首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the kinetics of synthesis and secretion of the acute phase plasma protein, C-reactive protein, in primary hepatocyte cultures prepared from rabbits manifesting differing degrees of the acute phase response to inflammatory stimulus. In cultures prepared from progressively more responsive animals, rate of C-reactive protein secretion increased to a much greater degree than did intracellular C-reactive protein content, resulting in a progressive decrease in the ratio of intracellular content to rate of secretion. This ratio, which represents the time required to secrete the amount of C-reactive protein contained within the intracellular pool, decreased from 18 h in cultures from unstimulated rabbits to 2.5 h in cells from highly responsive animals. In contrast, these ratios for albumin were short and fell within a narrow range (0.8-2.1 h). In pulse-chase labeling experiments, the time required for secretion of 50% of pulse-labeled C-reactive protein varied markedly, ranging from well over 6 h in cells from a minimally responsive animal to about 75 min in cells from a highly responsive rabbit. In contrast, the half-time for secretion of albumin was consistently about 45 min in the same cultures. Taken together, these findings indicate that the process by which C-reactive protein is secreted becomes more efficient during the course of the acute phase response. Recent studies have indicated that secretory proteins pass from the rough endoplasmic reticulum to Golgi at different and characteristic rates, possibly by a receptor-mediated process in which rate of transfer is determined by receptor affinity. We postulate that C-reactive protein secretion is regulated, during the course of the acute phase response, either by alterations in availability of specific receptors or by competition between different secretory proteins for a common receptor.  相似文献   

2.
We have shown that nitric oxide production is dramatically decreased in rat primary hepatocyte cultures exposed to galactosamine. Cotreatment of the cells with uridine, which is known to prevent cytotoxicity, was found to also attenuate NO loss. In the present study, two possible mechanisms for the decreased nitric oxide production were examined. First, we examined the possibility that galactosamine could interfere with the uptake of extracellular arginine by the cultured hepatocytes. Cellular uptake of arginine was determined after addition of 14C-arginine at the time of hepatocyte attachment. Uptake of arginine was rapid in control cultures, and both the rate and level of uptake were unchanged by the addition of a cytotoxic concentration of galactosamine (4 mM). In addition, increased concentrations of arginine in the cell culture medium did not ameliorate the galactosamine-induced decrease in production of nitric oxide. Second, we determined whether the synthesis of inducible nitric oxide synthase in the hepatocyte cultures was inhibited by addition of galactosamine. Hepatocyte levels of inducible nitric oxide synthase were determined immunochemically at various times after the addition of galactosamine (4 mM). In control cultures, inducible nitric oxide synthase was detectable at 7 and 24 hours after attachment. In contrast, no nitric oxide synthase protein was detectable at any time in the galactosamine-treated cultures. Furthermore, addition of galactosamine after inducible nitric oxide synthase had already been synthesized (6.5 h after attachment) did not result in suppression of nitric oxide production in the hepatocyte cultures. The present studies suggest that galactosamine suppresses nitric oxide production in hepatocyte cultures by inhibiting synthesis of inducible nitric oxide synthase, rather than by interference in cellular uptake of arginine.  相似文献   

3.
In polyoma-infected mouse kidney cell cultures 5S RNA synthesis began to increase around 16 h, i.e. 7-9 h after the onset of polyoma T-antigen synthesis. The rate of polyoma-induced 5S RNA synthesis reached a maximum plateau around 25 h when it was 1.8-2.0 times higher than in mock-infected parallel cultures. Stimulation of 5S RNA synthesis in vivo thus coincided in time with the increase in total cellular RNA and protein. Cell-free extracts (S100) prepared at 15 h from mock-(S100-M) or polyoma-infected (S100-Py) mouse kidney cell cultures were indistinguishable with respect to protein concentration and 5S RNA synthesis, using a cloned somatic Xenopus borealis 5S gene as template. S100-Py extracted 25 h after infection contained 30% more protein and synthesized 1.5-2.0 times more 5S RNA than S100-M. Complete removal of the polyoma T-antigens from S100-Py by 3 cycles of immunoprecipitation with hamster anti-T serum remained without effect on stimulated 5S RNA synthesis. However, a linear relationship between 5S RNA synthesis and protein concentration of S100-M and S100-Py was observed.  相似文献   

