首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the past two decades, many ingenious efforts have been made in protein remote homology detection. Because homologous proteins often diversify extensively in sequence, it is challenging to demonstrate such relatedness through entirely sequence-driven searches. Here, we describe a computational method for the generation of 'protein-like' sequences that serves to bridge gaps in protein sequence space. Sequence profile information, as embodied in a position-specific scoring matrix of multiply aligned sequences of bona fide family members, serves as the starting point in this algorithm. The observed amino acid propensity and the selection of a random number dictate the selection of a residue for each position in the sequence. In a systematic manner, and by applying a 'roulette-wheel' selection approach at each position, we generate parent family-like sequences and thus facilitate an enlargement of sequence space around the family. When generated for a large number of families, we demonstrate that they expand the utility of natural intermediately related sequences in linking distant proteins. In 91% of the assessed examples, inclusion of designed sequences improved fold coverage by 5-10% over searches made in their absence. Furthermore, with several examples from proteins adopting folds such as TIM, globin, lipocalin and others, we demonstrate that the success of including designed sequences in a database positively sensitized methods such as PSI-BLAST and Cascade PSI-BLAST and is a promising opportunity for enormously improved remote homology recognition using sequence information alone.  相似文献   

2.
Profile-based sequence search procedures are commonly employed to detect remote relationships between proteins. We provide an assessment of a Cascade PSI-BLAST protocol that rigorously employs intermediate sequences in detecting remote relationships between proteins. In this approach we detect using PSI-BLAST, which involves multiple rounds of iteration, an initial set of homologues for a protein in a 'first generation' search by querying a database. We propagate a 'second generation' search in the database, involving multiple runs of PSI-BLAST using each of the homologues identified in the previous generation as queries to recognize homologues not detected earlier. This non-directed search process can be viewed as an iteration of iterations that is continued to detect further homologues until no new hits are detectable. We present an assessment of the coverage of this 'cascaded' intermediate sequence search on diverse folds and find that searches for up to three generations detect most known homologues of a query. Our assessments show that this approach appears to perform better than the traditional use of PSI-BLAST by detecting 15% more relationships within a family and 35% more relationships within a superfamily. We show that such searches can be performed on generalized sequence databases and non-trivial relationships between proteins can be detected effectively. Such a propagation of searches maximizes the chances of detecting distant homologies by effectively scanning protein "fold space".  相似文献   

3.
The development of remote homology detection methods is a challenging area in Bioinformatics. Sequence analysis-based approaches that address this problem have employed the use of profiles, templates and Hidden Markov Models (HMMs). These methods often face limitations due to poor sequence similarities and non-uniform sequence dispersion in protein sequence space. Search procedures are often asymmetrical due to over or under-representation of some protein families and outliers often remain undetected. Intermediate sequences that share high similarities with more than one protein can help overcome such problems. Methods such as MulPSSM and Cascade PSI-BLAST that employ intermediate sequences achieve better coverage of members in searches. Others employ peptide modules or conserved patterns of motifs or residues and are effective in overcoming dependencies on high sequence similarity to establish homology by using conserved patterns in searches. We review some of these recent methods developed in India in the recent past.  相似文献   

4.
Abstract

Profile-based sequence search procedures are commonly employed to detect remote relationships between proteins. We provide an assessment of a Cascade PSI-BLAST protocol that rigorously employs intermediate sequences in detecting remote relationships between proteins. In this approach we detect using PSI-BLAST, which involves multiple rounds of iteration, an initial set of homologues for a protein in a ‘first generation’ search by querying a database. We propagate a ‘second generation’ search in the database, involving multiple runs of PSI-BLAST using each of the homologues identified in the previous generation as queries to recognize homologues not detected earlier. This non-directed search process can be viewed as an iteration of iterations that is continued to detect further homologues until no new hits are detectable. We present an assessment of the coverage of this ‘cascaded’ intermediate sequence search on diverse folds and find that searches for up to three generations detect most known homologues of a query. Our assessments show that this approach appears to perform better than the traditional use of PSI-BLAST by detecting 15% more relationships within a family and 35% more relationships within a superfamily. We show that such searches can be performed on generalized sequence databases and non-trivial relationships between proteins can be detected effectively. Such a propagation of searches maximizes the chances of detecting distant homologies by effectively scanning protein “fold space”.  相似文献   

5.

