首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Organ-specific CD4+ T cell response during Listeria monocytogenes infection   总被引:4,自引:0,他引:4  
The immune response against the intracellular bacterium Listeria monocytogenes involves both CD4(+) and CD8(+) T cells. We used the MHC class II-presented peptide listeriolysin(189-201) to characterize the organ-specific CD4(+) T cell response during infection. Systemic listeriosis resulted in a strong peptide-specific CD4(+) T cell response with frequencies of 1/100 and 1/30 CD4(+) splenocytes at the peak of primary and secondary response, respectively. This response was not restricted to lymphoid organs, because we detected specific CD4(+) T cells in all tissues analyzed. However, the tissue distribution of the T cell response was dependent on the route of infection. After i.v. infection, the strongest CD4(+) T cell response and the highest levels of memory cells were observed in spleen and liver, the major sites of L. monocytogenes replication. After oral infection, we detected a strong response in the liver, the lamina propria, and the intestinal epithelium. These tissues also harbored the highest frequencies of listeriolysin(189-201)-specific CD4(+) memory T cells 5-8 wk post oral infection. Our results show that kinetics and magnitude of the CD4(+) T cell response and the accumulation of CD4(+) memory T cells depend on the route of infection and are regulated in a tissue-specific way.  相似文献   

2.
The intestinal mucosal CD8 T cell response to infection with Listeria monocytogenes was measured using MHC class I tetramers and was compared with the response in peripheral blood, secondary lymphoid tissue, and liver. To assess the vaccination potential of Listeria and to analyze responses in C57BL/6 mouse strains, a recombinant Listeria expressing OVA (rLM-ova) was generated. The response peaked at 9 days postinfection with a much larger fraction of the intestinal mucosa and liver CD8 T cell pool OVA specific, as compared with the spleen. However, these differences were not linked to bacterial titers in each site. The higher responses in lamina propria and liver resulted in a larger CD8 memory population in these tissues. Furthermore, the level of memory induced was dependent on infectious dose and inversely correlated with the magnitude of the recall response after oral challenge. Recall responses in the tissues were most robust in the lamina propria and liver, and reactivated Ag-specific T cells produced IFN-gamma. Infection of CD40- or MHC class II-deficient mice induced poor CD8 T cell responses in the intestinal mucosa, but only partially reduced responses in the spleen and liver. Overall, the results point to novel pathways of tissue-specific regulation of primary and memory antimicrobial CD8 T cell responses.  相似文献   

3.
CD4 T cells are known to assist the CD8 T cell response by activating APC via CD40-CD40 ligand (L) interactions. However, recent data have shown that bacterial products can directly activate APC through Toll-like receptors, resulting in up-regulation of costimulatory molecules necessary for the efficient priming of naive T cells. It remains unclear what role CD4 T cell help and various costimulation pathways play in the development of CD8 T cell responses during bacterial infection. In this study, we examined these questions using an intracellular bacterium, Listeria monocytogenes, as a model of infection. In CD4 T cell-depleted, CD4(-/-), and MHC class II(-/-) mice, L. monocytogenes infection induced CD8 T cell activation and primed epitope-specific CD8 T cells to levels commensurate with those in normal C57BL/6 mice. Furthermore, these epitope-specific CD8 T cells established long-term memory in CD4(-/-) mice that was capable of mounting a protective recall response. In vitro analysis showed that L. monocytogenes directly stimulated the activation and maturation of murine dendritic cells. The CD8 T cell response to L. monocytogenes was normal in CD40L(-/-) mice but defective in CD28(-/-) and CD137L(-/-) mice. These data show that in situations where infectious agents or immunogens can directly activate APC, CD8 T cell responses are less dependent on CD4 T cell help via the CD40-CD40L pathway but involve costimulation through CD137-CD137L and B7-CD28 interactions.  相似文献   

