首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Drosophila nasuta (2n = 8) and Drosophila albomicans (2n = 6) are cross-fertile allopatric sibling chromosomal races of the nasuta subgroup of Drosophila. Hybrids of these races can be maintained for any number of generations. Some of the introgressed hybrid lineages of D. nasuta and D. albomicans, after passing through a transient phase of karyotypic polymorphism, ended up with a stable karyotype whose composition is different from those of the parental races. Such hybrid populations were called cytoraces, in which the chromosomes of D. nasuta and D. albomicans are represented in different combinations. The karyotypic composition of 16 such cytoraces have been presented and discussed with reference to evolutionary strategies such as balancing selection, directional selection, and sex-specific effect on different components of the evolving karyotypes.  相似文献   

2.
Our long range interracial hybridization experiments between a pair of cross fertile races, Drosophila nasuta (2n = 8) and D.albomicans (2n = 6) have resulted in the evolution of two new karyotypic strains under laboratory conditions, which are named as Cytorace 1 and Cytorace 2. These Cytoraces harbor chromosomes from both parents. Here, we compare the body size of the parental races and newly evolved Cytoraces and the relationship between the body size and fitness. Analysis reveals that the parental races have reduced fertility and are larger in body size than newly evolved Cytoraces. Thus, the newly evolved Cytoraces show reduced body size and better fitness in the course of their evolution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Glue proteins are tissue-specific proteins synthesized by larval salivary gland cells ofDrosophila. InDrosophila nasuta nasuta andD. n. albomicans of thenasuta subgroup, the genes that encode the major glue protein fractions are X-linked. In the present study, these X-linked markers have been employed to trace the pattern of introgression ofD. n. nasuta andD. n. albomicans genomes with respect to the major glue protein fractions in their interracial hybrids, called cytoraces. These cytoraces have inherited the chromosomes of both parents and have been maintained in the laboratory for over 400–550 generations. The analysis has revealed that cytoraces withD. n. albomicans X chromosome show eitherD. n. nasuta pattern or a completely novel pattern of glue protein fractions. Further, quantitative analysis also shows lack of correlation between the chromosomal pattern of inheritance and overall quantity of the major glue protein fractions in the cytoraces. Thus, in cytoraces the parental chromosomes are not just differentially represented but there is evidence for introgression even at the gene level.  相似文献   

4.

Background  

Drosophila nasuta nasuta (2n = 8) and Drosophila nasuta albomicans (2n = 6) are a pair of sibling allopatric chromosomal cross-fertile races of the nasuta subgroup of immigrans species group of Drosophila. Interracial hybridization between these two races has given rise to new karyotypic strains called Cytorace 1 and Cytorace 2 (first phase). Further hybridization between Thailand strain of D. n. albomicans and D. n. nasuta of Coorg strain has resulted in the evolution of two more Cytoraces, namely Cytorace 3 and Cytorace 4 (second phase). The third phase Cytoraces (Cytorace 5 to Cytorace 16) have evolved through interracial hybridization among first, second phase Cytoraces along with parental races. Each of these Cytoraces is composed of recombined genomes of the parental races. Here, we have made an attempt to systematically assess the impact of hybridization on karyotypes, morphometric and life history traits in all 16 Cytoraces.  相似文献   

5.
Drosophila nasuta nasuta andDrosophila nasuta albomicans are cross-fertile races ofDrosophila. Hybridization between these races in the laboratory has given rise to new races (Cytoraces), among which karyotypic composition differs from one another and also from those of the parental races. In this study, we search for the evidence of incipient reproductive isolation among the parental races and four Cytoraces by assessing the fraction of no-matings, mating latency and copulation duration in all possible types of homo- and heterogamic crosses (N = 4184). In no-choice conditions, the latency time (time to initiation of copulation) is lower in homogamic crosses than in heterogamic crosses for both parental races and Cytoraces. Latency time and copulation duration are negatively correlated, whereas fraction of no matings is positively correlated with latency time. Thus these six closely related races of thenasuta-albomicans complex show the initiation of the earliest stages of pre-zygotic isolation, manifested as a tendency for matings to be initiated earlier and more often, and for a longer duration, among homogamic rather than heterogamic individuals.  相似文献   

