首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In six spontaneously breathing anesthetized dogs (pentobarbital sodium, 30 mg/kg) airflow, volume, and tracheal and esophageal pressures were measured. The active and passive mechanical properties of the total respiratory system, lung, and chest wall were calculated. The average passive values of respiratory system, lung, and chest wall elastances amounted to, respectively, 50.1, 32.3, and 17.7 cmH2O X l-1. Resistive pressure-vs.-flow relationships for the relaxed respiratory system, lung, and chest wall were also determined; a linear relationship was found for the former (the total passive intrinsic resistance averaged 4.1 cmH2O X l-1 X s), whereas power functions best described the others: the pulmonary pressure-flow relationship exhibited an upward concavity, which for the chest wall presented an upward convexity. The average active elastance and resistance of the respiratory system were, respectively, 64.0 cmH2O X l-1 and 5.4 cmH2O X l-1 X s. The greater active impedance reflects pressure losses due to force-length and force-velocity properties of the inspiratory muscles and those due to distortion of the respiratory system from its relaxed configuration.  相似文献   

2.
In six spontaneously breathing anesthetized cats (pentobarbital sodium, 35 mg/kg) we studied the antagonistic pressure developed by the inspiratory muscles during expiration (PmusI). This was accomplished in two ways: 1) with our previously reported method (J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1266-1271, 1982) based on the measurement of changes in lung volume and airflow during spontaneous expiration, together with determination of the total passive respiratory system elastance and resistance; and 2) measurement of the time course of changes in tracheal/pressure after airway occlusion at end inspiration, up to the moment when the inspiratory muscles become completely relaxed. The agreement between the two methods is generally good, both in the amplitude of PmusI and in its time course. We also applied the first method to spontaneous expirations through added linear resistive loads. These did not alter the relative decay of PmusI. Thus in anesthetized cats the braking action of the inspiratory muscles does not decrease when expiratory resistive loads are added, i.e., when such braking is clearly not required.  相似文献   

3.
In six spontaneously breathing anesthetized subjects [halothane approximately 1 maximum anesthetic concentration (MAC), 70% N2O-30% O2], we measured flow (V), volume (V), and tracheal pressure (Ptr). With airway occluded at end-inspiration tidal volume (VT), we measured Ptr when the subjects relaxed the respiratory muscles. Dividing relaxed Ptr by VT, total respiratory system elastance (Ers) was obtained. With the subject still relaxed, the occlusion was released to obtain the V-V relationship during the ensuing relaxed expiration. Under these conditions, the expiratory driving pressure is V X Ers, and thus the pressure-flow relationship of the system can be obtained. By subtracting the flow resistance of equipment, the intrinsic respiratory flow resistance (Rrs) is obtained. Similar measurements were repeated during anesthesia-paralysis (succinylcholine). Ers averaged 23.9 +/- 4 (+/- SD) during anesthesia and 21 +/- 1.8 cmH2O X 1(-1) during anesthesia-paralysis. The corresponding values of intrinsic Rrs were 1.6 +/- 0.7 and 1.9 +/- 0.9 cmH2O X 1(-1) X s, respectively. These results indicate that Ers increases substantially during anesthesia, whereas Rrs remains within the normal limits. Muscle paralysis has no significant effect on Ers and Rrs. We also provide the first measurements of inspiratory muscle activity and related negative work during spontaneous expiration in anesthetized humans. These show that 36-74% of the elastic energy stored during inspiration is wasted in terms of negative inspiratory muscle work.  相似文献   