4.
We expressed the CTL epitope of OVA (OVA(257-264)) in an acute (Listeria monocytogenes (LM)-OVA) and a chronic intracellular pathogen (Mycobacterium bovis (BCG)-OVA), to evaluate the kinetics of Ag presentation. LM-OVA proliferated rapidly in vivo, resulting in profound LM-OVA expansion within the first 24 h of infection, culminating in the generation of a potent CD8+ T cell response, which peaked on day 7 but underwent a rapid attrition subsequently. In contrast, BCG-OVA exhibited reduced growth in vivo, resulting in a delayed CD8+ T cell response that increased progressively with time. Relative to LM-OVA, BCG-OVA induced persistently increased numbers of apoptotic (annexin V+) CD8+ T cells. Ag presentation in vivo was evaluated by transferring Thy1.2+ carboxyfluorescein-labeled OT1 transgenic CD8+ T cells into infected Thy1.1+ congeneic recipient mice. LM-OVA induced rapid Ag presentation that was profound in magnitude, with most of the transferred cells getting activated within 4 days and resulting in a massive accumulation of activated donor CD8+ T cells. In contrast, Ag presentation induced by BCG-OVA was delayed, weaker in magnitude, which peaked around the second week of infection and declined to a low level subsequently. Increasing the dose of BCG-OVA while enhancing the magnitude of Ag presentation did not change the kinetics. Furthermore, a higher dose of BCG-OVA also accelerated the attrition of OVA(257-264)-specific CD8+ T cells. Relative to LM-OVA, the dendritic cells in BCG-OVA-infected mice were apoptotic for prolonged periods, suggesting that the rapid death of APCs may limit the magnitude of Ag presentation during chronic stages of mycobacterial infection.  相似文献   

5.
Single Ag-specific CD8+ T cells from IFN-gamma-deficient (GKO) or perforin-deficient (PKO) mice provide substantial immunity against murine infection with Listeria monocytogenes. To address the potential for redundancy between perforin and IFN-gamma as CD8+ T cell effector mechanisms, we generated perforin/IFN-gamma (PKO/GKO) double-deficient mice. PKO/GKO-derived CD8+ T cells specific for the immunodominant listeriolysin O (LLO91-99) epitope provide immunity to LM infection similar to that provided by Ag-matched wild-type (WT) CD8+ T cells in the liver but reduced in the spleen. Strikingly, polyclonal CD8+ T cells from immunized PKO/GKO mice were approximately 100-fold more potent in reducing bacterial numbers than the same number of polyclonal CD8+ T cells from immunized WT mice. This result is probably quantitative, because the frequency of the CD8+ T cell response against the immunodominant LLO91-99 epitope is >4.5-fold higher in PKO/GKO mice than WT mice at 7 days after identical immunizations. Moreover, PKO/GKO mice can be immunized by a single infection with attenuated Listeria to resist >80,000-fold higher challenges with virulent organisms than naive PKO/GKO mice. These data demonstrate that neither perforin nor IFN-gamma is required for the development or expression of adaptive immunity to LM. In addition, the results suggest the potential for perforin and IFN-gamma to regulate the magnitude of the CD8+ T cell response to infection.  相似文献   

6.
Mice infected with virulent Listeria monocytogenes develop long-lived acquired immunity. We previously reported that acquired immunity to Listeria could also be elicited by immunizing mice with non-viable Listeria or listerial proteins/peptides in combination with IL-12. Here we show that this IL-12-assisted immunization strategy was effective in class I but not in class II MHC-deficient mice, suggesting that antigen-specific CD4(+) T cells are selectively generated using this adjuvant system. We have also evaluated the importance of endogenous production of IFN-gamma and IL-12 for the efficacy of IL-12-assisted immunization. IFN-gamma-deficient mice immunized with HKLM and IL-12 failed to produce effective Listeria-specific responses. In contrast, IL-12-deficient mice were able to generate protective antigen-specific T cell responses in response to immunization with HKLM and IL-12, indicating that exogenous IL-12 is sufficient to initiate a cytokine cascade that results in a potent T(H)1 response. IL-12-assisted immunization provides a model in which both the generation and effector mechanisms of anti-bacterial antigen-specific CD4(+) effector cells can be analyzed.  相似文献   