Background

Development of sensitive sequence search procedures for the detection of distant relationships between proteins at superfamily/fold level is still a big challenge. The intermediate sequence search approach is the most frequently employed manner of identifying remote homologues effectively. In this study, examination of serine proteases of prolyl oligopeptidase, rhomboid and subtilisin protein families were carried out using plant serine proteases as queries from two genomes including A. thaliana and O. sativa and 13 other families of unrelated folds to identify the distant homologues which could not be obtained using PSI-BLAST.

Methodology/Principal Findings

We have proposed to start with multiple queries of classical serine protease members to identify remote homologues in families, using a rigorous approach like Cascade PSI-BLAST. We found that classical sequence based approaches, like PSI-BLAST, showed very low sequence coverage in identifying plant serine proteases. The algorithm was applied on enriched sequence database of homologous domains and we obtained overall average coverage of 88% at family, 77% at superfamily or fold level along with specificity of ∼100% and Mathew’s correlation coefficient of 0.91. Similar approach was also implemented on 13 other protein families representing every structural class in SCOP database. Further investigation with statistical tests, like jackknifing, helped us to better understand the influence of neighbouring protein families.

Conclusions/Significance

Our study suggests that employment of multiple queries of a family for the Cascade PSI-BLAST searches is useful for predicting distant relationships effectively even at superfamily level. We have proposed a generalized strategy to cover all the distant members of a particular family using multiple query sequences. Our findings reveal that prior selection of sequences as query and the presence of neighbouring families can be important for covering the search space effectively in minimal computational time. This study also provides an understanding of the ‘bridging’ role of related families.  相似文献   

6.
The recognition of remote protein homologies is a major aspect of the structural and functional annotation of newly determined genomes. Here we benchmark the coverage and error rate of genome annotation using the widely used homology-searching program PSI-BLAST (position-specific iterated basic local alignment search tool). This study evaluates the one-to-many success rate for recognition, as often there are several homologues in the database and only one needs to be identified for annotating the sequence. In contrast, previous benchmarks considered one-to-one recognition in which a single query was required to find a particular target. The benchmark constructs a model genome from the full sequences of the structural classification of protein (SCOP) database and searches against a target library of remote homologous domains (<20 % identity). The structural benchmark provides a reliable list of correct and false homology assignments. PSI-BLAST successfully annotated 40 % of the domains in the model genome that had at least one homologue in the target library. This coverage is more than three times that if one-to-one recognition is evaluated (11 % coverage of domains). Although a structural benchmark was used, the results equally apply to just sequence homology searches. Accordingly, structural and sequence assignments were made to the sequences of Mycoplasma genitalium and Mycobacterium tuberculosis (see http://www.bmm.icnet. uk). The extent of missed assignments and of new superfamilies can be estimated for these genomes for both structural and functional annotations.  相似文献   

7.
We introduce novel profile-based string kernels for use with support vector machines (SVMs) for the problems of protein classification and remote homology detection. These kernels use probabilistic profiles, such as those produced by the PSI-BLAST algorithm, to define position-dependent mutation neighborhoods along protein sequences for inexact matching of k-length subsequences ("k-mers") in the data. By use of an efficient data structure, the kernels are fast to compute once the profiles have been obtained. For example, the time needed to run PSI-BLAST in order to build the profiles is significantly longer than both the kernel computation time and the SVM training time. We present remote homology detection experiments based on the SCOP database where we show that profile-based string kernels used with SVM classifiers strongly outperform all recently presented supervised SVM methods. We further examine how to incorporate predicted secondary structure information into the profile kernel to obtain a small but significant performance improvement. We also show how we can use the learned SVM classifier to extract "discriminative sequence motifs"--short regions of the original profile that contribute almost all the weight of the SVM classification score--and show that these discriminative motifs correspond to meaningful structural features in the protein data. The use of PSI-BLAST profiles can be seen as a semi-supervised learning technique, since PSI-BLAST leverages unlabeled data from a large sequence database to build more informative profiles. Recently presented "cluster kernels" give general semi-supervised methods for improving SVM protein classification performance. We show that our profile kernel results also outperform cluster kernels while providing much better scalability to large datasets.  相似文献   

