptosis since there is no known role of p38 MAPK in response to TNF-alpha in neuron. This discovery could be evidence for the neuroprotective role of the p38 MAPK.  相似文献   

6.
Genotoxic damage induces cell cycle arrest and/or apoptosis by activation of p53 oncosuppressor protein. A number of anticancer drugs are genotoxic and their damaging effect upon cells is mediated by this mechanism. Microinjection of defined DNA species directly into nucleus has been reported previously to activate p53 and inhibit cell cycle. Here, we demonstrate that simple addition of heterogeneous degraded DNA to cultured cells (Rat-1 fibroblasts) in combination with lipotransfecting agent DOTAP leads to apoptosis induction and mitosis inhibition by a molecular mechanism which mimics that of the cellular response to genotoxic anticancer agents. Indeed, both cellular effects induced by lipotransfected degraded DNA (essentially, heterogeneous small DNA fragments) are associated to p53 activation and modulated by two apoptosis-related genes, such as bcl-2 and c-myc, which also modulate the apoptotic threshold to anticancer agents. Here we raise the hypothesis of exogenous DNA segment lipotransfection as possible new tool for anticancer therapy.  相似文献   

7.
The DNA adduct O6-methylguanine (O6MeG) induced by environmental genotoxins and anticancer drugs is a highly mutagenic, genotoxic and apoptotic lesion. Apoptosis induced by O6MeG requires mismatch repair (MMR) and proliferation. Models of O6MeG-triggered cell death postulate that O6MeG/T mispairs activate MMR giving rise to either direct genotoxic signaling or secondary lesions that trigger apoptotic signaling in the 2nd replication cycle. To test these hypotheses, we used a highly synchronized cell system competent and deficient for the repair of O6MeG adducts, which were induced by the SN1 methylating agent N-methyl-N’-nitro-N-nitrosoguanidine (MNNG). We show that DNA double-strand breaks (DSBs) are formed in response to O6MeG at high level in the 2nd S/G2-phase of the cell cycle. This is accompanied by ATR and Chk1 phosphorylation, G2/M arrest and late caspase activation. Although cells undergo apoptosis out of the 2nd G2/M-phase, the majority of them recovers and undergoes apoptosis after passing through additional replication cycles. The late apoptotic effects were completely abolished by O6-methylguanine-DNA methyltransferase, indicating that non-repaired O6MeG is carried over into subsequent generations, eliciting there a late apoptotic response. We also demonstrate that with a low, non-toxic dose of MNNG the passage of cells through the 1st and 2nd S-phase is not delayed, although the dose is able to induce excessive sister chromatid exchanges. This suggests that a significant amount of O6MeG can be tolerated by recombination, which is a fast process preventing from S-phase blockage, DSB formation and cell death.  相似文献   

8.
Lackinger D  Kaina B 《Mutation research》2000,457(1-2):113-123
The important regulatory proteins, c-Fos and p53 are induced by exposure of cells to a variety of DNA damaging agents. To investigate their role in cellular defense against genotoxic compounds, we comparatively analysed chromosomal aberrations and apoptosis induced by ultraviolet (UV-C) light and the potent alkylating agent methyl methanesulfonate (MMS) in primary diploid mouse fibroblasts knockout for either c-Fos or p53, or double knockout for both genes. We show that c-Fos and p53 deficient fibroblasts are more sensitive than the corresponding wild-type cells as to the induction of chromosomal aberrations and apoptosis. Double knockout fibroblasts lacking both c-Fos and p53 are viable and were even more sensitive, showing additivity of the chromosomal breakage effects observed in the single knockouts. Regarding the endpoint apoptosis, double knockout fibroblasts displayed a sensitivity similar to c-Fos and p53 deficient cells. The data indicate that (a) both c-Fos and p53 are involved in cellular protection against the clastogenic effect of genotoxic agents, (b) p53 is not required for induction of apoptosis by UV light and MMS, but rather prevents fibroblasts from undergoing apoptotic cell death upon DNA damage, and (c) c-Fos and p53 seem to act independently in determining genotoxic resistance, which is hypothesized to be achieved by impaired DNA repair or differential cell cycle check point control.  相似文献   