7.
The contact of T cells to cross-reactive antigenic determinants expressed by nonpathogenic environmental micro-organisms may contribute to the induction or maintenance of T cell memory. This hypothesis was evaluated in the model of murine Listeria monocytogenes infection. The influence of nonpathogenic L. innocua on the L. monocytogenes p60-specific T cell response was analyzed. We show that some CD4 T cell clones raised against purified p60 from L. monocytogenes cross-react with p60 purified from L. innocua. The L. monocytogenes p60-specific CD4 T cell clone 1A recognized the corresponding L. innocua p60 peptide QAAKPAPAPSTN, which differs only in the first amino acid residue. In vitro experiments revealed that after L. monocytogenes infection of APCs, MHC class I-restricted presentation of p60 occurs, while MHC class II-restricted p60 presentation is inhibited. L. innocua-infected cells presented p60 more weakly but equally well in the context of both MHC class I and MHC class II. In contrast to these in vitro experiments the infection of mice with L. monocytogenes induced a strong p60-specific CD4 and CD8 T cell response, while L. innocua infection failed to induce p60-specific T cells. L. innocua booster infection, however, expanded p60-specific memory T cells induced by previous L. monocytogenes infection. In conclusion, these findings suggest that infection with a frequently occurring environmental bacterium such as L. innocua, which is nonpathogenic and not adapted to intracellular replication, can contribute to the maintenance of memory T cells specific for a related intracellular pathogen.  相似文献   

8.
CD8 T cell immunome analysis of Listeria monocytogenes   总被引:6,自引:0,他引:6  
The identification of T cell epitopes is crucial for the understanding of the host response during infections with pathogenic microorganisms. Generally, the identification of relevant T cell responses is based on the analysis of T cell lines propagated in vitro. We used an ex vivo approach for the analysis of the CD8 T cell response against Listeria monocytogenes that is based upon the fractionation of naturally processed antigenic peptides and subsequent analysis with T cells in an enzyme-linked immunospot (ELISPOT) assay. Our data indicate that the direct ex vivo ELISPOT analysis of peptides extracted from infected tissues represents a versatile and potent test system for the analysis of the CD8 T cell immunome of microorganisms that furthermore requires neither the knowledge of the microbial genome nor of the specificity of responding T cells.  相似文献   

9.
Previous studies have revealed that HIV-infected individuals possess circulating CD4(+)CD8(+) double-positive (DP) T cells specific for HIV Ags. In the present study, we analyzed the proliferation and functional profile of circulating DP T cells from 30 acutely HIV-infected individuals and 10 chronically HIV-infected viral controllers. The acutely infected group had DP T cells that showed more proliferative capability and multifunctionality than did both their CD4(+) and CD8(+) T cells. DP T cells were found to exhibit greater proliferation and higher multifunctionality compared with CD4 T cells in the viral controller group. The DP T cell response represented 16% of the total anti-HIV proliferative response and >70% of the anti-HIV multifunctional response in the acutely infected subjects. Proliferating DP T cells of the acutely infected subjects responded to all HIV Ag pools with equal magnitude. Conversely, the multifunctional response was focused on the pool representing Nef, Rev, Tat, VPR, and VPU. Meanwhile, the controllers' DP T cells focused on Gag and the Nef, Rev, Tat, VPR, and VPU pool for both their proliferative and multifunctional responses. Finally, we show that the presence of proliferating DP T cells following all HIV Ag stimulations is well correlated with proliferating CD4 T cells whereas multifunctionality appears to be largely independent of multifunctionality in other T cell compartments. Therefore, DP T cells represent a highly reactive cell population during acute HIV infection, which responds independently from the traditional T cell compartments.  相似文献   

10.
In vivo priming of CD8(+) T lymphocytes against exogenously processed model Ags requires CD4(+) T cell help, specifically interactions between CD40 ligand (CD40L) expressed by activated CD4(+) T cells and CD40, which is present on professional APC such as dendritic cells (DCs). To address this issue in the context of bacterial infection, we examined CD40L-CD40 interactions in CD8(+) T cell priming against an exogenously processed, nonsecreted bacterial Ag. CD40L interactions were blocked by in vivo treatment with anti-CD40L mAb MR-1, which inhibited germinal center formation and CD8(+) T cell cross-priming against an exogenous model Ag, OVA. In contrast, MR-1 treatment did not interfere with CD8(+) T cell priming against a nonsecreted or secreted recombinant Ag expressed by Listeria monocytogenes. Memory and secondary responses of CD8(+) T cells against nonsecreted and secreted bacterial Ags were also largely unimpaired by transient MR-1 treatment. When MR-1-treated mice were concurrently immunized with L. monocytogenes and OVA-loaded splenocytes, cross-priming of OVA-specific naive CD8(+) T cells occurred. No significant decline in cross-priming against OVA was measured when either TNF or IFN-gamma was neutralized in L. monocytogenes-infected animals, demonstrating that multiple signals exist to overcome CD40L blockade of CD8(+) T cell cross-priming during bacterial infection. These data support a model in which DCs can be stimulated in vivo through signals other than CD40, becoming APC that can effectively stimulate CD8(+) T cell responses against exogenous Ags during infection.  相似文献   

