首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Argonaute proteins are central components of RNA interference (RNAi) and related phenomena in a wide variety of eukaryotes, including the early diverging protozoan Trypanosoma brucei. The single T. brucei Argonaute protein (TbAGO1) is in a complex with small interfering RNAs (siRNAs), and a fraction of this ribonucleoprotein particle is associated with polyribosomes. In this study, we generated a panel of insertion, deletion, and single point mutants of TbAGO1 and assayed them in vivo for their function in RNAi. In addition to the signature domains of Argonaute proteins, PAZ and Piwi, TbAGO1 has an N-terminal domain with a high abundance of RGG repeats. Deletion of the N-terminal domain blocked association of AGO1 with polyribosomes and severely affected mRNA cleavage. Nevertheless, the mutant protein was in a complex with siRNAs. In contrast, deletion of the Piwi domain led to a loss of siRNAs but did not abolish polyribosome association. Site-directed mutagenesis of conserved amino acids in the Piwi domain identified arginine 735 as essential for RNAi. Although the R735A mutant bound siRNAs and associated with polyribosomes, it displayed a severe defect in the cleavage of target mRNA.  相似文献   

4.
5.
RNA诱导沉默复合体中的生物大分子及其装配   总被引:6,自引:0,他引:6  
宋雪梅  燕飞  杜立新 《遗传》2006,28(6):761-766
在RNA干扰机制中,双链RNA诱导同源RNA降解的过程依赖于RNA诱导沉默复合体(RISC)的活性。RISC由Dicer酶,Argonaute蛋白,siRNA等多种生物大分子装配而成,对这些大分子的结构和功能进行深入细致的研究,有助于进一步了解RISC的形成过程、作用方式,以及阐明整个RNAi过程的作用机制。研究表明,RISC中的Dicer具有RNaseIII结构域,在RNAi的起始阶段负责催化siRNA的产生,在RISC装配过程中起稳定RISC中间体结构和功能的作用;Argonaute蛋白是RISC中的核心蛋白,有PAZ和PIWI两个主要的结构域,前者为siRNA的传递提供结合位点,后者是RISC中的酶切割活性中心;siRNA是RISC完成特异性切割作用的向导,在成熟的RISC中虽然只包含siRNA的一条链,但siRNA在RISC形成过程中的双链结构是保证RNAi效应的决定因素。尽管RISC中还存在其他一些功能未知的蛋白质,但在RISC组分结构及功能研究方面取得的进展为建立一个可能的RISC装配模型提供了理论基础。  相似文献   

6.
7.
The Argonaute protein family   总被引:5,自引:0,他引:5  
  相似文献   

8.
Argonaute proteins are the core components of the RNA-induced silencing complex, the central effector of the mammalian RNA interference pathway. In the cytoplasm, they associate with at least two types of cytoplasmic RNA granules; processing bodies and stress granules, which function in mRNA degradation and translational repression, respectively. The significance of Argonaute association with these RNA granules is not entirely clear but it is likely related to their activities within the RNAi pathway. Understanding what regulates targeting of Argonautes to RNA granules may provide clues as to their functions at these organelles. To this end, there are a number of conflicting reports that describe the role of small RNAs in targeting Argonaute proteins in mammalian cells. We employed quantitative microscopic analyses of human Argonaute 2 (hAgo2) mutants to study factors that govern localization of this RNA-binding protein to cytoplasmic RNA granules. We report, for the first time, that hAgo2 is recruited to stress granules as a consequence of its interaction with miRNAs. Moreover, loading of small RNAs onto hAgo2 is not required for its stability, suggesting that a pool of unloaded hAgo2 may exist for extended periods of time in the cytoplasm.  相似文献   

9.
S Gu  L Jin  Y Huang  F Zhang  MA Kay 《Current biology : CB》2012,22(16):1536-1542
Small RNAs regulate genetic networks through a ribonucleoprotein complex called the RNA-induced silencing complex (RISC), which, in mammals, contains at its center one of four Argonaute proteins (Ago1-Ago4) (reviewed in [1-4]). A key regulatory event in the RNA interference (RNAi) and microRNA (miRNA) pathways is Ago loading, wherein double-stranded small-RNA duplexes are incorporated into RISC (pre-RISC) and then become single-stranded (mature RISC), a process that is not well understood [5, 6]. The?Agos contain an evolutionarily conserved PAZ (Piwi/Argonaute/Zwille) domain [7, 8] whose primary function is to bind the 3' end of small RNAs [9-13]. We created multiple PAZ-domain-disrupted mutant Ago proteins and studied their biochemical properties and biological functionality in cells.?We found that the PAZ domain is dispensable for Ago loading of slicing-competent RISC. In contrast, in the absence of slicer activity or slicer-substrate duplex RNAs,?PAZ-disrupted Agos bound duplex small interfering RNAs,?but were unable to unwind or eject the passenger strand and form functional RISC complexes. We have discovered that the highly conserved PAZ domain plays an important role in RISC activation, providing new mechanistic insights into how miRNAs regulate genes, as well as new insights for future design of miRNA- and RNAi-based therapeutics.  相似文献   