9.
Total repair capability is a widely used phenotypic marker of predisposition to cancer. Evaluation of this parameter implies using a challenge mutagen in an in vitro system to unmask latent genetic instability and repair insufficiency in the target cells. Traditionally, these investigations involve two tests, evaluation of mutagenic susceptibility (chromosomal aberrations) and genotoxic effect (DNA comet assay). The present study was focused on analysis of the effect of methylnitrosourea (MNU) on resting and PHA-stimulated lymphocytes from healthy donors and patients with gynecological cancer. Cytotoxic effect of MNU (apoptotic lymphocyte death) was estimated using two parameters, interaction of the cells with the annexin V-FITC complex, and morphological changes of the nuclei after their staining with the mixture of two DNA-tropic dyes. The genotoxic effect of MNU, namely, secondary double-strand DNA breaks, was scored using the neutral comet assay, modified for the calculation of the comets produced exclusively by BrUdr-labeled proliferating lymphocytes. The proportion of these comets was represented as the proliferative cell index. It was shown that resting lymphocytes were resistant to genotoxic and cytotoxic effects of MNU. The response of proliferating cells to the action of MNU was expressed as the development of secondary DNA breaks (P < 0.01), along with the increased frequency of apoptosis (P < 0.05). The genotoxic effect of MNU on stimulated lymphocytes of gynecological cancer patients was fourfold lower compared to healthy donor lymphocytes. In response to the MNU action, patient lymphocytes did not change their proliferative index, while in healthy donor lymphocytes proliferative index was two times decreased in response to the MNU action. The data obtained pointed to the association between the cytotoxic response of the lymphocytes to the action of MNU and gynecological cancer. Since only proliferating lymphocytes response to the genotoxic effect of MNU, and the effect is revealed a day after the mutagen action, it is suggested that this phenomenon is associated with postreplicative repair, MMR, the substrate of which is O6-methylguanin. The MMR deficiency in patient lymphocytes determines their tolerance to the action of MNU. Genotoxic response of lymphocytes to the action of MNU can serve as a marker of MMR, as well as of the MMR deficiency-associated gynecological cancer.  相似文献   

10.
Immortalized B lymphocytes from Werner syndrome subjects are shown to be hypersensitive to 4-nitroquinoline-1-oxide (4NQO), supporting earlier work on T lymphocytes. We also show that B cell lines from clinically normal heterozygous carriers exhibit sensitivities to this genotoxic agent, which are intermediate to those of wild-type and homozygous mutants. 4NQO is shown to induce an apoptotic response. These data encourage research on DNA repair with such cell lines and raise the question of an enhanced sensitivity of the relatively prevalent heterozygous carriers to certain environmental genotoxic agents. Received: 21 April 1997 / Accepted: 25 July 1997  相似文献   

11.
12.
Human pluripotent stem cells (PSCs) are presumed to have robust DNA repair pathways to ensure genome stability. PSCs likely need to protect against mutations that would otherwise be propagated throughout all tissues of the developing embryo. How these cells respond to genotoxic stress has only recently begun to be investigated. Although PSCs appear to respond to certain forms of damage more efficiently than somatic cells, some DNA damage response pathways such as the replication stress response may be lacking. Not all DNA repair pathways, including the DNA mismatch repair (MMR) pathway, have been well characterized in PSCs to date. MMR maintains genomic stability by repairing DNA polymerase errors. MMR is also involved in the induction of cell cycle arrest and apoptosis in response to certain exogenous DNA-damaging agents. Here, we examined MMR function in PSCs. We have demonstrated that PSCs contain a robust MMR pathway and are highly sensitive to DNA alkylation damage in an MMR-dependent manner. Interestingly, the nature of this alkylation response differs from that previously reported in somatic cell types. In somatic cells, a permanent G2/M cell cycle arrest is induced in the second cell cycle after DNA damage. The PSCs, however, directly undergo apoptosis in the first cell cycle. This response reveals that PSCs rely on apoptotic cell death as an important defense to avoid mutation accumulation. Our results also suggest an alternative molecular mechanism by which the MMR pathway can induce a response to DNA damage that may have implications for tumorigenesis.  相似文献   

13.
14.
15.
16.
We have used expression of a kinase dead mutant of PKCalpha (PKCalphaKD) to explore the role of this isoform in salivary epithelial cell apoptosis. Expression of PKCalphaKD by adenovirus-mediated transduction results in a dose-dependent induction of apoptosis in salivary epithelial cells as measured by the accumulation of sub-G1 DNA, activation of caspase-3, and cleavage of PKCdelta and PKCzeta, known caspase substrates. Induction of apoptosis is accompanied by nine-fold activation of c-Jun-N-terminal kinase, and an approximately two to three-fold increase in activated mitogen-activated protein kinase (MAPK) as well as total MAPK protein. Previous studies from our laboratory have shown that PKCdelta activity is essential for the apoptotic response of salivary epithelial cells to a variety of cell toxins. To explore the contribution of PKCdelta to PKCalphaKD-induced apoptosis, salivary epithelial cells were cotransduced with PKCalphaKD and PKCdeltaKD expression vectors. Inhibition of endogenous PKCdelta blocked the ability of PKCalphaKD to induce apoptosis as indicated by cell morphology, DNA fragmentation, and caspase-3 activation, indicating that PKCdelta activity is required for the apoptotic program induced under conditions where PKCalpha is inhibited. These findings indicate that PKCalpha functions as a survival factor in salivary epithelial cells, while PKCdelta functions to regulate entry into the apoptotic pathway.  相似文献   