8.
MOTIVATION: Many studies have shown that database searches using position-specific score matrices (PSSMs) or profiles as queries are more effective at identifying distant protein relationships than are searches that use simple sequences as queries. One popular program for constructing a PSSM and comparing it with a database of sequences is Position-Specific Iterated BLAST (PSI-BLAST). RESULTS: This paper describes a new software package, IMPALA, designed for the complementary procedure of comparing a single query sequence with a database of PSI-BLAST-generated PSSMs. We illustrate the use of IMPALA to search a database of PSSMs for protein folds, and one for protein domains involved in signal transduction. IMPALA's sensitivity to distant biological relationships is very similar to that of PSI-BLAST. However, IMPALA employs a more refined analysis of statistical significance and, unlike PSI-BLAST, guarantees the output of the optimal local alignment by using the rigorous Smith-Waterman algorithm. Also, it is considerably faster when run with a large database of PSSMs than is BLAST or PSI-BLAST when run against the complete non-redundant protein database.  相似文献   

9.
Searches using position specific scoring matrices (PSSMs) have been commonly used in remote homology detection procedures such as PSI-BLAST and RPS-BLAST. A PSSM is generated typically using one of the sequences of a family as the reference sequence. In the case of PSI-BLAST searches the reference sequence is same as the query. Recently we have shown that searches against the database of multiple family-profiles, with each one of the members of the family used as a reference sequence, are more effective than searches against the classical database of single family-profiles. Despite relatively a better overall performance when compared with common sequence-profile matching procedures, searches against the multiple family-profiles database result in a few false positives and false negatives. Here we show that profile length and divergence of sequences used in the construction of a PSSM have major influence on the performance of multiple profile based search approach. We also identify that a simple parameter defined by the number of PSSMs corresponding to a family that is hit, for a query, divided by the total number of PSSMs in the family can distinguish effectively the true positives from the false positives in the multiple profiles search approach.  相似文献   

10.
George RA  Heringa J 《Proteins》2002,48(4):672-681
Protein sequences containing more than one structural domain are problematic when used in homology searches where they can either stop an iterative database search prematurely or cause an explosion of a search to common domains. We describe a method, DOMAINATION, that infers domains and their boundaries in a query sequence from local gapped alignments generated using PSI-BLAST. Through a new technique to recognize domain insertions and permutations, DOMAINATION submits delineated domains as successive database queries in further iterative steps. Assessed over a set of 452 multidomain proteins, the method predicts structural domain boundaries with an overall accuracy of 50% and improves finding distant homologies by 14% compared with PSI-BLAST. DOMAINATION is available as a web based tool at http://mathbio.nimr.mrc.ac.uk, and the source code is available from the authors upon request.  相似文献   

11.
Sequence alignment programs such as BLAST and PSI-BLAST are used routinely in pairwise, profile-based, or intermediate-sequence-search (ISS) methods to detect remote homologies for the purposes of fold assignment and comparative modeling. Yet, the sequence alignment quality of these methods at low sequence identity is not known. We have used the CE structure alignment program (Shindyalov and Bourne, Prot Eng 1998;11:739) to derive sequence alignments for all superfamily and family-level related proteins in the SCOP domain database. CE aligns structures and their sequences based on distances within each protein, rather than on interprotein distances. We compared BLAST, PSI-BLAST, CLUSTALW, and ISS alignments with the CE structural alignments. We found that global alignments with CLUSTALW were very poor at low sequence identity (<25%), as judged by the CE alignments. We used PSI-BLAST to search the nonredundant sequence database (nr) with every sequence in SCOP using up to four iterations. The resulting matrix was used to search a database of SCOP sequences. PSI-BLAST is only slightly better than BLAST in alignment accuracy on a per-residue basis, but PSI-BLAST matrix alignments are much longer than BLAST's, and so align correctly a larger fraction of the total number of aligned residues in the structure alignments. Any two SCOP sequences in the same superfamily that shared a hit or hits in the nr PSI-BLAST searches were identified as linked by the shared intermediate sequence. We examined the quality of the longest SCOP-query/ SCOP-hit alignment via an intermediate sequence, and found that ISS produced longer alignments than PSI-BLAST searches alone, of nearly comparable per-residue quality. At 10-15% sequence identity, BLAST correctly aligns 28%, PSI-BLAST 40%, and ISS 46% of residues according to the structure alignments. We also compared CE structure alignments with FSSP structure alignments generated by the DALI program. In contrast to the sequence methods, CE and structure alignments from the FSSP database identically align 75% of residue pairs at the 10-15% level of sequence identity, indicating that there is substantial room for improvement in these sequence alignment methods. BLAST produced alignments for 8% of the 10,665 nonimmunoglobulin SCOP superfamily sequence pairs (nearly all <25% sequence identity), PSI-BLAST matched 17% and the double-PSI-BLAST ISS method aligned 38% with E-values <10.0. The results indicate that intermediate sequences may be useful not only in fold assignment but also in achieving more complete sequence alignments for comparative modeling.  相似文献   