4.
Rates of collagen and non-collagen protein synthesis in rabbit arterial smooth muscle cells (SMC) were determined by using the specific (radio)activity of [3H]proline in the extracellular, intracellular, and prolyl-tRNA pools. The intracellular free proline specific activity was only 25% of the extracellular value in cultures incubated for 12 h in 0.25 mM-proline. The specific activity of prolyl-tRNA was less than 10% of the extracellular specific activity. Increasing the extracellular proline concentration 10-fold (to 2.5 mM), while keeping the extracellular specific activity of proline constant, resulted in equilibration of the specific activities of intracellular and extracellular free proline, but the specific activity of prolyl-tRNA remained at less than 10% of the extracellular specific activity. Therefore, calculated rates of collagen and non-collagen protein synthesis were greatly underestimated using the intracellular or extracellular specific activity of proline. SMC were also incubated with 0.1 mM-[14C]ornithine in 0.25 nM or 2.5 mM non-labelled proline to examine synthesis de novo of proline and prolyl-tRNA from ornithine. In SMC cultures containing 0.25 mM unlabelled proline, the specific activity of intracellular ornithine was approx. 45% of the extracellular specific activity, due to the production of unlabelled ornithine. The specific activity of ornithine-derived intracellular free proline in SMC incubated with 2.5 mM-proline was significantly lower than in SMC incubated in 0.25 mM-proline, due to the influx of unlabelled proline. However, a corresponding difference in the specific activity of [14C]prolyl-tRNA between SMC in 0.25 mM- or 2.5 mM-proline was not observed. Ornithine-derived [14C]proline was incorporated into proteins in a manner different from that of exogenously added radiolabelled proline. A much higher proportion of the proline synthesized de novo was channelled into collagen synthesis relative to total protein synthesis. Together, these results show that intracellular proline pools are highly compartmentalized in arterial SMC. They also suggest that proline synthesized from ornithine may enter a prolyl-tRNA pool separate from that of proline entering from the extracellular medium.  相似文献   

5.
Regulation of rabbit acute phase protein biosynthesis by monokines.   总被引:4,自引:0,他引:4       下载免费PDF全文
We defined the acute phase behaviour of a number of rabbit plasma proteins in studies (in vivo) and studied the effects of monokine preparations on their synthesis by rabbit primary hepatocyte cultures. Following turpentine injection, increased serum levels of C-reactive protein, serum amyloid A protein, haptoglobin, ceruloplasmin, and decreased concentrations of albumin were observed. In contrast to what is observed in man, concentrations of alpha 2-macroglobulin and transferrin were increased. Co-culture of primary hepatocyte cultures with lipopolysaccharide-activated human peripheral blood monocytes or incubation with conditioned medium prepared from lipopolysaccharide-activated human or rabbit monocytes resulted in dose-dependent induction of serum amyloid A, haptoglobin, ceruloplasmin and transferrin and depression of albumin synthesis, while C-reactive protein synthesis and mRNA levels remained unchanged. A variety of interleukin-1 preparations induced dose-dependent increases in the synthesis and secretion of serum amyloid A, haptoglobin, ceruloplasmin and transferrin and decreased albumin synthesis. Human recombinant tumour necrosis factor (cachectin) induced a dose-dependent increase in synthesis of haptoglobin and ceruloplasmin. In general, human interleukin-1 was more potent than mouse interleukin-1 and tumour necrosis factor. None of the monokines we studied had an effect on C-reactive protein synthesis or mRNA levels. These data confirm that C-reactive protein, serum amyloid A, haptoglobin and ceruloplasmin display acute phase behaviour in the rabbit, and demonstrate that, in contrast to their behaviour in man, alpha 2M and transferrin are positive acute phase proteins in this species. While both interleukin-1 and tumour necrosis factor regulate biosynthesis of a number of these acute phase proteins in rabbit primary hepatocyte cultures, neither of these monokines induced C-reactive protein synthesis. Comparison of these findings with those in human hepatoma cell lines, in which interleukin-1 does not induce serum amyloid A synthesis, suggests that the effect of interleukin-1 on serum amyloid A synthesis may be indirect.  相似文献   

