首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Drosophila melanogaster, serotonin (5-hydroxytryptamine, 5-HT) is required for both very early non-neuronal developmental events, and in the CNS as a neurotransmitter to modulate behavior. 5-HT is synthesized, at least in part, by the actions of Drosophila tryptophan-phenylalanine hydroxylase (DTPH), a dual function enzyme that hydroxylates both phenylalanine and tryptophan. DTPH is expressed in numerous tissues as well as dopaminergic and serotonergic neurons, but it does not necessarily function as both enzymes in these tissues. Deficiencies in DTPH could affect the production of dopamine and serotonin, and thus dopaminergic and serotonergic signaling pathways. In this paper, we show that DTPH exhibits differential hydroxylase activity based solely on substrate. When DTPH uses phenylalanine as a substrate, regulatory control (end product inhibition, decreased PAH activity following phosphorylation, catecholamine inhibition) is observed that is not seen when the enzyme uses tryptophan as a substrate. These studies suggest that regulation of DTPH enzymatic activity occurs, at least in part, through the actions of its substrate.  相似文献   

2.
In Drosophila, one enzyme (Drosophila tryptophan-phenylalanine hydroxylase, DTPHu) hydroxylates both tryptophan to yield 5-hydroxytryptophan, the first step in serotonin synthesis, and phenylalanine, to generate tyrosine. Analysis of the sequenced Drosophila genome identified an additional enzyme with extensive homology to mammalian tryptophan hydroxylase (TPH), which we have termed DTRHn. We have shown that DTRHn can hydroxylate tryptophan in vitro but displays differential activity relative to DTPHu when using tryptophan as a substrate. Recent studies in mice identified the presence of two TPH genes, Tph1 and Tph2, from distinct genetic loci. Tph1 represents the non-neuronal TPH gene, and Tph2 is expressed exclusively in the brain. In this article, we show that DTRHn is neuronal in expression and function and thus represents the Drosophila homologue of Tph2. Using a DTRHn-null mutation, we show that diminished neuronal serotonin affects locomotor, olfactory and feeding behaviors, as well as heart rate. We also show that DTPHu functions in vivo as a phenylalanine hydroxylase in addition to its role as the peripheral TPH in Drosophila, and is critical for non-neuronal developmental events.  相似文献   

3.
4.
Retinal circadian rhythms are driven by an intrinsic oscillator, using chemical signals such as melatonin, secreted by photoreceptor cells. The purpose of the present work was to identify the origin of serotonin, the precursor of melatonin, in the retina of adult rat, where no immunoreactivity for serotonin or tryptophan hydroxylase had ever been detected. To demonstrate local synthesis of serotonin in the rat retina, substrates of tryptophan hydroxylase, the first limiting enzyme in the serotonin pathway, have been used. Tryptophan, in the presence of an inhibitor of aromatic amino acid decarboxylase, enhanced 5-hydroxytryptophan levels, whereas alpha-methyltryptophan, a competitive substrate inhibitor, was hydroxylated into alpha-methyl-5-hydroxytryptophan. Tryptophan hydroxylase substrate concentration was higher in the dark period than in the light period, and formation of hydroxylated compounds was increased. The presence of tryptophan hydroxylase mRNA in the rat retina was confirmed by RT-PCR. Taken together, the results support the local synthesis of serotonin by tryptophan hydroxylation, this metabolic pathway being required more critically when 5-HT is used for melatonin synthesis.  相似文献   

5.
The active site residue phenylalanine 313 is conserved in the sequences of all known tryptophan hydroxylases. The tryptophan hydroxylase F313W mutant protein no longer shows a preference for tryptophan over phenylalanine as a substrate, consistent with a role of this residue in substrate specificity. A tryptophan residue occupies the homologous position in tyrosine hydroxylase. The tyrosine hydroxylase W372F mutant enzyme does not show an increased preference for tryptophan over tyrosine or phenylalanine, so that this residue cannot be considered the dominant factor in substrate specificity in this family of enzymes.  相似文献   

