首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conformational changes in the chromatin of skeletal muscle of 3-, 14-and 30 day-old developing rats have been studied using DNase I and micrococcal nuclease (MCN). Purified nuclei were digested separately by MCN and DNase I. The rate and extent of digestion by MCN decreases gradually as development proceeds. The electrophoretic pattern of MCN digested DNA, however, shows no change. The kinetics of digestion of nuclei by DNase I show no change with development. However, the electrophoretic pattern of DNase I digested DNA shows a gradual decrease in the amount of 10–30 bp fragments with progressive development. These studies show that the chromatin of the skeletal muscle undergoes certain conformational changes during postnatal development, and such changes in chromatin may be necessary for terminal differentiation of this tissue.  相似文献   

2.
Micrococcal nuclease (MCN) and DNase I were used to study the conformational changes in chromatin of the brain of rats of different ages. Purified nuclei and chromatin were digested separately by MCN and DNase I. Kinetics of digestion of chromatin by MCN are similar for young, adult and old rats. Also agarose gel electrophoresis of DNA fragments do not show any differences. The kinetics of digestion with DNase I, on the other hand, are greater and faster for 20-week old rats than for 90-week old rats. High performance denaturing polyacrylamide gel electrophoresis reveals that a greater amount of smaller fragments of DNA are produced in the 20-week old rats than in the 90-week. These conformational changes occur in the chromatin during aging.  相似文献   

3.
Conformational changes in the chromatin of the cerebral hemisphere of 3-, 14- and 30-day old developing rats were studied before and after its ADP-ribosylation using DNase I and micrococcal nuclease (MNase). The rate and extent of digestion of chromatin by DNase I are the highest at 3-day and decline progressively thereafter. The rate and extent of digestion by MNase do not change during development. ADP-ribosylation of chromosomal proteins was carried out by incubating nuclei with NAD+ for 30 min and was followed by endonuclease digestion. Both the rate and extent of digestion by DNase I and MNase were enhanced after ADP-ribosylation which was the maximum for 3-day rats.  相似文献   

4.
The association of [125I]T3-receptor complexes with C6 cell chromatin was analysed after a limited digestion with micrococcal nuclease (MN) or DNase I. Both nucleases solubilized up to 60–70% of receptor and 0.4 M KCl extracted 70%, of the non-digested receptor, thus showing that only a residual fraction of receptor is associated with the nuclear matrix. With DNase I the receptor was released 2–3-fold faster than the bulk of chromatin, whereas a preferential release of receptor over total chromatin was not observed with MN. The digestion of receptor with DNase I and MN occurred 14- and 6-fold faster, respectively, than the appearance of PCA-soluble chromatin. Preincubation for 48 h with 4 nM T3 of 2 mM butyrate significantly altered receptor levels but did not change sensitivity to the nucleases. These results suggest that the thyroid hormone receptor is associated with chromatin highly sensitive to nuclease digestion, and that changes in receptor number are not associated with changes in its distribution in chromatin.  相似文献   

5.
Chromatin conformation has been analysed in the brain cortex of adult (24±2 weeks) and old (65±4 weeks) male and female mice. Nuclei purified from different groups of mice were digested with MNase and DNase I for varying time periods (0–90 min), and with endogenous endonucleases for 1 h. MNase and DNase I digestion kinetics showed that the percentage of acid solubility of chromatin was relatively lower in old than adult and in female than male. This was further supported by electrophoretic analysis of nuclease digested DNA fragments. When the nuclei were incubated with only Ca2+or mg2+, no endonuclease digestion was observed. However, under similar conditions, the liver DNA was cleaved substantially. When divalent cations were added together, they activated endogenous endonucleases and digested the brain chromatin. The activity of Ca2+/Mg2+-dependent endogenous endonucleases was higher in male than female. Thus the accessibility of chromatin to MNase, DNase I and endogenous endonucleases was higher in male than female, and MNase as well as DNase I were more active in adult than old. Such sex- and age-dependent conformation of chromatin may attribute to differential expression of genes in the mouse brain.  相似文献   