4.
In five anesthetized paralyzed cats, mechanically ventilated with tidal volumes of 36-48 ml, the isovolume pressure-flow relationships of the lung and respiratory system were studied. The expiratory pressure was altered between 3 and -12 cmH2O for single tidal expirations. Isovolume pressure-flow plots for three lung volumes showed that the resistive pressure-flow relationships were curvilinear in all cases, fitting Rohrer's equation: P = K1V + K2V2, where P is the resistive pressure loss, K1 and K2 are Rohrer's coefficients, and V is flow. Values of K1 and K2 declined with lung inflation, consistent with the volume dependence of pulmonary (RL) and respiratory system resistances (Rrs). During lung deflation against atmospheric pressure, RL and Rrs tended to remain constant through most of expiration, resulting in a nearly linear volume-flow relationship. In the presence of a fixed respiratory system elastance, the shape of the volume-flow profile depended on the balance between the volume and the flow dependence of RL and Rrs. However, the flow dependence of RL and Rrs indicates that their measured values will be affected by all factors that modify expiratory flow, e.g., respiratory system elastance, equipment resistance, and the presence of respiratory muscle activity.  相似文献   

5.
Increasing lung volume improves upper airway airflow dynamics via passive mechanisms such as reducing upper airway extraluminal tissue pressures (ETP) and increasing longitudinal tension via tracheal displacement. We hypothesized a threshold lung volume for optimal mechanical effects on upper airway airflow dynamics. Seven supine, anesthetized, spontaneously breathing New Zealand White rabbits were studied. Extrathoracic pressure was altered, and lung volume change, airflow, pharyngeal pressure, ETP laterally (ETPlat) and anteriorly (ETPant), tracheal displacement, and sternohyoid muscle activity (EMG%max) monitored. Airflow dynamics were quantified via peak inspiratory airflow, flow limitation upper airway resistance, and conductance. Every 10-ml lung volume increase resulted in caudal tracheal displacement of 2.1 ± 0.4 mm (mean ± SE), decreased ETPlat by 0.7 ± 0.3 cmH(2)O, increased peak inspiratory airflow of 22.8 ± 2.6% baseline (all P < 0.02), and no significant change in ETPant or EMG%max. Flow limitation was present in most rabbits at baseline, and abolished 15.7 ± 10.5 ml above baseline. Every 10-ml lung volume decrease resulted in cranial tracheal displacement of 2.6 ± 0.4 mm, increased ETPant by 0.9 ± 0.2 cmH(2)O, ETPlat was unchanged, increased EMG%max of 11.1 ± 0.3%, and a reduction in peak inspiratory airflow of 10.8 ± 1.0%baseline (all P < 0.01). Lung volume, resistance, and conductance relationships were described by exponential functions. In conclusion, increasing lung volume displaced the trachea caudally, reduced ETP, abolished flow limitation, but had little effect on resistance or conductance, whereas decreasing lung volume resulted in cranial tracheal displacement, increased ETP and increased resistance, and reduced conductance, and flow limitation persisted despite increased muscle activity. We conclude that there is a threshold for lung volume influences on upper airway airflow dynamics.  相似文献   

6.
In five spontaneously breathing anesthetized subjects [halothane approximately 1 minimal alveolar concentration (MAC), 70% N2O, 30% O2], flow, changes in lung volume, and esophageal and airway opening pressure were measured in order to partition the elastance (Ers) and flow resistance (Rrs) of the total respiratory system into the lung and chest wall components. Ers averaged (+/- SD) 23.0 +/- 4.9 cmH2O X l-1, while the corresponding values of pulmonary (EL) and chest wall (EW) elastance were 14.3 +/- 3.2 and 8.7 +/- 3.0 cmH2O X l-1, respectively. Intrinsic Rrs (upper airways excluded) averaged 2.3 +/- 0.2 cmH2O X l-1 X s, the corresponding values for pulmonary (RL) and chest wall (RW) flow resistance amounting to 0.8 +/- 0.4 and 1.5 +/- 0.5 cmH2O X l-1 X s, respectively. Ers increased relative to normal values in awake state, mainly reflecting increased EL. Rw was higher than previous estimates on awake seated subjects (approximately 1.0 cmH2O X l-1 X s). RL was relatively low, reflecting the fact that the subjects had received atropine (0.3-0.6 mg) and were breathing N2O. This is the first study in which both respiratory elastic and flow-resistive properties have been partitioned into lung and chest wall components in anesthetized humans.  相似文献   

