首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
There is evidence showing that the sperm-induced Ca(2+) oscillations in mammalian eggs at fertilization are triggered by a sperm-derived protein factor. It was established recently that the activity of the putative sperm protein in causing Ca(2+) oscillations in mammalian eggs is not species-specific in vertebrates (1, 16). Here we report that cytosolic soluble extracts derived from flowering plant sperms in Brassica campestris can also induce fertilization-like Ca(2+) oscillations when microinjected into mouse eggs. The factor responsible for inducing Ca(2+) oscillations in the plant sperm was sperm-specific and heat- or trypsin-labile. Eight to ten sperm equivalents of the plant sperm extracts had enough activity to trigger Ca(2+) oscillations in mouse eggs. Our study suggests that, although plant and mammal are evolutionary divergent species, the activity of the putative sperm protein factor in triggering Ca(2+) signaling in mammalian eggs is not specific to the animal kingdom.  相似文献   

2.
Mechanism of Ca2+ release at fertilization in mammals.   总被引:5,自引:0,他引:5  
At fertilization in mammals the sperm triggers a series of oscillations in intracellular Ca2+ within the egg. These Ca2+ oscillations activate the development of the egg into an embryo. It is not known how the sperm triggers these Ca2+ oscillations. There are currently three different theories for Ca2+ signaling in eggs at fertilization. One idea is that the sperm acts as a conduit for Ca2+ entry into the egg after membrane fusion. Another idea is that the sperm acts upon plasma membrane receptors to stimulate a phospholipase C (PLC) within the egg which generates inositol 1,4, 5-trisphosphate (InsP(3)). We present a third idea that the sperm causes Ca2+ release by introducing a soluble protein factor into the egg after gamete membrane fusion. In mammals this sperm factor is also referred to as an oscillogen because, after microinjection, the factor causes sustained Ca2+ oscillations in eggs. Our recent data in sea urchin egg homogenates and intact eggs suggests that this sperm factor has phospholipase C activity that leads to the generation of InsP(3). We then present a new version of the soluble sperm factor theory of signaling at fertilization. J. Exp. Zool. (Mol. Dev. Evol.) 285:267-275, 1999.  相似文献   

3.
At fertilization in mammals, the sperm activates the egg by inducing a series of oscillations in the intracellular free Ca(2+) concentration. There is evidence showing that this oscillatory event is triggered by a sperm-derived protein factor which diffuses into egg cytoplasm after gamete membrane fusion. At present the identity of this factor and its precise mechanism of action is unknown. Here, we studied the specificity of action of the sperm factor in triggering Ca(2+) oscillations in mammalian eggs. In doing so, we examined the patterns of Ca(2+) signaling in mouse eggs, zygotes, parthenogenetic eggs and maturing oocytes following the stimulation of bovine sperm extracts which contain the sperm factor. It is observed that the sperm factor could induce Ca(2+) oscillations in metaphase eggs, maturing oocytes and parthenogenetically activated eggs but not in the zygotes. We present evidence that Ca(2+) oscillations induced by the sperm factor require a maternal machinery. This machinery functions only once in mammalian oocytes and eggs, and is inactivated by sperm-derived components but not by parthenogenetic activation. In addition, it is found that neither InsP(3) receptor sensitivity to InsP(3) nor Ca(2+) pool size are the determinants that cause the fertilized egg to lose its ability to generate sperm-factor-induced Ca(2+) oscillations at metaphase. In conclusion, our study suggests that the orderly sequence of Ca(2+) oscillations in mammalian eggs at fertilization is critically dependent upon the presence of a functional maternal machinery that determines whether the sperm-factor-induced Ca(2+) oscillations can persist.  相似文献   