6.
We have examined in some detail the chromatin structure of a 6.2 kilobase pair (kbp) chromosomal region containing the chicken beta-globin gene. The chromatin structure was probed with three nucleases, DNase I, micrococcal nuclease, and DNase II, and the rate of digestion of specific subfragments of the region was compared with the rate of bulk DNA digestion. We have characterized the rate of digestion of each fragment in terms of a sensitivity factor which measures the sensitivity of a fragment to a particular nuclease relative to bulk DNA. The sensitivity factors were determined by a least squares curve fitting method based on target analysis. In nuclei isolated from 14-day-old chicken embryo red blood cells, the entire 6.2-kbp region shows approximately a 10- to 20-fold increase in sensitivity to DNase I, a 3-fold increased sensitivity to micrococcal nuclease, and a 6-fold increased sensitivity to DNase II. In addition to the adult beta-globin gene, this region contains 5' and 3' flanking sequences, the 5' half of the inactive, embryonic globin gene, epsilon, and some repeated sequences. There is no obvious correlation between these genetic elements and the overall chromatin structure as measured by the nuclease sensitivity. This same region shows little or no special sensitivity in nuclei isolated from 14-day-old chicken embryo brain. Furthermore, fragments of the inactive ovalbumin gene show little or no sensitivity in either red blood cells or brain. These results support the conclusion that the entire 6.2-kbp region is largely packaged as active chromatin in 14-day-old chicken embryo red blood cells.  相似文献   

7.
Studies on nuclease digestion of chromatin phosphorylated in vivo   总被引:1,自引:0,他引:1  
We have previously shown that, by culturing cells in hypertonic media, histone 2A becomes hyperphosphorylated (Pantazis, P., West, M. H. P., and Bonner, W. M. (1984) Mol. Cell. Biol. 4, 1186-1188). In the present study we have probed the effect of this histone modification on the overall chromatin structure by micrococcal nuclease and DNase I digestion. Although no significant quantitative differences in the extent of hydrolysis were observed between control and hyperphosphorylated chromatin by micrococcal nuclease, DNase I digested hyperphosphorylated chromatin at a 3- to 4-fold higher rate than unmodified chromatin.  相似文献   

8.
J L Feng  J Irving  B Villeponteau 《Biochemistry》1991,30(19):4747-4752
Although it is well-known that active domains of chromatin have elevated DNase I sensitivity, it can be difficult to observe preferential sensitivity in many cell types. We show that the DNase I sensitivity of active chromatin is enhanced some 10-fold by treating nuclei with the phosphatase inhibitor p-(chloromercuri)benzenesulfonic acid (CMBS) whereas DNase I sensitivity in inactive domains is only 3-fold higher. We further show that CMBS-enhanced DNase I sensitivity is associated with at least two histone modifications. First, the negatively charged CMBS molecule becomes covalently attached to the thiol groups on histone H3. Second, histone H2A phosphorylation is significantly elevated in treated nuclei. The phosphorylation data along with other results point to the possibility that H2A phosphorylation plays a role in enhancing preferential DNase I sensitivity. Whatever the mechanism, CMBS treatment of nuclei followed by DNase I digestion provides a novel and reproducible assay for probing the chromatin structure of active domains.  相似文献   

9.
Nick translation of nuclei of the brain of 3- 14- and 30-day old rats was carried out following their digestion by DNase I. The incorporation of 3H-dTMP at 14- and 30-day is significantly lower than at 3-day. This may be due to a lower proportion of active chromatin (DNase I hypersensitive sites) and condensation of chromatin with progressive development. When nuclei were digested by EcoRI and then nick-translated, the incorporation of 3H-dTMP showed the same pattern. Since the EcoRI sites are believed to be randomly distributed, the overall conformation of chromatin including the DNase I sensitive sites seems to undergo increasing compaction with development.  相似文献   

10.
 本实验对不同鼠龄(4—,16—17—,33—34—和99—103周)大鼠老化动物模型进行脑细胞核、染色质体外转录研究,结果表明:(1)大脑皮层细胞核、染色质转录活性在老化过程中呈下降趋势,其中RNA聚合酶Ⅰ、Ⅱ活性与染色质模板效率变化一致,说明染色质模板活性降低是导致细胞核转录功能减退的原因之一。(2)幼年鼠染色质RNA和NHCP含量高于老年鼠,提示染色质结合蛋白及RNA可能参与不同生理时期脑神经元染色质结构和功能的调节。(3)老年鼠脑染色质DNA抗DN-aseⅠ酶解能力增强,提示衰老导致转录活性染色质区域减少。  相似文献   