12.
Koike R  Kinoshita K  Kidera A 《Proteins》2007,66(3):655-663
Dynamic programming (DP) and its heuristic algorithms are the most fundamental methods for similarity searches of amino acid sequences. Their detection power has been improved by including supplemental information, such as homologous sequences in the profile method. Here, we describe a method, probabilistic alignment (PA), that gives improved detection power, but similarly to the original DP, uses only a pair of amino acid sequences. Receiver operating characteristic (ROC) analysis demonstrated that the PA method is far superior to BLAST, and that its sensitivity and selectivity approach to those of PSI-BLAST. Particularly for orphan proteins having few homologues in the database, PA exhibits much better performance than PSI-BLAST. On the basis of this observation, we applied the PA method to a homology search of two orphan proteins, Latexin and Resuscitation-promoting factor domain. Their molecular functions have been described based on structural similarities, but sequence homologues have not been identified by PSI-BLAST. PA successfully detected sequence homologues for the two proteins and confirmed that the observed structural similarities are the result of an evolutional relationship.  相似文献   

13.
In this study, we show that it is possible to increase the performance over PSI-BLAST by using evolutionary information for both query and target sequences. This information can be used in three different ways: by sequence linking, profile-profile alignments, and by combining sequence-profile and profile-sequence searches. If only PSI-BLAST is used, 16% of superfamily-related protein domains can be detected at 90% specificity, but if a sequence-profile and a profile-sequence search are combined, this is increased to 20%, profile-profile searches detects 19%, whereas a linking procedure identifies 22% of these proteins. All three methods show equal performance, but the best combination of speed and accuracy seems to be obtained by the combined searches, because this method shows a good performance even at high specificity and the lowest computational cost. In addition, we show that the E-values reported by all these methods, including PSI-BLAST, underestimate the true rate of false positives. This behavior is seen even if a very strict E-value cutoff and a limited number of iterations are used. However, the difference is more pronounced with a looser E-value cutoff and more iterations.  相似文献   

14.
Shan Y  Wang G  Zhou HX 《Proteins》2001,42(1):23-37
A homology-based structure prediction method ideally gives both a correct fold assignment and an accurate query-template alignment. In this article we show that the combination of two existing methods, PSI-BLAST and threading, leads to significant enhancement in the success rate of fold recognition. The combined approach, termed COBLATH, also yields much higher alignment accuracy than found in previous studies. It consists of two-way searches both by PSI-BLAST and by threading. In the PSI-BLAST portion, a query is used to search for hits in a library of potential templates and, conversely, each potential template is used to search for hits in a library of queries. In the threading portion, the scoring function is the sum of a sequence profile and a 6x6 substitution matrix between predicted query and known template secondary structure and solvent exposure. "Two-way" in threading means that the query's sequence profile is used to match the sequences of all potential templates and the sequence profiles of all potential templates are used to match the query's sequence. When tested on a set of 533 nonhomologous proteins, COBLATH was able to assign folds for 390 (73%). Among these 390 queries, 265 (68%) had root-mean-square deviations (RMSDs) of less than 8 A between predicted and actual structures. Such high success rate and accuracy make COBLATH an ideal tool for structural genomics.  相似文献   