10.
RNA interference (RNAi) is an important means of eliminating mRNAs, but the intracellular location of RNA-induced silencing complex (RISC) remains unknown. We show here that Argonaute 2, a key component of RISC, is not randomly distributed but concentrates in mRNA decay centres that are known as cytoplasmic bodies. The localization of Argonaute 2 in decay centres is not altered by the presence or absence of small interfering RNAs or their targeted mRNAs. However, RNA is required for the integrity of cytoplasmic bodies because RNase eliminates Argonaute 2 localization. In addition, Argonaute 1, another Argonaute family member, is concentrated in cytoplasmic bodies. These results provide new insight into the mechanism of RNAi function.  相似文献   

11.
12.
RNAi: finding the elusive endonuclease   总被引:2,自引:0,他引:2       下载免费PDF全文
RNA interference involves endonucleolytic cleavage of mRNAs at a site determined by complementary siRNAs. Initial cleavage leads to rapid degradation of the message, resulting in a corresponding reduction in the level of the encoded protein. Despite intensive study, the identity of the endonucleolytic activity (designated slicer) has remained obscure. Now, a combination of structural and biochemical analyses provide compelling evidence that human Argonaute2 (Ago2), a protein already known to be a key player in the RNAi pathway, is in fact the missing endonuclease.  相似文献   

13.
Purified Argonaute2 and an siRNA form recombinant human RISC   总被引:12,自引:0,他引:12  
Genetic, biochemical and structural studies have implicated Argonaute proteins as the catalytic core of the RNAi effector complex, RISC. Here we show that recombinant, human Argonaute2 can combine with a small interfering RNA (siRNA) to form minimal RISC that accurately cleaves substrate RNAs. Recombinant RISC shows many of the properties of RISC purified from human or Drosophila melanogaster cells but also has surprising features. It shows no stimulation by ATP, suggesting that factors promoting product release are missing from the recombinant enzyme. The active site is made up of a unique Asp-Asp-His (DDH) motif. In the RISC reconstitution system, the siRNA 5' phosphate is important for the stability and the fidelity of the complex but is not essential for the creation of an active enzyme. These studies demonstrate that Argonaute proteins catalyze mRNA cleavage within RISC and provide a source of recombinant enzyme for detailed biochemical studies of the RNAi effector complex.  相似文献   

14.
RNA干扰(RNA interference, RNAi)是在植物、动物、线虫、真菌以及昆虫等生物体中普遍存在的通过双链RNA(double strand RNA, dsRNA)诱导的抑制同源基因表达的一种保守的调控机制.小分子RNA通过特异性地识别结合RNA诱导的沉默复合体(RNA-induced silencing complex, RISC)对目标mRNA的表达在转录和翻译水平进行抑制.作为RISC的重要组成成分,Argonaute蛋白(Ago)发挥了至关重要的作用.为了进一步阐明Ago蛋白在RNA干扰中对小分子RNA的作用机制,本文介绍了Ago蛋白的结构、分类及其在RNA干扰机制中的作用,并着重阐述了目前已知的植物Ago蛋白对小分子RNA的几种作用机制,以及目前研究发现的Ago蛋白的功能作用,从而更进一步证实Ago蛋白对小分子RNA的作用是一个复杂的过程.  相似文献   

15.
RNA interference (RNAi) has recently become a promising strategy for therapeutic of several viral diseases including those in the black tiger shrimp Penaeus monodon. However, the protein components that play role in RNAi in P. monodon have not yet been identified. Here, we report the cloning and functional characterization of a cDNA encoding Argonaute, a principal constituent of RNAi pathway in P. monodon. P. monodon’s Argonaute (Pem-AGO) exhibited the two signature domains, PAZ and PIWI. Substantial level of Pem-ago expression could be suppressed by double-stranded RNA (dsRNA) that targeted PAZ coding sequence in shrimp primary culture of Oka cells. The Pem-ago depleted cells showed impaired RNAi as the expression of an endogenous gene was rescued from the dsRNA-mediated silencing in these cells. Our results imply that Pem-ago is required for effective RNAi in P. monodon and thus identify the first protein constituent of RNAi machinery in penaeid shrimp.  相似文献   