11.
12.
The cation-dependent solubilization of rat thymocyte chromatin has been compared with decondensation of the nuclei as a function of sodium phosphate-mediated changes in the concentration of Mg2+ and Na+. After digestion of the nuclei with DNase I or Micrococcus nuclease for a time just sufficient to permit extraction of a maximal amount of chromatin (minimum digestion), solubilization of most of the chromatin was found to occur with the same cation dependency as decondensation of untreated nuclei, while further digestion changed the ionic requirements for solubilization. The cation-dependency of the chromatin solubility and of the nuclear decondensation also exhibited the same variations with temperature. The chromatin in the nuclei became up to 4-times more sensitive to DNase I by decondensation, which also induced a shift in the DNase I cleavage mode from a 200 bp to a 100 bp repeat pattern. In contrast, the sensitivity to Micrococcus nuclease appeared to be nearly unchanged. These results suggest that solubilization of chromatin prepared by a mild endonuclease treatment occurs as a direct consequence of structural changes in the chromatin which take place during decondensation of the nuclei.  相似文献   

13.
Dynamic chromatin remodeling during B cell differentiation was identified in the vicinity of J chain gene. In pre-B cells, the enhancer-containing DNase I hypersensitive sites (HSSs) 3–4 were open. However, these HSSs 3–4 turned out to be unassociated with J chain gene expression, as the J chain promoter-containing HSS1 remained in a closed state. The open enhancer HSSs 3–4 in the pre-B cells might be related to the expression of a pre-B cell-specific gene upstream of the HSSs 3–4, which was identified in our Northern blot analyses. The HSSs 3–4 are then closed in the next immature and mature B cell stages until the IL-2 opens the HSSs 3–4 again as well as HSS1 to express J chain gene in the primary immune responses. The dynamic regulation of chromatin structure during B cell differentiation for the expression of two stage-specific genes will provide a good model system for the study of B cell differentiation and gene expression.  相似文献   

14.
Pancreatic DNase I was used as a probe to study DNA-protein interactions in condensed and extended chromatin fractions isolated from Chinese hamster liver, and in human lymphocyte and mouse L cell metaphase chromosomes in situ. By studying the rate of digestion of chromatin DNA by DNase, we have previously shown that DNA in extended chromatin is more sensitive to DNase digestion than that in condensed chromatin. In the current investigation, we have examined whether this differential sensitivity of the chromatin fractions to DNase is due to differences in protein binding to DNA or differences in the degree of chromatin condensation. By “decondensing” the condensed chromatin and comparing its rate of digestion to that of untreated condensed and extended chromatin, it was found that differences in the degree of binding of proteins to DNA rather than the degree of condensation of the chromatin primarily determines the sensitivity of each fraction to DNase. Extraction of the various classes of chromosomal proteins, followed by DNase digestion of the residual chromatin revealed that both the histone and non-histone proteins protect the DNA in the chromatin fractions from DNase attack; however, the more tightly associated non-histones appear to be specifically responsible for the differential sensitivity of the chromatin fractions to DNase digestion. These non-histones may be more tightly associated with the DNA in condensed than in extended chromatin, thereby protecting the DNA in condensed chromatin against DNase attack to a greater extent than that in extended chromatin. When metaphase chromosomes were briefly digested with DNase in situ and subsequently stained with Feulgen reagent, incontrovertible C-banding and some G-banding was obtained. This DNaseinduced banding demonstrates that the DNA in C-band and possibly G-band regions is less accessible to DNase than that in the interband regions, and our biochemical data suggest that this differential accessibility is caused by differential DNA-protein binding such that the non-histones are more tightly coupled to the DNA in the G- and C-band regions than they are in the interbands. Differences in the binding of non-histones to DNA in different segments of the metaphase chromosome may be involved in the mechanism of G- and C-banding.  相似文献   

15.
The effects of inhibiting histone deacetylation on the maturation of newly replicated chromatin have been examined. HeLa cells were labeled with [3H]thymidine in the presence or absence of sodium butyrate; control experiments demonstrated that butyrate did not significantly inhibit DNA replication for at least 70 min. Like normal nascent chromatin, chromatin labeled for brief periods (0.5-1 min) in the presence of butyrate was more sensitive to digestion with DNase I and micrococcal nuclease than control bulk chromatin. However, chromatin replicated in butyrate did not mature as in normal replication, but instead retained approximately 50% of its heightened sensitivity to DNase I. Incubation of mature chromatin in butyrate for 1 h did not induce DNase I sensitivity: therefore, the presence of sodium butyrate was required during replication to preserve the increased digestibility of nascent chromatin DNA. In contrast, sodium butyrate did not inhibit or retard the maturation of newly replicated chromatin when assayed by micrococcal nuclease digestion, as determined by the following criteria: 1) digestion to acid solubility, 2) rate of conversion to mononucleosomes, 3) repeat length, and 4) presence of non-nucleosomal DNA. Consistent with the properties of chromatin replicated in butyrate, micrococcal nuclease also did not preferentially attack the internucleosomal linkers of chromatin regions acetylated in vivo. The observation of a novel chromatin replication intermediate, which is highly sensitive to DNase I but possesses normal resistance to micrococcal nuclease, suggests that nucleosome assembly and histone deacetylation are not obligatorily coordinated. Thus, while deacetylation is required for chromatin maturation, histone acetylation apparently affects chromatin organization at a level distinct from that of core particle or linker, possibly by altering higher order structure.  相似文献   