6.
Introgressive hybridization facilitates incorporation of genes from one species into the gene pool of another. Studies on long-term effects of introgressive hybridization in animal systems are sparse.Drosophila nasuta (2n = 8) andD. albomicans (2n = 6)—a pair of allopatric, morphologically almost identical, cross-fertile members of thenasuta subgroup of theimmigrans species group-constitute an excellent system to analyse the impact of hybridization followed by transgressive segregation of parental characters in the hybrid progeny. Hybrid populations ofD. nasuta andD. albomicans maintained for over 500 generations in the laboratory constitute new recombinant hybrid genomes, here termed cytoraces. The impact of hybridization, followed by introgression and transgressive segregation, on chromosomal constitution and karyotypes, some fitness parameters, isozymes, components of mating behaviour and mating preference reveals a complex pattern of interracial divergence among parental species and cytoraces. This assemblage of characters in different combinations in a laboratory hybrid zone allows us to study the emergence of new genetic systems. Here, we summarize results from our ongoing studies comparing these hybrid cytoraces with the parental species, and discuss the implications of these findings for our understanding of the evolution of new genetic systems. This paper is dedicated to the memory of our teacher, Prof. N. B. Krishnamurthy.  相似文献   

7.
J. D. Fry  K. A. deRonde    TFC. Mackay 《Genetics》1995,139(3):1293-1307
We have conducted genetic analyses of 12 long-term selection lines of Drosophila melanogaster derived from a highly inbred base population, containing new mutations affecting abdominal and sternopleural bristle number. Biometric analysis of the number of effective factors differentiating the selected lines from the base inbred indicated that with the exception of the three lines selected for increased number of abdominal bristles, three or more mutations contributed to the responses of the selection lines. Analysis of the chromosomal distribution of effects revealed that mutations affecting abdominal bristle number occurred on all three major chromosomes. In addition, Y-linked mutations with effects ranging from one to three bristles occurred in all three lines selected for decreased number of abdominal bristles, as well as in one line selected for increased abdominal bristle number. Mutations affecting sternopleural bristle number were mainly on the X and third chromosomes. One abdominal and one sternopleural selection line showed evidence of a segregating lethal with large effects on bristle number. As an indirect test for allelism of mutations occurring in different selection lines, the three lines selected in the same direction for the same trait were crossed in all possible combinations, and selection continued from the F(2) hybrids. Responses of the hybrid lines usually did not exceed those of the most extreme parental lines, indicating that the responses of the parental lines may have been partly due to mutations at the same loci, although other interpretations are possible.  相似文献   

8.
Stabilizing selection, which favors intermediate phenotypes, is frequently invoked as the selective force maintaining a population's status quo. Two main alternative reasons for stabilizing selection on a quantitative trait are possible: (1) intermediate trait values can be favored through the causal effect of the trait on fitness (direct stabilizing selection); or (2) through a pleiotropic, deleterious side effect on fitness of mutants affecting the trait (apparent stabilizing selection). Up to now, these alternatives have never been experimentally disentangled. Here we measure fitness as a function of the number of abdominal bristles within four Drosophila melanogaster lines, one with high, one with low, and two with intermediate average bristle number. The four were inbred nonsegregating lines, so that apparent selection due to pleiotropy is not possible. Individual fitness significantly increased (decreased) with bristles number in the low (high) line. No significant fitness-trait association was detected within each intermediate line. These results reveal substantial direct stabilizing selection on the trait.  相似文献   