4.
There is evidence showing that at fertilization the sperm introduces into egg cytoplasm a protein-based cytosolic factor, which serves as the physiological trigger for inducing Ca(2+) oscillations in mammalian eggs. Here we show that sperm of nonmammalian vertebrates also contain a cytosolic protein factor that can induce Ca(2+) oscillations when introduced into mammalian eggs. We have observed that cytosolic extracts derived from Xenopus or chicken sperm could induce mouse eggs to undergo Ca(2+) oscillations similar to those induced by bovine sperm extracts. The factor responsible for inducing Ca(2+) oscillations was of high molecular weight and heat- or proteinase K-labile. We show that 0.5 chicken sperm-equivalents or 1-2 Xenopus sperm-equivalents of the extracts had enough activity to trigger Ca(2+) oscillations in mouse eggs. Our findings illustrate that although Xenopus, chicken, and mammals are evolutionarily divergent species, the function of the sperm protein factor in triggering Ca(2+) oscillations in mammalian eggs appears not to be species specific in vertebrates.  相似文献   

5.
At fertilisation of mammalian and ascidian eggs the sperm induces a series of Ca2+ oscillations. These Ca2+ oscillations are triggered by a sperm-borne Ca2+-releasing factor whose identity is still unresolved. In both mammals and ascidians Ca2+ oscillations in eggs are associated with the period leading up to exit from meiosis and entry into the first embryonic cell cycle. Thus, in mammals Ca2+ oscillations continue for several hours but are complete by within 30 min in the ascidian. In mammals and ascidians Ca2+ oscillations stop at around the time when pronuclei form in the 1-cell embryo. There is evidence to show that cell cycle factors are important in regulating the fertilisation Ca2+ signal. If the formation of pronuclei is blocked either in mammals (by spindle disruption) or in ascidians (by clamping maturation promoting factor levels high) then Ca2+ oscillations continue indefinitely. Here, we explore the nature of the sperm Ca2+-releasing factor and examine the relationship between cell cycle resumption and the control of Ca2+ oscillations at fertilisation.  相似文献   

6.
Upon fertilisation by sperm, mammalian eggs are activated by a series of intracellular Ca(2+) oscillations that are essential for embryo development. The mechanism by which sperm induces this complex signalling phenomenon is unknown. One proposal is that the sperm introduces an exclusive cytosolic factor into the egg that elicits serial Ca(2+) release. The 'sperm factor' hypothesis has not been ratified because a sperm-specific protein that generates repetitive Ca(2+) transients and egg activation has not been found. We identify a novel, sperm-specific phospholipase C, PLC zeta, that triggers Ca(2+) oscillations in mouse eggs indistinguishable from those at fertilisation. PLC zeta removal from sperm extracts abolishes Ca(2+) release in eggs. Moreover, the PLC zeta content of a single sperm was sufficient to produce Ca(2+) oscillations as well as normal embryo development to blastocyst. Our results are consistent with sperm PLC zeta as the molecular trigger for development of a fertilised egg into an embryo.  相似文献   

7.
Eggs of the newt, Cynops pyrrhogaster, arrested at the second meiotic metaphase are activated by sperm at fertilization and then complete meiosis to initiate development. We highly purified a sperm factor for egg activation from a sperm extract with several chromatographies. The purified fraction containing only a 45 kDa protein induced egg activation accompanied by an intracellular Ca2+ increase when injected into unfertilized eggs. Although injection of mouse phospholipase C (PLC) zeta-mRNA caused a Ca2+ increase and egg activation, partial amino acid sequences of the 45 kDa protein were homologous to those of Xenopus citrate synthase, but not to PLCs. An anti-porcine citrate synthase antibody recognized the 45 kDa protein both in the purified fraction and in the sperm extract. Treatment with the anti-citrate synthase antibody reduced the egg-activation activity in the sperm extract. Injection of porcine citrate synthase or mRNA of Xenopus citrate synthase induced a Ca2+ increase and caused egg activation. A large amount of the 45 kDa protein was localized in two lines elongated from the neck to the middle piece of sperm. These results indicate that the 45 kDa protein is a major component of the sperm factor for egg activation at newt fertilization.  相似文献   