7.
Dependences of the mechanical properties of the respiratory system on frequency (f) and tidal volume (VT) in the normal ranges of breathing are not clear. We measured, simultaneously and in vivo, resistance and elastance of the total respiratory system (Rrs and Ers), lungs (RL and EL), and chest wall (Rcw and Ecw) of five healthy anesthetized paralyzed dogs during sinusoidal volume oscillations at the trachea (50-300 ml, 0.2-2 Hz) delivered at a constant mean lung volume. Each dog showed the same f and VT dependences. The Ers and Ecw increased with increasing f to 1 Hz and decreased with increasing VT up to 200 ml. Although EL increased slightly with increasing f, it was independent of VT. The Rcw decreased from 0.2 to 2 Hz at all VT and decreased with increasing VT. Although the RL decreased from 0.2 to 0.6 Hz and was independent of VT, at higher f RL tended to increase with increasing f and VT (i.e., as peak flow increased). Finally, the f and VT dependences of Rrs were similar to those of Rcw below 0.6 Hz but mirrored RL at higher f. These data capture the competing influences of airflow nonlinearities vs. tissue nonlinearities on f and VT dependence of the lung, chest wall, and total respiratory system. More specifically, we conclude that 1) VT dependences in Ers and Rrs below 0.6 Hz are due to nonlinearities in chest wall properties, 2) above 0.6 Hz, the flow dependence of airways resistance dominates RL and Rrs, and 3) lung tissue behavior is linear in the normal range of breathing.  相似文献   

8.
The effects of inspiratory flow rate and inflation volume on the resistive properties of the chest wall were investigated in six anesthetized paralyzed cats by use of the technique of rapid airway occlusion during constant flow inflation. This allowed measurement of the intrinsic resistance (Rw,min) and overall dynamic inspiratory impedance (Rw,max), which includes the additional pressure losses due to time constant inequalities within the chest wall tissues and/or stress adaptation. These results, together with our previous data pertaining to the lung (Kochi et al., J. Appl. Physiol. 64: 441-450, 1988), allowed us to determine Rmin and Rmax of the total respiratory system (rs). We observed that 1) Rw,max and Rrs,max exhibited marked frequency dependence; 2) Rw,min was independent of flow (V) and inspired volume (delta V), whereas Rrs,min increased linearly with V and decreased with increasing delta V; 3) Rw,max decreased with increasing V, whereas Rrs,max exhibited a minimum value at a flow rate substantially higher than the resting range of V; 4) both Rw,max and Rrs,max increased with increasing delta V. We conclude that during resting breathing, flow resistance of the chest wall and total respiratory system, as conventionally measured, includes a significant component reflecting time constant inequalities and/or stress adaptation phenomena.  相似文献   

9.
Partitioning of respiratory mechanics in mechanically ventilated patients.   总被引:3,自引:0,他引:3  
In ten mechanically ventilated patients, six with chronic obstructive pulmonary disease (COPD) and four with pulmonary edema, we have partitioned the total respiratory system mechanics into the lung (l) and chest wall (w) mechanics using the esophageal balloon technique together with the airway occlusion technique during constant-flow inflation (J. Appl. Physiol. 58: 1840-1848, 1985). Intrinsic positive end-expiratory pressure (PEEPi) was present in eight patients (range 1.1-9.8 cmH2O) and was due mainly to PEEPi,L (80%), with a minor contribution from PEEPi,w (20%), on the average. The increase in respiratory elastance and resistance was determined mainly by abnormalities in lung elastance and resistance. Chest wall elastance was slightly abnormal (7.3 +/- 2.2 cmH2O/l), and chest wall resistance contributed only 10%, on the average, to the total. The work performed by the ventilator to inflate the lung (WL) averaged 2.04 +/- 0.59 and 1.25 +/- 0.21 J/l in COPD and pulmonary edema patients, respectively, whereas Ww was approximately 0.4 J/l in both groups, i.e., close to normal values. We conclude that, in mechanically ventilated patients, abnormalities in total respiratory system mechanics essentially reflect alterations in lung mechanics. However, abnormalities in chest wall mechanics can be relevant in some COPD patients with a high degree of pulmonary hyperinflation.  相似文献   