6.
The activity of tryptophan hydroxylase (EC 1.14.16.4) from rat brain was significantly decreased 1 h following a single systemic injection of 3,4-methylenedioxymethamphetamine (MDMA) when assessed ex vivo by radioenzymatic assay or in vivo by the quantitation of 5-hydroxytryptophan accumulation following central L-aromatic amino acid decarboxylase inhibition. Recovery of enzymatic activity in vivo, which occurred within 24 h of low-dose MDMA treatment, appeared not to involve synthesis of new enzyme protein, because the return of enzymatic activity was not prevented by prior cycloheximide. Acutely MDMA-depressed cortical tryptophan hydroxylase activity could be completely restored in vitro by a prolonged (20-24 h) anaerobic incubation in the presence of dithiothreitol and Fe2+ at 25 degrees C; partial reconstitution occurred when 2-mercapto-ethanol was substituted for dithiothreitol. Cortical tryptophan hydroxylase acutely inactivated by methamphetamine or p-chloroamphetamine could be similarly reactivated. MDMA-inactivated cortical tryptophan hydroxylase derived from rats killed later than 3 days after drug treatment could not be significantly reactivated under the conditions described above, indicating the development of irreversible enzymatic damage. Kinetic analysis of enzyme reactivation revealed an approximate doubling of enzyme Vmax with no change in enzyme affinity for either substrate, tryptophan, or pterin cofactor. These studies suggest that MDMA and its congeners inactivate central tryptophan hydroxylase by inducing oxidation of key enzyme sulfhydryl groups. The reactivation capacity of drug-inactivated enzyme at various times after MDMA treatment may provide a means of assessing the development of MDMA-induced neurotoxicity.  相似文献   

7.
1. Phenylalanine hydroxylase activity has been analyzed in Drosophila melanogaster using as cofactors the natural tetrahydropteridine 5,6,7,8-tetrahydrobiopterin (H4Bip) and the synthetic one 5,6-dimethyl-5,6,7,8-tetrahydropterin (H4Dmp). 2. The apparent Vmax and KM for substrate and cofactor showed that the enzyme has two times more affinity for the substrate when H4Bip is the cofactor in the reaction. Similarly to what was found with purified rat liver phenylalanine hydroxylase, H4Bip was the most effective cofactor, leading to 4-5 times more activity than that obtained with H4Dmp. 3. With the natural cofactor H4Bip, no activation of the enzyme with Phe was necessary (in contrast to mammalian phenylalanine hydroxylase), and this tetrahydropteridine inhibits phenylalanine hydroxylase activity when the enzyme is exposed to it before phenylalanine addition. With the synthetic H4Dmp, both types of preincubations led to an increase of phenylalanine hydroxylase activity. 4. The enzyme is highly unstable compared to mammalian phenylalanine hydroxylase, even at -20 degrees C. 5. Thorax and abdomen extracts caused significant inhibition of phenylalanine hydroxylase activity from third instar larvae or newborn adult head extracts, when assayed with the synthetic cofactor H4Dmp. This inhibition did not happen with H4Bip. The presence of the pteridine 7-xanthopterin in adult bodies was not the cause of this inhibition.  相似文献   

8.
Tryptophan uptake, hydroxylation, and decarboxylation in isolated synaptosomes were studied to assess how their properties may determine the rate of serotonin synthesis in the presynaptic nerve terminals of the brain. Simultaneous measurements of the rates of uptake, hydroxylation, and decarboxylation in the presence and absence of various inhibitors showed that tryptophan hydroxylase is rate-limiting for serotonin synthesis in this model system. There was significant direct decarboxylation of tryptophan to tryptamine. Measurement of tryptophan hydroxylase flux with varying internal concentrations of tryptophan allowed the determination of the Km of tryptophan hydroxylase in synaptosomes for tryptophan of 120 +/- 15 microM. Depolarisation of synaptosomes with veratridine caused both a reduction in the internal tryptophan concentration and an apparent activation of tryptophan hydroxylase. This activation did not occur in the absence of Ca2+ or in the presence of trifluoperazine. Synaptosomal serotonin synthesis and brain stem-soluble tryptophan hydroxylase were inhibited by low concentrations of noradrenaline or dopamine. Dibutyryl cyclic AMP, glucagon, insulin, and vasopressin were observed to have no effect on tryptophan uptake or hydroxylation in synaptosomes.  相似文献   