16.
Argonaute 2 (Ago2) protein is a central effector of RNA interference (RNAi) pathways and regulates mammalian genes on a global level. The mechanisms of Ago2-mediated silencing are well understood, but less is known about its regulation. Recent reports indicate that phosphorylation significantly affects Ago2 activity. Here, we investigated the effect of mutating all known phospho-residues within Ago2 on its localization and activity. Ago2 associates with two different cytoplasmic RNA granules known as processing bodies (P-bodies) and stress granules, but the nature of this phenomenon is controversial. We report that replacing serine with a phospho-mimetic aspartic acid at position 798 completely abrogates association of Ago2 with P-bodies and stress granules. The effect of this mutation on its activity in gene silencing was modest, which was surprising because association of Ago2 with cytoplasmic RNA granules is thought to be a consequence of its role in RNAi. As such, our data indicate that targeting of Ago2 to P-bodies and stress granules is separable from its role in RNAi and likely requires dynamic phosphorylation of serine 798.  相似文献   

17.
Robb GB  Rana TM 《Molecular cell》2007,26(4):523-537
RNA interference is a conserved pathway of sequence-specific gene silencing that depends on small guide RNAs and the action of proteins assembled in the RNA-induced silencing complex (RISC). Minimally, the action of RISC requires the endonucleolytic slicer activity of Argonaute2 (Ago2) directed to RNA targets whose sequences are complementary to RISC-incorporated small RNA. To identify RISC components in human cells, we developed an affinity-purification strategy to isolate siRNA-programmed RISC. Here we report the identification of RNA helicase A (RHA) as a human RISC-associated factor. We show that RHA interacts in human cells with siRNA, Ago2, TRBP, and Dicer and functions in the RNAi pathway. In RHA-depleted cells, RNAi was reduced as a consequence of decreased intracellular concentration of active RISC assembled with the guide-strand RNA and Ago2. Our results identify RHA as a RISC component and demonstrate that RHA functions in RISC as an siRNA-loading factor.  相似文献   

18.
Characterization of Argonaute family members in the silkworm,Bombyx mori   总被引:1,自引:0,他引:1  
Abstract The Argonaute protein family is a highly conserved group of proteins, which have been implicated in RNA silencing in both plants and animals. Here, four members of the Argonaute family were systemically identified based on the genome sequence of Bombyx mori. Based on their sequence similarity, BmAgo1 and BmAgo2 belong to the Ago subfamily, while BmAgo3 and BmPiwi are in the Piwi subfamily. Phylogenetic analysis reveals that silkworm Argonaute family members are conserved in insects. Conserved amino acid residues involved in recognition of the 5′ end of the small RNA guide strand and of the conserved (aspartate, aspartate and histidine [DDH]) motif present in their PIWI domains suggest that these four Argonaute family members may have conserved slicer activities. The results of microarray expression analysis show that there is a low expression level for B. mori Argonaute family members in different tissues and different developmental stages, except for BmPiwi. All four B. mori Argonaute family members are upregulated upon infection with B. mori nucleopolyhedrovirus. The complete coding sequence of BmPiwi, the homolog of Drosophila piwi, was cloned and its expression occurred mainly in the area where spermatogonia and spermatocytes appear. Our results provide an overview of the B. mori Argonaute family members and suggest that they may have multiple roles. In addition, this is also the first report, to our knowledge, of the response of RNA silencing machinery to DNA virus infection in insects.  相似文献   

19.
20.
Argonautes confront new small RNAs   总被引:1,自引:0,他引:1  
Argonaute is at the heart of all effector complexes in RNA interference. In the classical RNAi pathway Argonaute functions as the Slicer enzyme that cleaves an mRNA target directed by a complementary siRNA. Two recently described Argonaute protein subfamilies mediate distinct functions in RNAi. The Piwi subfamily functions in the germline through a novel class of small RNAs that are longer than Argonaute-specific siRNAs and miRNAs. Piwi-interacting RNAs (piRNAs) carry a 2'-O-methylation on their 3' end and appear to be synthesized by a Piwi Slicer dependent mechanism. Piwi/piRNA complexes in mammals and flies are directly linked to the control of transposable elements during germline development. Amplified RNAi in C. elegans is mediated by secondary siRNAs selectively bound to secondary Argonautes (SAGOs) that belong to a worm-specific Argonaute subfamily (WAGO). Secondary siRNAs are 5' triphosphorylated that may allow specific loading into SAGO complexes that are rate limiting for RNAi in C. elegans. Interestingly, SAGOs lack conserved Slicer amino acid residues and probably act in a Slicer-independent fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号