10.
Thixotropy conditioning of inspiratory muscles consisting of maximal inspiratory effort performed at an inflated lung volume is followed by an increase in end-expiratory position of the rib cage in normal human subjects. When performed at a deflated lung volume, conditioning is followed by a reduction in end-expiratory position. The present study was performed to determine whether changes in end-expiratory chest wall and lung volumes occur after thixotropy conditioning. We first examined the acute effects of conditioning on chest wall volume during subsequent five-breath cycles using respiratory inductive plethysmography (n = 8). End-expiratory chest wall volume increased after conditioning at an inflated lung volume (P < 0.05), which was attained mainly by rib cage movements. Conditioning at a deflated lung volume was followed by reductions in end-expiratory chest wall volume, which was explained by rib cage and abdominal volume changes (P < 0.05). End-expiratory esophageal pressure decreased and increased after conditioning at inflated and deflated lung volumes, respectively (n = 3). These changes in end-expiratory volumes and esophageal pressure were greatest for the first breath after conditioning. We also found that an increase in spirometrically determined inspiratory capacity (n = 13) was maintained for 3 min after conditioning at a deflated lung volume, and a decrease for 1 min after conditioning at an inflated lung volume. Helium-dilution end-expiratory lung volume increased and decreased after conditioning at inflated and deflated lung volumes, respectively (both P < 0.05; n = 11). These results suggest that thixotropy conditioning changes end-expiratory volume of the chest wall and lung in normal human subjects.  相似文献   

11.
The decay of pressure developed by the inspiratory muscles during expiration (PmusI) has not been studied in subjects with increased respiratory impedance such as in kyphoscoliosis. PmusI was compared in 11 anesthetized patients with kyphoscoliosis with that in 11 anesthetized normal subjects. PmusI was obtained according to the following equation: PmusI(t) = Ers.V(t) - K1V(t) - K2V2(t), where V is volume and V is airflow at any instant t during spontaneous expiration, Ers is the passive elastance, and K1V + K2V2 is the flow resistance (curvilinear in both groups because of the endotracheal tube and the intrinsic resistance in the kyphoscoliotics) of the total respiratory system. Ers was determined by the relaxation method and resistance from the ensuing V-V relationships during the ensuing relaxed expiration. Changes in impedance due to pliometric work done by the inspiratory muscles during relaxation were neglected. Subjects in both groups showed marked braking of expiratory flow by PmusI. The mean time for PmusI to decrease to 50 and 0% amounted to 17 and 8% less, respectively, in the kyphoscoliosis group. Average values for flow-resistive work in the control and kyphoscoliosis groups both amounted to approximately 40% of the elastic energy stored during inspiration. The remaining portion, used as negative work, amounted to approximately 60% in both groups. Expiratory braking in anesthetized kyphoscoliotic patients appears to be in proportion to their magnitude of elastic recoil and intrinsic flow resistance.  相似文献   

12.
During resting breathing, expiration is characterized by the narrowing of the vocal folds which, by increasing the expiratory resistance, raises mean lung volume and airway pressure. This is even more pronounced in the neonatal period, during which expirations with short complete airway closure are commonly occurring. We asked to which extent differences in expiratory flow pattern may modify the inspiratory impedance of the respiratory system. To this aim, newborn puppies, piglets, and adult rats were anesthetized, paralyzed, and ventilated with different expiratory patterns, (a) no expiratory load, (b) expiratory resistive load, and (c) end-inspiratory pause. The stroke volume of the ventilator and inspiratory and expiratory times were maintained constant, and the loads were adjusted in such a way that inflation always started from the resting volume of the respiratory system. After 1 min of each ventilatory pattern, mean inspiratory impedance and compliance of lung and respiratory system were measured. The values were unchanged or minimally altered by changing the type of ventilation. We conclude that the expiratory laryngeal loading is not primarily aimed to decrease the work of breathing. It is conceivable that the expiratory pattern is oriented to increase and control mean airway pressure in the regulation of pulmonary fluid reabsorption, distribution of ventilation, and diffusion of gases.  相似文献   