6.
Primary myogenic cell cultures derived from 12-day embryos of genetically fast-growing chickens (fast cultures) and slow-growing chickens (slow cultures) were grown under identical conditions to examine differences in growth and differentiation at the cellular level. The two types of cultures exhibited significant (P less than 0.01) differences in proliferation, protein accumulation, response to the addition of insulin to the culture medium and the amount of insulin bound per nucleus. The fast cultures exhibited a larger number of both total nuclei and fused nuclei at 48, 72 and 96 h in culture, accumulated more protein per nucleus at 24, 48 and 72 h in culture and demonstrated a greater response to the addition of insulin to the culture medium, as reflected by increased fusion rate and protein accumulation at 24 h in culture. Maximal response to insulin in both types of cultures was obtained at 24 h to added insulin concentrations of 10(-10)-10(-9) M. Slow cultures bound more [125I]-insulin than fast cultures at 24 h in culture. These experiments suggest that different muscle growth potentials in animals of the same species are at least partly due to intrinsic cellular differences in the myogenic cells that give rise to adult muscle tissue.  相似文献   

7.
Transforming growth factor beta (TGF-beta) enhances the cell surface binding of 125I-fibronectin by cultured human fibroblasts. The effect of TGF-beta on cell surface binding was maximal after 2 h of exposure to TFG-beta and did not require epidermal growth factor or protein synthesis. The enhancement was dose dependent and was found with the 125I-labeled 70-kilodalton amino-terminal fragment of fibronectin as well as with 125I-fibronectin. Treatment of cultures with TGF-beta for 6 h resulted in a threefold increase in the estimated number of fibronectin binding sites. The increase in number of binding sites was accompanied by an increased accumulation of labeled fibronectin in detergent-insoluble extracellular matrix. The effect of TGF-beta was biphasic; after 6 h of exposure, less labeled fibronectin bound to treated cultures than to control cultures. Exposure of cells to TGF-beta for greater than 6 h caused a two- to threefold increase in the accumulation of cellular fibronectin in culture medium as detected by a quantitative enzyme-linked immunosorbent assay. The second phase of the biphasic effect and the increase in soluble cellular fibronectin were blocked by cycloheximide. Immunofluorescence staining of fibroblast cultures with antifibronectin revealed that TGF-beta caused a striking increase in fibronectin fibrils. The 70-kilodalton amino-terminal fragment of fibronectin, which blocks incorporation of fibronectin into extracellular matrix, blocked anchorage-independent growth of NRK-49F cells in the presence of epidermal growth factor. Our results show that an increase in the binding and rate of assembly of exogenous fibronectin is an early event preceding the increase in expression of extracellular matrix proteins. Such an early increase in cell surface binding of exogenous fibronectin may be a mechanism whereby TGF-beta can modify extracellular matrix characteristics rapidly after tissue injury or during embryonic morphogenesis.  相似文献   

8.
We have determined the half-lives and amounts per hepatocyte of the polymeric IgA receptor (pIgA-R) and four rat hepatocyte plasma membrane proteins and subsequently have predicted their rates of synthesis and possible routes of degradation. Using in vivo pulse-chase metabolic labeling with L-[35S]cysteine, we found that the pIgA-R had an apparent half-life of 1.1 h. Additional metabolic labeling experiments showed that CE9, HA4, and HA321 had apparent half-lives of 4-5 days, and dipeptidyl peptidase IV had an apparent half-life of 9 days. To quantify the amount of each protein per hepatocyte, homogenates and a standard curve of purified protein were compared by immunoblotting. We found that these proteins were present at 1-8 x 10(6) molecules/hepatocyte. The calculated rate of synthesis for pIgA-R was 1.6 x 10(6) molecules/hepatocyte/h, whereas the others were synthesized at much lower rates (0.9-5 x 10(4) molecules/hepatocyte/h). Using immunoblot analysis, we found that pIgA-R was released into bile at a rate of 30%/h (700%/day), whereas dipeptidyl peptidase IV and HA4 were released at a rate of 2-3%/day. While the majority of the loss of pIgA-R from hepatocytes occurred by release into the bile, less than 30% of the degradation of dipeptidyl peptidase IV and HA4 could be accounted for by this pathway, suggesting that the remaining molecules must be retrieved from the apical surface before degradation.  相似文献   