9.
The evolution of karyotypically stabilized short-lived (SL) and long-lived (LL) cytoraces in the laboratory have been established and validated through our previous lifespan studies. In the present investigation, we examined the possible reason(s) for the differential longevity among selected members of SL and LL cytoraces, employing the well known paraquat (PQ) resistance bioassay. Exposure of these races to varying concentrations of PQ revealed relatively higher resistance among LL cytoraces than SL cytoraces, as evident by the lower incidence of mortality. Biochemical analysis for endogenous markers of oxidative stress revealed that LL-2 cytorace exhibited lower reactive oxygen species (ROS) and lipid peroxidation (LPO) levels, higher activity levels of superoxide dismutase (SOD), and coupled with higher levels of reduced glutathione (GSH) compared with the levels found in SL-2 cytorace. These findings suggest that the higher susceptibility of SL cytoraces to PQ challenge may be, at least in part, related to the higher endogenous levels of oxidative stress markers. Although the precise mechanisms responsible for the longer longevity among LL cytoraces of the nasuta-albomicans complex of Drosophila merits further investigation, our data suggest that the relatively longer lifespan may be related to the status of endogenous markers that renders them more resistant towards oxidative-stress-mediated lethality, as evident in the PQ assay.  相似文献   

10.
Interracial hybridization between D. n. nasuta (2 n = 8) and D. n.albomicana (2 n = 6) resulted in the formation of two new karyotypic strains denoted Cytorace I and Cytorace II. The karyotypes of each of these Cytoraces include chromosomal elements from both parental races (Ramachandra and Ranganath 1986a). The parental strains and the newly formed Cytoraces I and II were subjected to interspecific competition. The results reveal that all four experimental strains were competitively superior to the D. melanogaster tested strain. The study indicates certain degree of Cytogenetic divergence between parental and newly evolved genomes.  相似文献   

11.
A highly inbred line of Drosophila melanogaster was subdivided into 25 replicate sublines, which were independently maintained for 100 generations with 10 pairs of unselected flies per generation. The polygenic mutation rate (VM) for two quantitative traits, abdominal and sternopleural bristle number, was estimated from divergence among sublines at 10 generation intervals from generations 30-100, and from response of each line to divergent selection after more than 65 generations of mutation accumulation. Estimates of VM averaged over males and females both from divergence among lines and from response to selection within lines were 3.3 × 10-3 VE for abdominal bristles and 1.5 × 10-3 VE for sternopleural bristles, where VE is the environmental variance. The actual rate of production of mutations affecting these traits may be considerably higher if the traits are under stabilizing selection, and if mutations affecting bristle number have deleterious effects on fitness. There was a substantial component of variance for sex × mutant effect interaction and the sublines evolved highly significant mutational variation in sex dimorphism of abdominal bristle number. Pleiotropic effects on sex dimorphism may be a general property of mutations at loci determining bristle number.  相似文献   

12.
Sympatric races of pea aphids on alfalfa and red clover are highly ecologically specialized and significantly reproductively isolated. Much of the restriction of gene flow between the specialized populations is due to habitat choice behavior of the winged colonizers (Via 1999). Here, we document additional pre- and postmating reproductive isolation through selection against migrants and hybrids in the parental environments. First, a group of randomly chosen genotypes from each race that were experimentally migrated between hosts had very low survival and reproduction on the alternate host relative to genotypes originating from that host (natives). Such selection against cross-host migrants forms a premating barrier to gene flow because it is likely to reduce migrant frequencies before the sexual forms are induced in the fall. Our reciprocal transplant experiment also shows that natural selection acts directly on individual migrants between the crops to favor host choice behavior: genotypes from each host suffered large losses of fitness when forced to migrate to the alternate host plant relative to the fitness they would have enjoyed had they been able to choose their native host. In a companion field study, sequential sampling throughout the summer in newly colonized fields of both alfalfa and clover revealed a decrease in the frequency of host-specific marker alleles characteristic of the alternate crop. These field data further support the hypothesis that selection disfavors migrants that cross between crops. Second, when two sets of F1 hybrids between the races were reciprocally tested on alfalfa and clover, both sets had significantly lower average fitness than the specialized parent in each of the two environments. This demographic selection against hybrids in the parental environments is a source of postmating reproductive isolation between the specialized races. Finally, significant genetic variation in fitness traits was seen among F1 hybrid genotypes from both crosses between alfalfa and clover specialists. Although this variation suggests that a generalized pea aphid could evolve, such generalists are not seen in field collections of these populations.  相似文献   