13.
Pulmonary and chest wall mechanics in anesthetized paralyzed humans   总被引:3,自引:0,他引:3  
Pulmonary and chest wall mechanics were studied in 18 anesthetized paralyzed supine humans by use of the technique of rapid airway occlusion during constant-flow inflation. Analysis of the changes in transpulmonary pressure after flow interruption allowed partitioning of the overall resistance of the lung (RL) into two compartments, one (Rint,L) reflecting airway resistance and the other (delta RL) representing the viscoelastic properties of the pulmonary tissues. Similar analysis of the changes in esophageal pressure indicates that chest wall resistance (RW) was due entirely to the viscoelastic properties of the chest wall tissues (delta RW = RW). In line with previous measurements of airway resistance, Rint,L increased with increasing flow and decreased with increasing volume. The opposite was true for both delta RL and delta RW. This behavior was interpreted in terms of a viscoelastic model that allowed computation of the viscoelastic constants of the lung and chest wall. This model also accounts for frequency, volume, and flow dependence of elastance of the lung and chest wall. Static and dynamic elastances, as well as delta R, were higher for the lung than for the chest wall.  相似文献   

14.
In six sedated, anesthetized, paralyzed, and mechanically ventilated guinea pigs, total respiratory system (RT,rs), lung, and chest wall resistances and respiratory system (Est,rs), lung, and chest wall (Est,w) elastances were determined before and after longitudinal laparotomy. Furthermore the resistances were also split into their initial and difference components, with the former reflecting the Newtonian resistances and the latter representing the viscoelastic/inhomogeneous pressure dissipations in the system. For such purpose the end-inflation occlusion during constant inspiratory flow method was used. During laparotomy, a statistically significant increase in respiratory system difference resistance (from 0.086 to 0.101 cmH2O.ml-1.s) significantly augmented RT,rs (from 0.157 to 0.167 cmH2O.ml-1.s). The former was entirely secondary to a significant increase in chest wall difference resistance (0.019 to 0.034 cmH2O.ml-1.s), which naturally raised chest wall total resistance (from 0.030 to 0.047 cmH2O.ml-1.s). Est,rs and Est,w also increased (14.7 and 13.1%, respectively) after abdominal incision. It can be concluded that the midline xiphipubic laparotomy accompanied by the bilateral ventrodorsal infracostal incision increases RT,rs as a consequence of augmented chest wall difference resistance and Est,rs as a result of higher Est,w.  相似文献   

15.
With the use of the technique of rapid airway occlusion during constant flow inflation, respiratory mechanics were studied in eight anesthetized paralyzed supine normal humans during zero (ZEEP) and positive end-expiratory pressure (PEEP) ventilation. PEEP increased the end-expiratory lung volume by 0.49 liter. The changes in transpulmonary and esophageal pressure after flow interruption were analyzed in terms of a seven-parameter "viscoelastic" model. This allowed assessment of static lung and chest wall elastance (Est,L and Est,W), partitioning of overall resistance into airway interrupter (Rint,L) and tissue resistances (delta RL and delta RW), and computation of lung and chest wall "viscoelastic constants." With increasing flow, Rint,L increased, whereas delta RL and delta RW decreased, as predicted by the model. Est,L, Est,W, and Rint,L decreased significantly with PEEP because of increased lung volume, whereas delta R and viscoelastic constants of lung and chest wall were independent of PEEP. The results indicate that PEEP caused a significant decrease in Rint,L, Est,L, and Est,W, whereas the dynamic tissue behavior, as reflected by delta RL and delta RW, did not change.  相似文献   