11.
HIV infection is characterized by a gradual deterioration of immune function, mainly in the CD4 compartment. To better understand the dynamics of HIV-specific T cells, we analyzed the kinetics and polyfunctional profiles of Gag-specific CD4(+) and CD8(+) T cell responses in 12 subtype C-infected individuals with different disease-progression profiles, ranging from acute to chronic HIV infection. The frequencies of Gag-responsive CD4(+) and CD8(+) T cells showed distinct temporal kinetics. The peak frequency of Gag-responsive IFN-γ(+)CD4(+) T cells was observed at a median of 28 d (interquartile range: 21-81 d) post-Fiebig I/II staging, whereas Gag-specific IFN-γ(+)CD8(+) T cell responses peaked at a median of 253 d (interquartile range: 136-401 d) and showed a significant biphasic expansion. The proportion of TNF-α-expressing cells within the IFN-γ(+)CD4(+) T cell population increased (p = 0.001) over time, whereas TNF-α-expressing cells within IFN-γ(+)CD8(+) T cells declined (p = 0.005). Both Gag-responsive CD4(+) and CD8(+) T cells showed decreased Ki67 expression within the first 120 d post-Fiebig I/II staging. Prior to the disappearance of Gag-responsive Ki67(+)CD4(+) T cells, these cells positively correlated (p = 0.00038) with viremia, indicating that early Gag-responsive CD4 events are shaped by viral burden. No such associations were observed in the Gag-specific CD8(+) T cell compartment. Overall, these observations indicated that circulating Gag-responsive CD4(+) and CD8(+) T cell frequencies and functions are not synchronous, and properties change rapidly at different tempos during early HIV infection.  相似文献   

12.
Although many studies have investigated the requirement for CD4(+) T cell help for CD8(+) T cell responses to acute viral infections that are fully resolved, less is known about the role of CD4(+) T cells in maintaining ongoing CD8(+) T cell responses to persistently infecting viruses. Using mouse polyoma virus (PyV), we asked whether CD4(+) T cell help is required to maintain antiviral CD8(+) T cell and humoral responses during acute and persistent phases of infection. Though fully intact during acute infection, the PyV-specific CD8(+) T cell response declined numerically during persistent infection in MHC class II-deficient mice, leaving a small antiviral CD8(+) T cell population that was maintained long term. These unhelped PyV-specific CD8(+) T cells were functionally unimpaired; they retained the potential for robust expansion and cytokine production in response to Ag rechallenge. In addition, although a strong antiviral IgG response was initially elicited by MHC class II-deficient mice, these Ab titers fell, and long-lived PyV-specific Ab-secreting cells were not detected in the bone marrow. Finally, using a minimally myeloablative mixed bone marrow chimerism approach, we demonstrate that recruitment and/or maintenance of new virus-specific CD8(+) T cells during persistent infection is impaired in the absence of MHC class II-restricted T cells. In summary, these studies show that CD4(+) T cells differentially affect CD8(+) T cell responses over the course of a persistent virus infection.  相似文献   