13.
Intra and interspecific competition experiments involving control and bottleneck lines of monomorphic and polymorphic populations of D.malerkotliana with D.nasuta nasuta have been carried out. Productivity and population size were evaluated in these lines. The results show that control line had higher relative fitness and adaptedness (productivity and population size) under both intra and interspecific competition than their respective bottleneck lines and D.nasuta nasuta. This indicates that bottlenecks have an effect on competition in D.malerkotliana. The consequence of such competition studies using control and bottleneck lines of D.malerkotliana and D.nasuta nasuta is discussed.  相似文献   

14.
The microchromosomes of the totally cross fertile Drosophila races, D. nasuta nasuta and D. nasuta albomicana have been studied in nietaphase and polytene nuclei. In metaphase the microchromosome of D. n. albomicana is nearly five times longer than the homologous chromosome in D. n. nasuta. As shown by C-banding these length differences are mainly due to a massive addition of heterochromatin to the D. n. albomicana chromosome. In polytene nuclei these striking heterochromatin differences between the microchromosomes of the two Drosophila races cannot be observed. Analysis of the polytene banding pattern shows that the microchromosomes of both races differ by an inversion and by a duplication, present only in D. n, albomicana. The location and orientation of the duplicated regions in D. n. albomicana leads to a specific loop like chromosome configuration. On the basis of these differences within the Drosophila races studied it is assumed that the karyotype of D. n. albomicana is a more recent evolutionary product.  相似文献   

15.
Extrinsic, host-associated environmental factors may influence postmating isolation between herbivorous insect populations and represent a fundamentally ecological cause of speciation. We investigated this issue in experiments on hybrids between the host races of Eurosta solidaginis, a fly that induces galls on the goldenrods Solidago altissima and S. gigantea. To do so, we measured the performance of parental host races and their hybrids on five genotypes of S. gigantea and nine genotypes of S. altissima to test hypotheses about how variation in plant genotype affects performance (i.e., fitness) and potentially influences gene flow between these host races. We found that rates of gall induction and of survival to adult emergence by hybrid larvae were significantly lower than those of both parental host races on both host species, adding support to the hypothesis that there is partial postmating isolation between the host races. Hybrid flies significantly varied in their performance across plant genotypes of both host species. A significant interaction between the effects of plant genotype and mating treatment (parental vs. hybrid crosses) on larval performance indicated that the relative suitability of particular plant genotypes differed between the parental host races and their hybrids. These patterns illustrate a poor correspondence between optimal parental and hybrid environments, consistent with the hypothesis that these host races are partially isolated due to extrinsic (ecological) factors. Based on these findings, we discuss the possibility that plant genotypes in which hybrid performance is high can facilitate hybridization and gene flow between partially reproductively isolated populations of herbivorous insects, thus affecting the dynamics of ecological speciation.  相似文献   

16.
Interracial divergence is an important facet of speciation. Thenasuta-albomicans complex ofDrosophila with sixteen morphologically identical, karyotypically different but cross-fertile races is an excellent system to study a few dimensions of raciation.Drosophila nasuta nasuta, Drosophila nasuta albomicans, Cytorace 1, Cytorace 2, Cytorace 3 and Cytorace 4 of this subgroup have been subjected to male-, female- and multiple-choice mating experiments. Out of 8456 crosses conducted, 7185 had successful matings. The overall impression is that mating is far from random amongst these six closely related races of thenasuta-albomicans complex. The males ofD. n. albomicans, Cytorace 1 and Cytorace 4 in male-choice, the females of Cytorace 1 and Cytorace 2 in female-choice, and the males and females ofD. n. nasuta, D. n. albomicans, Cytorace 1 and Cytorace 4 against the males and females of Cytorace 2 in multiple-choice experiments, had significantly more homogamic matings than expected. Thus in this study of evolutionary experimentation on raciation under laboratory conditions, we have documented the initiation of preference for con-specific matings among closely related and independently evolving members of thenasuta-albomicans complex ofDrosophila.  相似文献   