16.
Pulmonary and chest wall mechanics were studied in six anesthetized paralyzed dogs, by use of the technique of rapid airway occlusion during constant flow inflation. Analysis of the pressure changes after flow interruption allowed us to partition the overall resistance of the lung (Rl) and chest wall (Rw) and total respiratory system (Rrs) into two components, one (Rinit) reflecting in the lung airway resistance (Raw), the other (delta R) reflecting primarily the viscoelastic properties of the pulmonary and chest wall tissues. The effects of varying inspiratory flow and inflation volume were interpreted in terms of frequency dependence of resistance, by using a spring-and-dashpot model previously proposed and substantiated by Bates et al. (Proc. 9th Annu. Conf. IEEE Med. Biol. Soc., 1987, vol. 3, p. 1802-1803). We observed that 1) Raw and Rw,init were nearly equal and small relative to Rl and Rw (both were unaffected by flow); 2) Rrs,init decreased slightly with increasing volume; 3) both delta Rl and delta Rw decreased with increasing flow and increased with increasing lung volume. These changes were manifestations of frequency dependence of delta R, as it is predicted by the model; 4) Rrs, Rl, and Rw followed the same trends as delta R. These results corroborate data previously reported in the literature with the use of different techniques to measure airways and pulmonary tissue resistances and confirm that the use of Rl to assess bronchial reactivity is problematic. The interrupter techniques provides a convenient way to obtain Raw values, as well as analogs of lung and chest wall tissue resistances in intact dogs.  相似文献   

17.
The effect of increasing arterial partial pressure of CO2 (PaCO2) on respiratory mechanics was investigated in six anesthetized, paralyzed cats ventilated by constant-flow inflation. Respiratory mechanics were studied after end-inspiratory occlusions. Zero frequency resistance (Rmax), infinite frequency resistance (Rmin), and static elastance (Est) were calculated for the respiratory system, lung, and chest wall. Alveolar ventilation was manipulated by the addition of dead space to achieve a range of PaCO2 values of 29.3-87.3 mmHg. Cats did not become hypoxic during the experiment. Under control conditions marked frequency dependence in Rmax, Rmin, and Est of the respiratory system, lungs, and chest wall was demonstrated. The chest wall contributed 50% of the total resistance of the respiratory system. With increasing PaCO2 the only resistance observed to increase was Rmax of the lung (P less than 0.01). There were also no changes in the static elastic properties of either the lungs or the chest wall. These results suggest that hypercapnia increases resistance by changes in the lung periphery and not in the conducting airways.  相似文献   

18.
19.
To describe the mechanical cycles of the upper and lower portions of the respiratory system, we measured volume change in and out of the isolated upper airway in 13 anesthetized dogs and compared volume changes in the upper airway with tidal volume change during spontaneous respiratory efforts. During inspiration the onset and peak increase in volume into the upper airway preceded the onset and peak of inspiratory tidal volume by 84 +/- 8 and 638 +/- 47 ms, respectively. The volume cycle of the upper airway was nearly complete by the end of inspiratory airflow into the thorax. With progressive hypercapnia there was an increase in the change in both upper airway volume and tidal volume but the temporal sequence was preserved. End-expiratory tracheal occlusion increased the volume change in the isolated upper airway at any level of CO2; however, the effect was disproportionately greater at low rather than at high levels of CO2. Following hyperventilation-induced apnea, a change in volume in the upper airway and thorax occurred on the first inspiratory effort. In most animals at lower levels of CO2, the percent change in upper airway volume with inspiration was relatively less than tidal volume, but the reverse was true at higher levels of CO2. These differences represent dissimilarities in the mechanical forces occurring as the result of upper airway and chest wall muscle contraction during inspiration.  相似文献   

20.
A numerical algorithm has been developed for the estimation of the mechanical parameters of the human respiratory system. In order to estimate the pulmonary resistance and the dynamic pulmonary elastance, the transpulmonary pressure and the airflow at the mouth or nose are expanded in Chebyshev series. The nonlinear mathematical lung model and a set of measurements for airflow and pressure are then handled by the numerical technique. The lung model includes a component to account for turbulent flow in the larynx and trachea. This contribution presents an alternative method for lung parameter estimation and differs from most existing methods in that it does not need measurements for the tidal volume. It therefore eliminates the use of a body plethysmograph. The method may also find potential application to various other parameter identification problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号