9.
Previously we demonstrated synchronized oscillations of protein synthesis rate in hepatocyte cultures upon accumulation of monosialoganglioside GM1 in the medium or after introduction of exogenous GM1 to the medium. The synchronized oscillations of the protein synthesis rate in dense hepatocyte cultures were blocked 30 min after their treatment with 10–20 M BAPTA-AM, a chelating agent of cytoplasmic calcium. Enzyme immunoassay for GM1 demonstrated similar amounts of GM1 in the medium conditioned for 3 h by dense hepatocyte cultures pretreated with 20 M BAPTA-AM for 1 h and in the medium of normal dense cultures: 0.0060 ± 0.0005 and 0.0055 ± 0.0005 pmol/1000 cells, respectively. The content of GM1 was also similar in the normal and BAPTA-AM-pretreated hepatocytes: 0.158 ± 0.013 and 0.183 ± 0.014 pmol/1000 cells, respectively. The synchronized rhythm of protein synthesis has been confirmed in the diluted cultures in the medium conditioned by the normal dense cultures. However, the medium conditioned by the dense cultures pretreated with BAPTA-AM induced no synchronization of the diluted cultures. Since GM1 concentration was normal in this medium, we propose the effect of a physicochemical form of the gangliosides accumulated in the medium on their ability to synchronize the rhythm of protein synthesis.  相似文献   

10.
Summary Monolayer cultures were prepared from hepatocytes of 15 d chick embryos and maintained at high cell density in a chemically defined medium. In the absence of growth stimulatory conditions DNA synthesis was observed only during the first 10 to 16 h of culture. Thus, after a 12 h exposure to [3H]thymidine ([3H]dThd, 4 to 16 h) 9.1±1% ( ,n=4) of the hepatocyte nuclei were labeled. Labeled mitotic nuclei, up to late telophase, were regularly observed in these cultures. Beyond 16 h less than 2% labeled nuclei were found (12 h of [3H]dThd), which indicates that the hepatocytes entered proliferative quiescence. DNA synthesis of “resting” hepatocytes was stimulated by insulin and, only slightly, by hydrocortisone, glucagon, or fetal bovine serum. Triiodothyronine (T3), or the nucleoside inosine (i) did not stimulate. Combination of insulin (I) with hydrocortisone (H), T3 (T), or glucagon (G) resulted in a more than additive effect. Nearly maximal stimulation occurred with the combinations IHT and ITG. Labeling increased at 10 ng/ml of each component and was maximal at 1 to 10 μg/ml. A lag period of 8 to 10 h after hormone administration (IHiTG, 10 μg/ml) was observed before nuclear labeling increased. Within the subsequent 10 h a considerable proportion of the hepatocytes (up to 30% or more) entered DNA synthesis. Mitotic activity (with nuclei in prophase up to late telophase) also was stimulated. An increase of both total DNA and protein content was measured in several experiments. Hormonal stimulation of hepatocyte DNA synthesis and mitotic activity was associated with decreased β-naphthoflavone-mediated induction of cytochrome P450. A causal relationship between these two phenomena remains to be established. It is suggested that chick embryo hepatocyte cultures are a useful tool for studies on hepatocyte proliferation and differentiation. The present study is based on original observations by Dr. F. R. Althaus (presently at the Institute of Pharmacology and Biochemistry, University of Zürich, Switzerland). This contribution of his and his incisive criticism are acknowledged. The study was supported by Grant 3.893.81 from the Swiss National Research Foundation.  相似文献   