16.
17.
Cell cycle variations in chromatin structure detected by DNase I   总被引:3,自引:0,他引:3  
We have recently developed a reproducible method for the use of DNase I as a sensitive probe of chromatin structure (Prentice, D A & Gurley, L R, Biochim biophys acta 740 (1983) 134) [12] and have used this probe to investigate chromatin structure during the interphase of the cell cycle. Chinese hamster cells (line CHO) were synchronized by: (1) mitotic detachment, to obtain M-phase cells; (2) isoleucine deprivation, to obtain G1-phase cells; and (3) sequential use of isoleucine deprivation followed by release into the presence of hydroxyurea, to obtain cells blocked at the start of S phase. The cells were released from the various blocking schemes and nuclei were isolated and digested with DNase I at various times. The digestion kinetics were monitored to detect possible changes in chromatin condensation through the cell cycle. The chromatin was much more accessible to DNase I in G1 phase than in S or G2 phase, with only small variations in structure detected in late G1 and very early S phase. From early S phase up to mitosis, the chromatin became increasingly condensed and inaccessible to DNase I action. These results support the concept of a chromatin condensation cycle during interphase as well as during mitosis.  相似文献   

18.
M Lundell  H G Martinson 《Biochemistry》1989,28(25):9757-9765
Active genes in higher eukaryotes reside in chromosomal domains which are more sensitive to digestion by DNase I than the surrounding inactive chromatin. Although it is widely assumed that some modification of higher order structure is important to the preferential DNase I sensitivity of active chromatin, this has so far not been tested. Here we show that the structural distinction between DNase I sensitive and resistant chromatin is remarkably stable to digestion by trypsin. Chick embryonic red blood cell nuclei were subjected to increasing levels of trypsin digestion and then assayed in the following three ways: (1) by gel electrophoresis for histone cleavage, (2) by sedimentation and nuclease digestion for loss of higher order structure, and (3) by dot-blot hybridization to globin and ovalbumin probes for disappearance of preferential DNase I sensitivity. We have found that chromatin higher order structure is lost concomitantly with the cleavage of histones H1, H5, and H3. In contrast, the preferential sensitivity of the globin domain to DNase I persists until much higher concentrations of trypsin, and indeed is not completely abolished even by the highest levels of trypsin we have used. We therefore conclude that the structural distinction of active chromatin, recognized by DNase I, does not reside at the level of higher order structure.  相似文献   

19.
20.
The use of DNAase I as a probe of chromatin structure is frequently fraught with problems of irreproducibility. We have recently evaluated this procedure, documented the sources of the problems, and standardized the method for reproducible results (Prentice and Gurley (1983) Biochim. Biophys. Acta 740, 134–144). We have now used this probe to detect differences in chromatin structure between cells blocked (1) in G1 phase by isoleucine deprivation, or (2) in early S phase by sequential use of isoleucine deprivation followed by release into the presence of hydroxyurea. The cells blocked in G1 phase have easily-digestible chromatin, while cells blocked in early S phase have chromatin which is much more resistant to DNAase I. These differences were found to be the result of diffusible factors found in the cytoplasm and nuclei of G1- and S-phase cells, respectively. The G1 cells contained a cytoplasmic factor which modulates the chromatin structure of S-phase nuclei to a more easily digestible state, while cells blocked in S phase contain a nuclear factor which modulates the chromatin structure of G1 nuclei to a state more resistant to digestion. DNAase I is much more sensitive to these cell cycle-specific chromatin changes than is micrococcal nuclease. The results indicate that, under controlled conditions, DNAase I should be a valuable probe for detecting chromatin structural changes associated with cell cycle traverse, differentiation, development, hormone action and chemical toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号