13.
Listeria monocytogenes is an intracellular bacterium that causes systemic infections after traversing the intestinal mucosa. Clearance of infection and long term protective immunity are mediated by L. monocytogenes-specific CD8 T lymphocytes. In this report, we characterize the murine CD8 T cell response in the lamina propria and intestinal epithelium after enteric L. monocytogenes infection. We find that the frequency of MHC class Ia-restricted, L. monocytogenes-specific T cells is approximately 4- to 5-fold greater in the lamina propria than in the spleen of mice after oral or i.v. infection. Although the kinetics of T cell expansion and contraction are similar in spleen, lamina propria, and intestinal epithelium, high frequencies of Ag-specific T cells are detected only in the lamina propria 1 mo after infection. In contrast to MHC class Ia-restricted T cells, the frequency of H2-M3-restricted, L. monocytogenes-specific T cells is decreased in the intestinal mucosa relative to that found in the spleen. In addition to this disparity, we find that MHC class Ia-restricted CD8 T cells specific for a dominant L. monocytogenes epitope have different TCR V beta repertoires in the spleen and intestinal mucosa of individual mice. These findings indicate that the intestinal mucosa is a depot where L. monocytogenes-specific effector CD8 T cells accumulate during and after infection irrespective of immunization route. Furthermore, our results demonstrate that CD8 T cell populations in these two sites, although overlapping in Ag specificity, are distinct in terms of their repertoire.  相似文献   

14.
The immunologic requirements for generating long-lived protective CD8 T cell memory remain unclear. Memory CD8 populations generated in the absence of CD4 Th cells reportedly have functional defects, and at least a subset of CD8 T cells transiently express CD40 after activation, suggesting that direct CD4-CD8 T cell interactions through CD40 may influence the magnitude and functional quality of memory CD8 populations. To ascertain the role of CD40 in such direct T cell interactions, we investigated CD8 T cell responses in CD40-/- mice after infection with Listeria monocytogenes, an intracellular bacterium that induces APC activation and thus priming of CD8 T cells independently of CD4 Th cell help through CD40. In this study we show that memory CD8 T cells generated in CD40-deficient mice show in vivo cytotoxicity and cytokine production equivalent to CD8 memory T cells from wild-type mice. Upon secondary Listeria infection, CD40-/- memory CD8 T cells expand to greater numbers than seen in wild-type mice. These results indicate that CD40 ligation on CD8 T cells, although reportedly a part of CD8 T cell memory development in an H-Y-directed response, is not needed for the development of functional memory CD8 T cell populations after Listeria infection.  相似文献   

15.
IL-10 is an important immunoregulatory cytokine that plays a central role in maintaining a balance between protective immunity against infection and limiting proinflammatory responses to self or cross-reactive Ags. We examined the full effects of IL-10 deficiency on the establishment and quality of T cell memory using murine listeriosis as a model system. IL-10(-/-) mice had reduced bacterial loads and a shorter duration of primary infection than did wild-type mice. However, the number of Ag-specific T cells in secondary lymphoid and nonlymphoid organs was diminished in IL-10(-/-) mice, compared with wild-type mice, at the peak of the effector response. Moreover, the frequency and protective capacity of memory T cells also were reduced in IL-10(-/-) mice when assessed up to 100 days postinfection. Remarkably, this effect was more pronounced for CD8 T cells than CD4 T cells. To address whether differences in the number of bacteria and duration of primary infection could explain these findings, both strains of mice were treated with ampicillin 24 hours after primary infection. Despite there being more comparable bacterial loads during primary infection, IL-10(-/-) mice still generated fewer memory CD8 T cells and were less protected against secondary infection than were wild-type mice. Finally, the adoptive transfer of purified CD8 T cells from previously infected wild-type mice into naive recipients conferred better protection than the transfer of CD8 T cells from immune IL-10(-/-) mice. Overall, these data show that IL-10 plays an unexpected role in promoting and/or sustaining CD8 T cell memory following Listeria monocytogenes infection.  相似文献   

16.
Neoantigens resulting from the inherent genomic instability of tumor cells generally do not trigger immune recognition. Similarly, transfection of tumors with model Ags often fails to elicit CD8+ T cell responses or alter a tumor's growth rate or lethality. We report here that the adoptive transfer of activated Th1-type CD4+ T cells specific for a model tumor Ag results in the de novo generation of CD8+ T cells with specificity to that Ag and concomitant tumor destruction. The anti-tumor effects of the CD4+ T cells required the presence of both MHC class I and class II on host cells, as evidenced by experiments in knockout mice, suggesting that CD4+ T cells enhanced the ability of host APC to activate endogenous CD8+ T cells. These results indicate that the apparent inability of tumor cells expressing highly immunogenic epitopes to activate tumor-specific CD8+ T cells can be altered by activated CD4+ T cells.  相似文献   