15.
Searching databases for distant homologues using alignments instead of individual sequences increases the power of detection. However, most methods assume that protein evolution proceeds in a regular fashion, with the inferred tree of sequences providing a good estimation of the evolutionary process. We investigated the combined HMMER search results from random alignment subsets (with three sequences each) drawn from the parent alignment (Rand-shuffle algorithm), using the SCOP structural classification to determine true similarities. At false-positive rates of 5%, the Rand-shuffle algorithm improved HMMER's sensitivity, with a 37.5% greater sensitivity compared with HMMER alone, when easily identified similarities (identifiable by BLAST) were excluded from consideration. An extension of the Rand-shuffle algorithm (Ali-shuffle) weighted towards more informative sequence subsets. This approach improved the performance over HMMER alone and PSI-BLAST, particularly at higher false-positive rates. The improvements in performance of these sequence sub-sampling methods may reflect lower sensitivity to alignment error and irregular evolutionary patterns. The Ali-shuffle and Rand-shuffle sequence homology search programs are available by request from the authors.  相似文献   

16.
Protein structure prediction by comparative modeling benefits greatly from the use of multiple sequence alignment information to improve the accuracy of structural template identification and the alignment of target sequences to structural templates. Unfortunately, this benefit is limited to those protein sequences for which at least several natural sequence homologues exist. We show here that the use of large diverse alignments of computationally designed protein sequences confers many of the same benefits as natural sequences in identifying structural templates for comparative modeling targets. A large-scale massively parallelized application of an all-atom protein design algorithm, including a simple model of peptide backbone flexibility, has allowed us to generate 500 diverse, non-native, high-quality sequences for each of 264 protein structures in our test set. PSI-BLAST searches using the sequence profiles generated from the designed sequences ("reverse" BLAST searches) give near-perfect accuracy in identifying true structural homologues of the parent structure, with 54% coverage. In 41 of 49 genomes scanned using reverse BLAST searches, at least one novel structural template (not found by the standard method of PSI-BLAST against PDB) is identified. Further improvements in coverage, through optimizing the scoring function used to design sequences and continued application to new protein structures beyond the test set, will allow this method to mature into a useful strategy for identifying distantly related structural templates.  相似文献   

17.
Virtually every molecular biologist has searched a protein or DNA sequence database to find sequences that are evolutionarily related to a given query. Pairwise sequence comparison methods--i.e., measures of similarity between query and target sequences--provide the engine for sequence database search and have been the subject of 30 years of computational research. For the difficult problem of detecting remote evolutionary relationships between protein sequences, the most successful pairwise comparison methods involve building local models (e.g., profile hidden Markov models) of protein sequences. However, recent work in massive data domains like web search and natural language processing demonstrate the advantage of exploiting the global structure of the data space. Motivated by this work, we present a large-scale algorithm called ProtEmbed, which learns an embedding of protein sequences into a low-dimensional "semantic space." Evolutionarily related proteins are embedded in close proximity, and additional pieces of evidence, such as 3D structural similarity or class labels, can be incorporated into the learning process. We find that ProtEmbed achieves superior accuracy to widely used pairwise sequence methods like PSI-BLAST and HHSearch for remote homology detection; it also outperforms our previous RankProp algorithm, which incorporates global structure in the form of a protein similarity network. Finally, the ProtEmbed embedding space can be visualized, both at the global level and local to a given query, yielding intuition about the structure of protein sequence space.  相似文献   