17.
Interracial hybridization between Drosophila nasuta nasuta (2n=8) and D. n. albomicana (2n=6) has resulted in the evolution of two new karyotypic strains, called Cytoraces I and II. Males and females of Cytorace I have 2n=7 and 2n=6 respectively. The reconstituted karyotype is totally new in its composition, the chromosomes being drawn from both the parental races. The individuals of Cytorace II have 2n=6. Even though the chromosomes of the parental races are duly represented in the F1, there is selective retention/elimination of certain chromosomes in the succeeding generations during which repatterning of the karyotype has taken place. Dynamics of each one of the parental chromosomes are presented and its implications re discussed.We dedicate this paper to the memory of the founder of our Department, the late Prof. M.R. Rajasekarasetty on the occasion of the Silver Jubilee of our Department  相似文献   

18.
Replicated divergent artificial selection for abdominal and sternopleural bristle number from a highly inbred strain of Drosophila melanogaster resulted in an average divergence after 125 generations of selection of 12.0 abdominal and 8.2 sternopleural bristles from the accumulation of new mutations affecting bristle number. Responses to selection were highly asymmetrical, with greater responses for low abdominal and high sternopleural bristle numbers. Estimates of V(M), the mutational variance arising per generation, based on the infinitesimal model and averaged over the responses to the first 25 generations of selection, were 4.32 X 10(-3) V(E) for abdominal bristle number and 3.66 X 10(-3) V(E) for sternopleural bristle number, where V(E) is the environmental variance. Based on 10 generations of divergent selection within lines from generation 93, V(M) for abdominal bristle number was 6.75 X 10(-3) V(E) and for sternopleural bristle number was 5.31 X 10(-3) V(E). However, estimates of V(M) using the entire 125 generations of response to selection were lower and generally did not fit the infinitesimal model largely because the observed decelerating responses were not compatible with the predicted increasing genetic variance over time. These decelerating responses, periods of response in the opposite direction to artificial selection, and rapid responses to reverse selection all suggest new mutations affecting bristle number on average have deleterious effects on fitness. Commonly observed periods of accelerated responses followed by long periods of stasis suggest a leptokurtic distribution of mutational effects for bristles.  相似文献   

19.
Genomic introgression among divergent taxa following human-mediated secondary contact is a growing concern for the management and conservation of aquatic biodiversity. We simulated the composition of taxa following admixture and hybridization by independently altering three variables: (1) initial proportion of parental taxa following secondary contact; (2) fitness gradients among parental and introgressant taxa; and, (3) strength of assortative mating among these taxa. Ultimately, we established that parental taxa will trend toward extinction as introgression proceeds in spite of even a heavy fitness penalty for the hybrids. Also, the number of generations required (rate) to reach an arbitrarily determined threshold of extinction (< 5.0%) was inversely related to the strength of the relative fitness gradients among parental and derivative hybridized lineages. Moreover, the rates of extinction for parental taxa depended on the initial relative proportions in the admixture with rare taxa going extinct more rapidly than abundant taxa. Finally, the strength of assortative mating (as an evolved or reinforced mechanism of pre-mating isolation) will affect the rate of extinction. Introgressive hybridization, therefore, emerges as an important risk to structural biodiversity wherever divergent, yet reproductively compatible, taxa come together naturally or are brought together through human activities.  相似文献   

20.
In arms races between predators and prey, some evolved tactics are unbeatable by the other player. For example, many types of prey are inedible because they have evolved chemical defenses. In this case, prey death removes any selective advantage of toxicity to the prey but not the selective advantage to a predator of being able to consume the prey. In the absence of effective selection for postmortem persistence of the toxicity then, some chemical defenses probably break down rapidly after prey death. If so, predators can overcome the toxic defense simply by waiting for that breakdown before consuming the prey. Floodplain death adders (Acanthophis praelongus) are highly venomous frog-eating elapid snakes native to northern Australia. Some of the frogs they eat are nontoxic (Litoria nasuta), others produce gluelike mucus when seized by a predator (Limnodynastes convexiusculus), and one species (Litoria dahlii) is dangerously toxic to snakes. Both the glue and the toxin degrade within about 20 min of prey death. Adders deal with these prey types in different and highly stereotyped ways: they consume nontoxic frogs directly but envenomate and release the other taxa, waiting until the chemical defense loses its potency before consuming the prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号