17.
IFN-gamma is critical for innate immunity against Listeria monocytogenes (L. monocytogenes), and it has long been thought that NK cells are the major source of IFN-gamma during the first few days of infection. However, it was recently shown that a significant number of CD44highCD8+ T cells also secrete IFN-gamma in an Ag-independent fashion within 16 h of infection with L. monocytogenes. In this report, we showed that infection with other intracellular pathogens did not trigger this early IFN-gamma response and that cytosolic localization of Listeria was required to induce rapid IFN-gamma production by CD44highCD8+ T cells. Infection of C57BL/6 mice with an Escherichia coli strain expressing listeriolysin O (LLO), a pore-forming toxin from L. monocytogenes, also resulted in rapid IFN-gamma expression by CD8+ T cells. These results suggest that LLO expression is essential for induction of the early IFN-gamma response, although it is not yet clear whether LLO plays a direct role in triggering a signal cascade that leads to cytokine production or whether it is required simply to release other bacterial product(s) into the host cell cytosol. Interestingly, mouse strains that displayed a rapid CD8+ T cell IFN-gamma response (C57BL/6, 129, and NZB) all had lower bacterial burdens in the liver 3 days postinfection compared with mouse strains that did not have an early CD8+ T cell IFN-gamma response (BALB/c, A/J, and SJL). These data suggest that participation of memory CD8+ T cells in the early immune response against L. monocytogenes correlates with innate host resistance to infection.  相似文献   

18.
19.
For most HIV-infected patients, antiretroviral therapy controls viral replication. However, in some patients drug resistance can cause therapy to fail. Nonetheless, continued therapy with a failing regimen can preserve or even lead to increases in CD4+ T cell counts. To understand the biological basis of these observations, we used mathematical models to explain observations made in patients with drug-resistant HIV treated with enfuvirtide (ENF/T-20), an HIV-1 fusion inhibitor. Due to resistance emergence, ENF was removed from the drug regimen, drug-sensitive virus regrown, and ENF was re-administered. We used our model to study the dynamics of plasma-viral RNA and CD4+ T cell levels, and the competition between drug-sensitive and resistant viruses during therapy interruption and re-administration. Focusing on resistant viruses carrying the V38A mutation in gp41, we found ENF-resistant virus to be 17±3% less fit than ENF-sensitive virus in the absence of the drug, and that the loss of resistant virus during therapy interruption was primarily due to this fitness cost. Using viral dynamic parameters estimated from these patients, we show that although re-administration of ENF cannot suppress viral load, it can, in the presence of resistant virus, increase CD4+ T cell counts, which should yield clinical benefits. This study provides a framework to investigate HIV and T cell dynamics in patients who develop drug resistance to other antiretroviral agents and may help to develop more effective strategies for treatment.  相似文献   

20.
Following primary infection, human herpesvirus 6 (HHV-6) establishes a persistent infection for life. HHV-6 reactivation has been associated with transplant rejection, delayed engraftment, encephalitis, muscular dystrophy, and drug-induced hypersensitivity syndrome. The poor understanding of the targets and outcome of the cellular immune response to HHV-6 makes it difficult to outline the role of HHV-6 in human disease. To fill in this gap, we characterized CD4 T cell responses to HHV-6 using peripheral blood mononuclear cell (PBMC) and T cell lines generated from healthy donors. CD4(+) T cells responding to HHV-6 in peripheral blood were observed at frequencies below 0.1% of total T cells but could be expanded easily in vitro. Analysis of cytokines in supernatants of PBMC and T cell cultures challenged with HHV-6 preparations indicated that gamma interferon (IFN-γ) and interleukin-10 (IL-10) were appropriate markers of the HHV-6 cellular response. Eleven CD4(+) T cell epitopes, all but one derived from abundant virion components, were identified. The response was highly cross-reactive between HHV-6A and HHV-6B variants. Seven of the CD4(+) T cell epitopes do not share significant homologies with other known human pathogens, including the closely related human viruses human herpesvirus 7 (HHV-7) and human cytomegalovirus (HCMV). Major histocompatibility complex (MHC) tetramers generated with these epitopes were able to detect HHV-6-specific T cell populations. These findings provide a window into the immune response to HHV-6 and provide a basis for tracking HHV-6 cellular immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号