11.
C J Malemud  R S Papay 《FEBS letters》1984,167(2):343-351
The effects of N6,O2'-dibutyryladenosine 3':5'-cyclic monophosphate (DBcAMP), 8-bromoadenosine 3':5'-cyclic monophosphate (8Br-cAMP), 3':5'-cyclic monophosphate (cAMP), L-isoproterenol and L-epinephrine on sulfated-proteoglycan synthesis by rabbit articular chondrocytes were compared. DBcAMP and 8Br-cAMP in the presence or absence of 3-isobutyl-1-methylxanthine (IBMX) stimulated sulfated-proteoglycan biosynthesis after 20 h of incubation. cAMP had no significant effect. Both DBcAMP and 8Br-cAMP increased the hydrodynamic size of the newly synthesized proteoglycan monomer (A1D1) relative to control cultures. By contrast, although isoproterenol and epinephrine stimulated total cAMP synthesis, neither stimulated sulfated-proteoglycan synthesis. Whereas intracellular cAMP accumulated after incubation with DBcAMP and 8Br-cAMP, this was not the case with isoproterenol whether IBMX was present or not. Thus, stimulation of sulfated-proteoglycan synthesis by cAMP analogues in chondrocyte cultures appears to be dependent on increased intracellular cAMP accumulation rather than total cAMP biosynthesis.  相似文献   

12.
The effects of ascorbic acid on collagen biosynthesis were studied in primary cultures of fibroblasts from chick embryo tendons. Addition of ascorbate to the cultures increased the rate of synthesis of procollagen hydroxyproline, but the effect was not explained by activation of prolyl hydroxylase as has been seen in other cell cultures. Instead the increase in the rate of hydroxyproline synthesis appeared to be the result of some direct cofactor effect of the vitamin. In the presence of ascorbate, most of the newly synthesized procollagen was hydroxylated and became triple helical. In the absence of ascorbate, the overall degree of hydroxylation in newly synthesized procollagen was reduced, but a small fraction of newly synthesized procollagen was near-maximally hydroxylated and became triple helical. When cultures were exposed to ascorbic acid for more than 6 h, there was an increase in rate of protein synthesis, rate of procollagen synthesis, and fraction of membrane-bound ribosomes. The increases in these parameters in the presence of ascorbate appeared to be a secondary effect produced by the accumulation of stable triple-helical procollagen in the culture system.  相似文献   

13.
Collagen synthesis was monitored in cultures of rabbit arterial smooth muscle cells (SMC). Both the rate of collagen synthesis per cell and collagen synthesis as a percent of total protein synthesis were measured at specific intervals from 1 to 14 days after inoculation of smooth muscle cells. The proportions of types I and III collagen present in the conditioned incubation medium and in the cell layer were also examined. After inoculation the cells displayed population expansion typical of SMC in which growth slowed but did not cease after the cells attained confluence. Collagen synthesis rates, expressed as [14C]hydroxyproline per cell, were eight-fold higher in preconfluent cells. In these cultures collagen accounted for more than 20% of the newly synthesized, 14C-labeled protein present as trichloroacetic acid (TCA)-insoluble material in 24 h culture media. In post-confluent cultures, this percentage was reduced to about 7% of the total protein synthesized. Synthesis rates of both collagen and non-collagen protein decreased with increasing time after inoculation. However, the rate of decline of collagen synthesis was three times greater than that seen for non-collagen protein. Early cultures synthesized relatively more type I than type III procollagen. The type I to type III ratio was highest at day 3 and declined after that time to day 14. While the synthesis of both types decreased with increasing age, type I declined at a greater rate resulting in a predominance of type III procollagen secretion by older cultures. We conclude that protein synthesis in general and collagen synthesis in particular are quantitatively and qualitatively dependent upon the growth stage of SMC in vitro.  相似文献   