8.
We have previously demonstrated that initiation of intracellular calcium ([Ca2+]i) oscillations in mouse eggs signals activation or apoptotic death depending on the age of the eggs in which the oscillations are induced. To extend these studies, mouse eggs were aged in vitro to 24, 32, and 40 h post-hCG and injected with sperm cytosolic factor (SF), adenophostin A, or sperm (intracytoplasmic sperm injection), and the times at which signs of apoptosis first appeared were examined. These treatments, which induced [Ca2+]i oscillations, caused fragmentation and other signs of programmed cell death in eggs as early as 32 h post-hCG. The susceptibility of aged eggs to apoptosis appeared to be due to cytoplasmic deficiencies, because fusion of recently ovulated eggs with aged, SF-injected eggs prevented fragmentation. Evaluation of mRNA and protein levels of the apoptotic regulatory proteins Bcl-2 and Bax showed a prominent decrease in the amounts of Bcl-2 mRNA and protein in aged eggs, whereas Bax mRNA levels did not appear to be changed. Lastly, the Ca2+ responses induced by the aforementioned Ca2+ agonists ceased in advance in aged eggs. Together, these results suggest that one or several critical cytosolic molecules involved in the regulation of Ca2+ homeostasis, and in maintaining the equilibrium between anti- and proapoptotic proteins, is either lost or inactivated during postovulatory egg aging, rendering the fertilizing Ca2+ signal into an apoptosis-inducing signal.  相似文献   

9.
A cytosolic sperm protein(s), referred to as the sperm factor (SF), is thought to induce intracellular calcium ([Ca(2+)](i)) oscillations during fertilization in mammalian eggs. These oscillations, which are responsible for inducing complete egg activation, persist for several hours. Nevertheless, whether a protracted release of SF is responsible for the duration of the oscillations is unknown. Using a combination of intracytoplasmic sperm injection (ICSI), in vitro fertilization (IVF), sperm removal, reinjection of the withdrawn sperm, and [Ca(2+)](i) monitoring, we determined that 30 min was necessary for establishing oscillations. Importantly, a significant portion of the Ca(2+) activity became dissociated from the sperm within 15-60 min after entry, and by 120 min post-ICSI or IVF, sperm were unable to induce oscillations. The initiation of oscillations coincided with exposure and solubilization of the perinuclear theca (PT), as evidenced by transmission electron microscopy, although disassembly of the PT was not required for commencement of the [Ca(2+)](i) responses. Remarkably, despite its complete release into the ooplasm, SF associated with nuclear structures at the time of pronuclear formation. Lastly, release of SF was not affected by the cell cycle. We conclude that mouse sperm serves as a carrier for SF, which is rapidly and completely solubilized to establish [Ca(2+)](i) oscillations.  相似文献   

10.
Fertilization in mammals is associated with the generation of intracellular calcium ([Ca2+]i) oscillations. The site of, or mechanism(s) utilized by, the sperm to initiate and maintain these Ca2+ responses is not known. In this study, we tested the hypothesis that a factor from the sperm is capable, upon release into the oocyte's cytosol, of initiating oscillations. A sperm factor, prepared from porcine semen, was injected into mouse oocytes and bovine eggs that had been loaded with fura-2 dextran, a fluorescent Ca2+ indicator. The resulting Ca2+ responses were monitored and compared to those characteristic of each species. Our results show that injection of sperm factor triggered long-lasting [Ca2+]i oscillations, and that the observed patterns were species-specific. In mouse oocytes, sperm factor-induced [Ca2+]i rises exhibited high frequency, whereas in bovine eggs, Ca2+ responses were separated by long intervals. Further characterization of the sperm factor revealed that it was predominantly present in sperm preparations, that it contained a protein moiety, and that it was unlikely to be a protease. The intracellular Ca2+ channels/receptors through which the sperm factor-mediated Ca2+ release was investigated by using heparin, a competitive inhibitor of the inositol 1,4,5 trisphosphate receptor (InsP3R), and ryanodine, which binds the ryanodine receptor (RyR). The sperm factor appeared to stimulate InsP3R, at least in mouse oocytes, because sperm factor-induced oscillations were delayed or blocked in all oocytes by injection of heparin. RyR may be involved in the modulation of these oscillations, since addition of ryanodine modified Ca2+ responses to the sperm factor. The present results support the hypothesis that a factor from the sperm is involved in the generation of fertilization associated [Ca2+]i oscillations. Mol Reprod Dev 46:176–189, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
A sperm-specific phospholipase (PL) C, termed PLCzeta, is proposed to be the soluble sperm factor that induces Ca(2+) oscillations in mammalian eggs and, thus, initiates egg activation in vivo. We report that sperm from transgenic mice expressing short hairpin RNAs targeting PLCzeta mRNA have reduced amounts of PLCzeta protein. Sperm derived from these transgenic mice trigger patterns of Ca(2+) oscillations following fertilization in vitro that terminate prematurely. Consistent with the perturbation in patterns of Ca(2+) oscillations is the finding that mating of transgenic founder males to females results in lower rates of egg activation and no transgenic offspring. These data strongly suggest that PLCzeta is the physiological trigger of Ca(2+) oscillations required for activation of development.  相似文献   