18.
An automatic sequence search and analysis protocol (DomainFinder) based on PSI-BLAST and IMPALA, and using conservative thresholds, has been developed for reliably integrating gene sequences from GenBank into their respective structural families within the CATH domain database (http://www.biochem.ucl.ac.uk/bsm/cath_new). DomainFinder assigns a new gene sequence to a CATH homologous superfamily provided that PSI-BLAST identifies a clear relationship to at least one other Protein Data Bank sequence within that superfamily. This has resulted in an expansion of the CATH protein family database (CATH-PFDB v1.6) from 19,563 domain structures to 176,597 domain sequences. A further 50,000 putative homologous relationships can be identified using less stringent cut-offs and these relationships are maintained within neighbour tables in the CATH Oracle database, pending further evidence of their suggested evolutionary relationship. Analysis of the CATH-PFDB has shown that only 15% of the sequence families are close enough to a known structure for reliable homology modeling. IMPALA/PSI-BLAST profiles have been generated for each of the sequence families in the expanded CATH-PFDB and a web server has been provided so that new sequences may be scanned against the profile library and be assigned to a structure and homologous superfamily.  相似文献   

19.
MOTIVATION: Sequence alignment techniques have been developed into extremely powerful tools for identifying the folding families and function of proteins in newly sequenced genomes. For a sufficiently low sequence identity it is necessary to incorporate additional structural information to positively detect homologous proteins. We have carried out an extensive analysis of the effectiveness of incorporating secondary structure information directly into the alignments for fold recognition and identification of distant protein homologs. A secondary structure similarity matrix based on a database of three-dimensionally aligned proteins was first constructed. An iterative application of dynamic programming was used which incorporates linear combinations of amino acid and secondary structure sequence similarity scores. Initially, only primary sequence information is used. Subsequently contributions from secondary structure are phased in and new homologous proteins are positively identified if their scores are consistent with the predetermined error rate. RESULTS: We used the SCOP40 database, where only PDB sequences that have 40% homology or less are included, to calibrate homology detection by the combined amino acid and secondary structure sequence alignments. Combining predicted secondary structure with sequence information results in a 8-15% increase in homology detection within SCOP40 relative to the pairwise alignments using only amino acid sequence data at an error rate of 0.01 errors per query; a 35% increase is observed when the actual secondary structure sequences are used. Incorporating predicted secondary structure information in the analysis of six small genomes yields an improvement in the homology detection of approximately 20% over SSEARCH pairwise alignments, but no improvement in the total number of homologs detected over PSI-BLAST, at an error rate of 0.01 errors per query. However, because the pairwise alignments based on combinations of amino acid and secondary structure similarity are different from those produced by PSI-BLAST and the error rates can be calibrated, it is possible to combine the results of both searches. An additional 25% relative improvement in the number of genes identified at an error rate of 0.01 is observed when the data is pooled in this way. Similarly for the SCOP40 dataset, PSI-BLAST detected 15% of all possible homologs, whereas the pooled results increased the total number of homologs detected to 19%. These results are compared with recent reports of homology detection using sequence profiling methods. AVAILABILITY: Secondary structure alignment homepage at http://lutece.rutgers.edu/ssas CONTACT: anders@rutchem.rutgers.edu; ronlevy@lutece.rutgers.edu Supplementary Information: Genome sequence/structure alignment results at http://lutece.rutgers.edu/ss_fold_predictions.  相似文献   

20.
We have designed hidden Markov models (HMMs) of structurally conserved repeats that, based on pairwise comparisons, are unconserved at the sequence level. To model secondary structure features these HMMs assign higher probabilities of transition to insert or delete states within sequence regions predicted to form loops. HMMs were optimized using a sampling procedure based on the degree of statistical uncertainty associated with parameter estimates. A PSI-BLAST search initialized using a checkpoint-recovered profile derived from simulated sequences emitted by such a HMM can reveal distant structural relationships with, in certain instances, substantially greater sensitivity than a normal PSI-BLAST search. This is illustrated using two examples involving DNA- and RNA-associated proteins with structurally conserved repeats. In the first example a putative sliding DNA clamp protein was detected in the thermophilic bacterium Thermotoga maritima. This protein appears to have arisen by way of a duplicated β-clamp gene that then acquired features of a PCNA-like clamp, perhaps to perform a PCNA-related function in association with one or more of the many archaeal-like proteins present in this organism. In the second example, β-propeller domains were predicted in the large subunit of UV-damaged DNA-binding protein and in related proteins, including the large subunit of cleavage-polyadenylation specificity factor, the yeast Rse1p and human SAP130 pre-mRNA splicing factors and the fission yeast Rik1p gene silencing protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号