17.
Das S  Raj L  Zhao B  Kimura Y  Bernstein A  Aaronson SA  Lee SW 《Cell》2007,130(4):624-637
A critical unresolved issue about the genotoxic stress response is how the resulting activation of the p53 tumor suppressor can lead either to cell-cycle arrest and DNA repair or to apoptosis. We show here that hematopoietic zinc finger (Hzf), a zinc-finger-containing p53 target gene, modulates p53 transactivation functions in an autoregulatory feedback loop. Hzf is induced by p53 and binds to its DNA-binding domain, resulting in preferential transactivation of proarrest p53 target genes over its proapoptotic target genes. Thus, p53 activation results in cell-cycle arrest in Hzf wild-type MEFs, while in Hzf(-/-) MEFs, apoptosis is induced. Exposure of Hzf null mice to ionizing radiation resulted in enhanced apoptosis in several organs, as compared to in wild-type mice. These findings provide novel insights into the regulation of p53 transactivation function and suggest that Hzf functions as a key player in regulating cell fate decisions in response to genotoxic stress.  相似文献   

18.
This review covers the topic of cytometric assessment of activation of Ataxia telangiectasia mutated (ATM) protein kinase and histone H2AX phosphorylation on Ser139 in response to DNA damage, particularly the damage that involves formation of DNA double-strand breaks. Briefly described are molecular mechanisms associated with activation of ATM and the downstream events that lead to recruitment of DNA repair machinery, engagement of cell cycle checkpoints, and activation of apoptotic pathway. Examples of multiparameter analysis of ATM activation and H2AX phosphorylation vis-a-vis cell cycle phase position and induction of apoptosis that employ flow- and laser scanning-cytometry are provided. They include cells treated with a variety of exogenous genotoxic agents, such as ionizing and UV radiation, DNA topoisomerase I (topotecan) and II (mitoxantrone, etoposide) inhibitors, nitric oxide-releasing aspirin, DNA replication inhibitors (aphidicolin, hydroxyurea, thymidine), and complex environmental carcinogens such as present in tobacco smoke. Also presented is an approach to identify DNA replicating (BrdU incorporating) cells based on selective photolysis of DNA that triggers H2AX phosphorylation. Listed are strategies to distinguish ATM activation and H2AX phosphorylation induced by primary DNA damage by genotoxic agents from those effects triggered by DNA fragmentation that takes place during apoptosis. While we review most published data, recent new findings also are included. Examples of multivariate analysis of ATM activation and H2AX phosphorylation presented in this review illustrate the advantages of cytometric flow- and image-analysis of these events in terms of offering a sensitive and valuable tool in studies of factors that induce DNA damage and/or affect DNA repair and allow one to explore the linkage between DNA damage, cell cycle checkpoints and initiation of apoptosis.  相似文献   

19.
The insulin like growth factor-1 (IGF-1) receptor (R) induced PI3K/Akt signal transduction cascade has critical roles in prevention of apoptosis and regulation of cell cycle progression. Here, we discuss the effects of IGF-1R-mediated signal transduction on hematopoietic cells which normally require interleukin-3 (IL-3) for growth and prevention of apoptosis. Cytokine-dependent FDC-P1 hematopoietic cells were conditionally transformed to grow in response to overexpression of IGF-1R in the presence of IGF-1. When these cells were deprived of IL-3 or IGF-1 for 24 hrs, they exited the cell cycle, activated caspase 3 and underwent apoptosis. The effects of inhibitors which targeted the PI3K/Akt and Raf/MEK/ERK pathways were determined. When the cells were cultured with IGF-1 and either PI3K or MEK inhibitors, cell cycle progression and DNA synthesis were inhibited and caspase 3 activity and apoptosis were induced. Coinhibition of both pathways synergized to prevent cell cycle progression, inhibit DNA synthesis and induce apoptosis. These inhibitors had more apoptotic inducing effects when the cells were grown in response to IGF-1 than IL-3, indicating that IL-3 can induce additional anti-apoptotic pathways. These results demonstrate that the PI3K/Akt and Raf/MEK/ERK pathways are intimately involved in IGF-1R-mediated cell cycle progression and prevention of apoptosis in hematopoietic cells.  相似文献   

20.
Aim of this work was to evaluate whether in vivo amifostine (WR-2721, ethanethiol, 2-[(3-aminopropyl)amino]-,dihydrogen phosphate (ester), Ethyol) pretreatment was able to prevent the apoptosis of peripheral blood lymphocytes (PBLs) induced by cytotoxic drugs. The study included 19 patients with advanced gynaecological cancers who received neoadjuvant polychemotherapy consisting of three cycles of cysplatin, adriamycin, and cyclophosphamide. Five patients received randomly amifostine pretreatment (910 mg/m2). PBLs apoptosis was measured through flow-cytometry using two different methods: a) DNA fragmentation of PBLs cultured in vitro for one hour; b) measurement of early apoptotic cells through Apostain uptake by fresh PBLs. The percentage of apoptotic PBLs was increased in all patients 24 hr after the first chemotherapy cycle (27.1 +/- 15.6 vs 6.3 +/- 6.2, p<.0001). A similar increase was observed in the following chemotherapy cycle. Amifostine pretreatment prevented the apoptosis of PBLs induced by chemotherapeutic drugs. Amifostine also prevented the reduction of lymphocyte number determined by chemotherapy. The results demonstrate that amifostine protects peripheral lymphocytes from the apoptotic damage induced by chemotherapy. This effect may explain the mechanism by which amifostine prevents the chemotherapy-associated reduction of leukocyte number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号