12.
Phospholipase C-zeta (PLCzeta), a strong candidate of the egg-activating sperm factor, causes intracellular Ca2+ oscillations and egg activation, and is subsequently accumulated into the pronucleus (PN), when expressed in mouse eggs by injection of RNA encoding PLCzeta. Changes in the localization of expressed PLCzeta were investigated by tagging with a fluorescent protein. PLCzeta began to translocate into the PN formed at 5-6 h after RNA injection and increased there. Observation in the same embryo revealed that PLCzeta in the PN dispersed to the cytoplasm upon nuclear envelope breakdown and translocated again into the nucleus after cleavage. The dynamics was found in the second mitosis as well. When RNA was injected into fertilization-originated 1-cell embryos or blastomere(s) of 2-8-cell embryos, the nuclear localization of expressed PLCzeta was recognized in every embryo up to blastocyst. Thus, PLCzeta exhibited alternative cytoplasm/nucleus localization during development. This supports the view that the sperm factor could control cell cycle-dependent generation of Ca2+ oscillations in early embryogenesis.  相似文献   

13.
Injection of sperm preparations into mammalian oocytes and eggs has been shown to elicit persistent [Ca2+]i oscillations that closely resemble fertilization-associated Ca2+ release. However, the ability of these sperm fractions to initiate egg activation has not been clearly demonstrated. In the present experiments, mouse eggs injected with a porcine sperm preparation were evaluated for early and late events of activation. Events monitored included, among early events, the generation of [Ca2+]i oscillations and cortical granule exocytosis and, among late events, the decrease in histone H1 and myelin basic protein kinase activities, polar body extrusion, pronuclear formation, and cleavage to the two-cell stage. Injection of sperm fractions consistently evoked [Ca2+]i oscillations that, in turn, initiated all events of activation. Uninjected control eggs or eggs injected with buffer or heat-treated sperm fractions failed to show Ca2+ responses or activation. In addition, injection of sperm fractions into recently ovulated eggs (experiments were concluded within 15 hr after human chorionic gonadotropin administration) induced high rates of activation, while similarly aged eggs exposed to 7% ethanol for 5 min, a known parthenogenetic treatment, failed to activate. Together these results indicate that injection of sperm fractions elicits [Ca2+]i oscillations that are capable of initiating normal egg activation. These results support the hypothesis that a sperm component participates in the generation of fertilization-associated [Ca2+]i oscillations. Mol. Reprod. Dev. 49:37–47, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
In mammalian eggs, the fertilizing sperm evokes intracellular Ca2+ ([Ca2+]i) oscillations that are essential for initiation of egg activation and embryonic development. Although the exact mechanism leading to initiation of [Ca2+]i oscillations still remains unclear, accumulating studies suggest that a presently unknown substance, termed sperm factor (SF), is delivered from the fertilizing sperm into the ooplasm and triggers [Ca2+]i oscillations. Based on findings showing that production of inositol 1,4,5-trisphosphate (IP3) underlies the generation of [Ca2+]i oscillations, it has been suggested that SF functions either as a phospholipase C (PLC), an enzyme that catalyzes the generation of IP3, or as an activator of a PLC(s) pre-existing in the egg. This review discusses the role of SF as the molecule responsible for the production of IP3 and the initiator of [Ca2+]i oscillations in mammalian fertilization, with particular emphasis on the possible involvement of egg- and sperm-derived PLCs, including PLCzeta, a novel sperm specific PLC.  相似文献   