14.
Hepatocytes are stimulated to produce nitric oxide (NO.) from L-arginine in response to conditioned Kupffer cell medium or a combination of cytokines. Associated with the production of NO.in hepatocytes, there is a profound decrease in total protein synthesis ([3H]leucine incorporation). This report demonstrates that authentic NO.and the NO.-generating compound S-nitroso-N-acetylpenicillamine inhibit hepatocyte total protein synthesis in a reversible and concentration-dependent fashion. In parallel with the suppression of hepatocyte total protein synthesis, authentic NO.inhibits the production of two specific hepatocyte proteins, albumin and fibrinogen, without influencing the quantity of albumin mRNA. Although authentic NO.induces a rapid increase in cGMP levels in hepatocytes, the addition of the cGMP analog 8-bromoguanosine 3':5' cyclic monophosphate to unstimulated HC cultures does not reproduce the inhibition of total protein synthesis. These data show that NO.is the hepatocyte L-arginine metabolite that inhibits protein synthesis. Furthermore, these findings indicate that NO.does not inhibit hepatocyte protein synthesis solely through the activation of soluble guanylate cyclase but appears to affect a translational or posttranslational process.  相似文献   

15.
Ribosome contents of growing and 12-h-starved Tetrahymena pyriformis (strain B) were compared. These studies indicate that (a) starved cells contain 74% of the ribosomes found in growing cells, (b) growing cells devote 20% of their protein synthetic activity to ribosomal protein production, and (c) less than 3% of the protein synthesized in starved cells is ribosomal protein. Ribosome metabolism was also studied in starved cells which had been refed. For the first 1.5 h after refeeding, there is no change in ribosome number per cell. Between 1.5 and 2 h, there is an abrupt increase in rate of ribosome accumulation but little change in rate of cell division. By 3.5 h, the number of ribosomes per cell has increased to that found in growing cells. At this time, the culture begins to grow exponentially at a normal rate. During the first 2 h after refeeding, cells devote 30-40% of their protein synthetic activity to ribosomal protein production. We estimate that the rate of ribosomal protein synthesis per cell increases at least 80-fold during the first 1-1.5 h after refeeding, reaching the level found in exponentially growing cells. This occurs before any detectable change in ribosome number per cell. The transit time for the incorporation of these newly synthesized proteins into ribosomes is from 1 to 2 h during early refeeding, whereas in exponentially growing cells it is less than 30 min. The relationship between ribosomal protein synthesis and ribosome accumulation is discussed.  相似文献   

16.
Studies of fibronectin synthesized by cultured chick hepatocytes   总被引:3,自引:0,他引:3  
We have adapted a chick embryo liver cell system for studying the synthesis of proteins secreted by hepatocytes. In primary liver cell cultures maintained for several days in arginine-deficient medium containing ornithine (0.7 mM) and carbamyl phosphate (1 mM), only hepatocytes demonstrated normal morphological and biosynthetic characteristics, indicating that they possessed a functional ornithine cycle as a source of arginine production. Non-parenchymal liver cells, such as fibroblasts, which lack the ornithine cycle were excluded. Hepatocytes in arginine-deficient or arginine-containing medium synthesized fibronectin (Fn) over several days at a constant rate of 3 micrograms +/- 1 microgram/mg cell protein per day, with fibronectin representing approximately 3% of the total secreted hepatocyte proteins during any culture period after the first 24 h. Pulse-chase experiments indicated that Fn synthesis and secretion was relatively rapid (t1/2 = 45 min) and represented approximately 95% of the intracellularly labelled Fn. This Fn is secreted predominantly as a 450 kD dimer with a subunit size that is indistinguishable from the plasma form as assessed by one-dimensional electrophoretic analysis. Continuous exposure of hepatocytes to insulin caused a moderate decrease (26%) in Fn synthesis, whereas there was no effect of short-term exposure. In contrast, dexamethasone stimulated Fn production 2-3-fold, consistent with its known ability to stimulate hepatocyte production of acute phase proteins. Under these conditions, electrophoretic analyses showed that an increased quantity of intact hepatocyte Fn was produced having the same molecular size of plasma Fn.  相似文献   