15.
Microinjection of cytosolic sperm extracts into unfertilized golden hamster eggs caused a series of increases in cytoplasmic free calcium, Ca2+i, and membrane hyperpolarizing responses, HRs. These HRs and Ca2+i transients are similar to those seen during in vitro fertilization of hamster eggs. The sperm factor that is responsible for causing these effects appears to be of high molecular weight and protein based. Injection of sperm factor activated eggs and mimicked fertilization in causing repetitive HRs in the presence of phorbol esters and in sensitizing the egg to calcium-induced calcium release. Since these effects cannot be mimicked by injecting G-protein agonists or calcium-containing solutions, it seems unlikely that a receptor-G-protein signalling system is involved at fertilization. These data instead suggest a novel signal transduction system operates during mammalian fertilization in which a protein factor is transferred from the sperm into the egg cytoplasm after gamete membrane fusion.  相似文献   

16.
Intracytoplasmic sperm injection (ICSI) into mammalian eggs induces repetitive rises in intracellular Ca2+ concentration ([Ca2+]i) which are the pivotal signal in fertilization. Spatiotemporal aspects of [Ca2+]i rises following ICSI into the periphery of mouse eggs were investigated with high-speed confocal microscopy. The first Ca2+ response was generated 25-30 min after ICSI, when [Ca2+]i increased slowly and reached a certain level. The [Ca2+]i rise occurred synchronously over the ooplasm, attained the peak in 40-70 s, and lasted for 5-7 min. Succeeding Ca2+ responses occurred at intervals of 20-30 min, associated with the faster rate of [Ca2+]i rise and the shorter duration as Ca2+ oscillations progressed. The [Ca2+]i rises took the form of a wave that started from an arbitrary cortical region, but not from the vicinity of the injected sperm head. The Ca2+ wave became more pronounced and propagated across the egg faster in the later Ca2+ responses. An artifactual [Ca2+]i rise was inevitably produced during the ICSI procedure. The larger artifact affected the subsequent first Ca2+ response, resulting in the faster [Ca2+]i rise (time to peak, 10-20 s), slight spatial heterogeneity of [Ca2+]i rise in the ooplasm (but not a wave) and the shorter duration (3-4 min). The artifact slightly affected the amplitude of the second Ca2+ response, but little affected the later Ca2+ responses. It is suggested that the factor(s) that leaked out of the injected spermatozoon diffuses to a wide area and sensitizes Ca2+ channels of the endoplasmic reticulum to induce Ca2+ release synchronously over the ooplasm. The enhanced sensitization leads to propagating Ca2+ release initiated from the cortex that is more sensitive to the sperm factor.  相似文献   

17.
Unfertilized eggs of the newt Cynops pyrrhogaster are arrested at the second meiotic metaphase. The primary signal for egg activation is a transient increase in [Ca2+](i), which is triggered by the fertilizing sperm and propagates over the egg cortex as a Ca2+ wave. We injected an extract of Cynops sperm (SE) into unfertilized eggs and induced a wave-like [Ca2+](i) increase which resulted in activation and resumption of meiosis. The SE-injected eggs showed degradation of cyclin B1 and DNA replication. When SE was boiled or treated with proteinase K before injection, it was unable to cause egg activation. Preinjection of Ca2+ -chelator BAPTA before SE injection inhibited egg activation. These results indicate that a heat-labile and proteinaceous factor in the sperm cytoplasm induces a transient increase in [Ca2+](i) which is required for egg activation. Injection of IP3 into unfertilized eggs caused an increase in [Ca2+](i) and egg activation, but injection of cADP-ribose did not. These results support the hypothesis that Ca2+ release at fertilization occurs via IP3 receptors.  相似文献   

18.
Porcine oocyte activation induced by a cytosolic sperm factor   总被引:2,自引:0,他引:2  
It is not known how the fertilizing sperm elicits the release of Ca(2+) from the oocyte's intracellular stores. We investigated whether a crude extract isolated from boar sperm could induce the Ca(2+) release and trigger subsequent early and late activation events upon injection into matured porcine oocytes. The sperm extract induced an immediate rise in the intracellular free Ca(2+) concentration in all oocytes tested, which was followed by repetitive Ca(2+) transients in 11 out of 14 oocytes. Heat or trypsin treatment of the extract totally abolished the Ca(2+) releasing activity of the sperm factor. The injected oocytes showed cortical granule exocytosis, they resumed meiosis and entered first interphase: pronuclei were formed in 89.2% (132/148) of the cases. Pronuclear formation was accompanied by the appearance of a new 22 kDa protein as normally seen at fertilization. Of the successfully injected oocytes 51.7% (105/203) cleaved and 2.0% (4/203) developed to the blastocyst stage after being cultured for 7 days in NCSU 23 medium. Injection of the carrier medium could not trigger these changes. The results indicate that the sperm might activate porcine oocytes by introducing a soluble factor into the oocyte's cytoplasm after gamete fusion.  相似文献   

19.
It is widely accepted that mature mammalian oocytes are induced to resume meiosis by a sperm-borne oocyte-activating factor(s) (sperm factor, SF) immediately after normal fertilization or intracytoplasmic sperm injection. The SF is most likely a soluble factor that is localized within the cytoplasm of mature spermatozoa, but the exact stage at which it appears during spermatogenesis and its localization after oocyte activation is not fully understood, except in the mouse. First, we injected mature spermatozoa and spermatogenic cells from cynomolgus monkeys into mouse oocytes to assess their oocyte-activating capacity. More than 90% of mouse oocytes were activated after injection of monkey spermatozoa. Round spermatids and primary spermatocytes (late pachytene to diplotene) also activated oocytes (93% and 79%, respectively). Injection of monkey spermatozoa and spermatids induces intracellular Ca(2+) oscillations in a pattern similar to that seen following normal fertilization. Most spermatocytes did not produce typical intracellular Ca(2+) oscillations. Second, we transferred pronuclei or cytoplasts from mouse oocytes that had been activated by monkey spermatozoa or spermatids into intact mature mouse oocytes by electrofusion in order to examine the localization of the SF after pronuclear formation. Some of the SF was localized within the pronuclei, but some stayed in the ooplasm. This study demonstrated that spermatogenic cells of cynomolgus monkeys acquire oocyte-activating capacity at much earlier stages than those of mice, and that the monkey SF has a pronucleus-directing nature, although to a lesser extent than the mouse SF.  相似文献   

20.
A cytosolic sperm protein(s), referred to as sperm factor (SF), is delivered into eggs by the sperm during mammalian fertilization to induce repetitive increases in the intracellular concentration of free Ca2+ ([Ca2+]i) that are referred to as [Ca2+]i oscillations. [Ca2+]i oscillations are essential for egg activation and early embryonic development. Recent evidence shows that the novel sperm-specific phospholipase C (PLC), PLCzeta, may be the long sought after [Ca2+]i oscillation-inducing SF. Here, we demonstrate the complete extraction of SF from porcine sperm and show that regardless of the method of extraction a single molecule/complex appears to be responsible for the [Ca2+]i oscillation-inducing activity of these extracts. Consistent with this notion, all sperm fractions that induced [Ca2+]i oscillations, including FPLC-purified fractions, exhibited high in vitro PLC activity at basal Ca2+ levels (0.1-5 microM), a hallmark of PLCzeta. Notably, we detected immunoreactive 72-kDa PLCzeta in an inactive fraction, and several fractions capable of inducing oscillations were devoid of 72-kDa PLCzeta. Nonetheless, in the latter fractions, proteolytic fragments, presumably corresponding to cleaved forms of PLCzeta, were detected by immunoblotting. Therefore, our findings corroborate the hypothesis that a sperm-specific PLC is the main component of the [Ca2+]i oscillation-inducing activity of sperm but provide evidence that the presence of 72-kDa PLCzeta does not precisely correspond with the Ca2+ releasing activity of porcine sperm fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号