17.
Initial studies are reported on the catecholamine metabolism of low-density cultures of dissociated primary sympathetic neurons. Radioactive tyrosine was used to study the synthesis and breakdown of catecholamines in the cultures. The dependence of catecholamine synthesis and accumulation on external tyrosine concentration was examined and a concentration which is near saturation, 30 µM, was chosen for further studies. The free tyrosine pool in the nerve cells equilibrated with extracellular tyrosine within 1 h; the total accumulation of tyrosine (free tyrosine plus protein, catecholamines, and metabolites) was linear for more than 24 h of incubation. Addition of biopterin, the cofactor of tyrosine hydroxylase, only slightly enhanced catecholamine biosynthesis by the cultured neurons. However, addition of reduced ascorbic acid, the cosubstrate for dopamine β-hydroxylase, markedly stimulated the conversion of dopamine (DA) to norepinephrine (NE). Phenylalanine, like tyrosine, served as a precursor for some of the DA and NE produced by the cultures, but tyrosine always accounted for more than 90% of the catecholamines produced. The DA pool labeled rapidly to a saturation level characteristic of the age of the culture. The NE pool filled more slowly and was much larger than the DA pool. The disappearance of radioactive NE and DA during chase experiments followed a simple exponential curve. Older cultures showed both more rapid production and more rapid turnover of the catecholamines than did younger cultures, suggesting a process of maturation.  相似文献   

18.
19.
Density-inhibited, serum-stimulated, and SV40 virus-transformed BALB/c 3T3 cultures were compared with respect to the rates of accumulation of cytoplasmic RNA molecules and with respect to the distribution of newly synthesized messenger RNA (mRNA) between polyribosomes and the post-ribosomal cell fraction. mRNA was isolated and quantitated by virtue of its association with radioactive polyadenylate (poly(A))-synthesized during a 90 min exposure of the cultures to 3H-adenosine. The rate of accumulation of cytoplasmic poly(A) rose slowly after serum stimulation and reached a value of 1.8 times that of resting cultures at 12 h after serum stimulation, which was also the time of onset of DNA synthesis. A change in the cytoplasmic distribution of newly synthesized poly(A) occurred more rapidly than the change in the rate of its synthesis, however. Resting cultures contained 37% of newly synthesized cytoplasmic poly(A)-containing RNA large enough to be mRNA in the post-ribosomal cell fraction, whereas virtually all of this material was found in polyribosomes at 3, 6 and 12 h after stimulation and in transformed cultures. The relatively infrequently translated mRNA of resting cultures was shown to be functional by cycloheximide treatment. (All BALB/c 3T3 cultures, resting or stimulated, contained about 20% of newly synthesized cytoplasmic poly(A) as nearly pure poly(A) in molecules of 4–6 Svedbergs in size, presumably too small to be mRNA.) We conclude that serum stimulation of density-inhibited cultures resulted in a more efficient use of the protein-synthesizing ability of the cell, and that the change in efficiency preceded increases in numbers of ribosomes and mRNA molecules.  相似文献   

20.
Glycogen Formation by the Ruminal Bacterium Prevotella ruminicola   总被引:1,自引:1,他引:0       下载免费PDF全文
Prevotella ruminicola is an important ruminal bacteria. In maltose-grown cells, nearly 60% of cell dry weight consisted of high-molecular-weight (>2 x 10(sup6)) glycogen. The ratio of glycogen to protein (grams per gram) was relatively low (1.3) during exponential growth, but when cell growth slowed during the transition to the stationary phase, the ratio increased to 1.8. As much as 40% of the maltose was converted to glycogen during cell growth. Glycogen accumulation in glucose-grown cells was threefold lower than that in maltose-grown cells. In continuous cultures provided with maltose, much less glycogen was synthesized at high (>0.2 per h) than at low dilution rates, where maltose was limiting (28 versus 60% of dry weight, respectively). These results indicated that glycogen synthesis was stimulated at low growth rates and was also influenced by the growth substrate. In permeabilized cells, glycogen was synthesized from [(sup14)C]glucose-1-phosphate but not radiolabelled glucose, indicating that glucose-1-phosphate is the initial precursor of glycogen formation. Glycogen accumulation may provide a survival mechanism for P. ruminicola during periods of carbon starvation and may have a role in controlling starch fermentation in the rumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号