9.
Tryptophan hydroxylase (TPH) is the initial and rate-limiting enzyme in serotonin biosynthesis. The enzyme activity is dependent on molecular oxygen, a tetrahydropterin cosubstrate, and ferrous iron. The present study demonstrates that TPH is inhibited by a novel compound, p-ethynylphenylalanine (pEPA), produced by the Heck reaction of trimethylsilylacetylene with N-tertbutyloxycarbonyl-4-iodo-L-phenylalanine methyl ester. pEPA is a more potent and specific inhibitor of TPH than p-chlorophenylalanine (pCPA). In the present study, pEPA was demonstrated to inhibit competitively and reversibly TPH in vitro (Ki = 32.6 +/- 6.2 microM vs. tryptophan). pEPA displayed little inhibitory activity toward tyrosine hydroxylase (EC 1.14.16.2), the initial and rate-limiting enzyme for catecholamine biosynthesis, and no inhibition of phenylalanine hydroxylase or tyrosinase. In addition, pEPA was a poor ligand for the serotonin transporter and several serotonin receptors. Administration of pEPA (30 mg/kg) to rats produced a 95 +/- 5% decrease in TPH activity in brain homogenates and a concomitant decrease in serotonin and 5-hydroxyindole-3-acetic acid levels (85%) at 24 h after injection. In contrast, pCPA produced a similar effect (87 +/- 5% decrease in TPH activity) only at 10 times the concentration (300 mg/kg). These results suggest that pEPA is a selective, reversible, and potent inhibitor of TPH both in vitro and in vivo. The potential for pEPA to inhibit selectively and reversibly the biosynthesis of serotonin may contribute to the characterization of the role of serotonin in behavioral and physiological activities.  相似文献   

10.
11.
Regulation of tryptophan and tyrosine hydroxylase   总被引:4,自引:0,他引:4  
W Lovenberg  S J Victor 《Life sciences》1974,14(12):2337-2353
The synthesis of the neurotransmitters serotonin, norepinephrine, and the dopamine is regulated by the initial amino acid hydroxylases. Little is known about the factors that regulate the level of tryptophan hydroxylase in tissue. However, the level of tyrosine hydroxylase is regulated by transsynaptic induction. Acute regulation of in vivo hydroxylase activity appears to be by substrate availability in the case of tryptophan hydroxylase and possibly by feedback inhibition with tyrosine hydroxylase. A newly described phenomenon which has been termed “receptor mediated feedback inhibition” involving neuronal feedback regulation of the activity of both tyrosine and tryptophan hydroxylase may also have an important role.  相似文献   

12.
Tyrosine hydroxylase and tryptophan hydroxylase are widely held to be rate-limiting for the synthesis of the catecholamines and serotonin, respectively. Both enzymes are oxygen-requiring and kinetic properties suggest that oxygen availability may limit synthesis of these neurotransmitters in the brain. Using pheochromocytoma cells as a cell culture model for catecholamine synthesis, and neuroblastoma cells as a model for serotonin synthesis, enzyme activity was measured under control and hypoxic conditions. Both tyrosine hydroxylase and tryptophan hydroxylase activity increased substantially with chronic exposure but not with acute exposure. In the case of tyrosine hydroxylase, increased enzyme content with hypoxia accounts for increased activity. This suggests a mechanism for the maintenance of neurotransmitter synthesis with chronic hypoxia. Measurement of intracellular metabolites revealed no change in dopamine or norepinephrine in hypoxic pheochromocytoma cells, consistent with a simple adaptive mechanism. However, in neuroblastoma cells, hypoxia was associated with an increase in serotonin concentration. The reasons for this are still unclear.  相似文献   

13.
The pH optimum of rat liver phenylalanine hydroxylase is dependent on the structure of the cofactor employed and on the state of activation of the enzyme. The tetrahydrobiopterin-dependent activity of native phenylalanine hydroxylase has a pH optimum of about 8.5. In contrast, the 6,7-dimethyltetrahydropterin-dependent activity is highest at pH 7.0. Activation of phenylalanine hydroxylase either by preincubation with phenylalanine or by limited proteolysis results in a shift of the pH optimum of the tetrahydrobiopterin-dependent activity to pH 7.0. Activation of the enzyme has no effect on the optimal pH of the 6,7-dimethyltetrahydropterin-dependent activity. The different pH optimum of the tetrahydrobiopterin-dependent activity of native phenylalanine hydroxylase is due to a change in the properties of the enzyme when the pH is increased from pH 7 to 9.5. Phenylalanine hydroxylase at alkaline pH appears to be in an altered conformation that is very similar to that of the enzyme which has been activated by preincubation with phenylalanine as determined by changes in the intrinsic protein fluorescence spectrum of the enzyme. Furthermore, phenylalanine hydroxylase which has been preincubated at an alkaline pH in the absence of phenylalanine and subsequently assayed at pH 7.0 in the presence of phenylalanine shows an increase in tetrahydrobiopterin-dependent activity similar to that exhibited by the enzyme which has been activated by preincubation with phenylalanine at neutral pH. Activation of the enzyme also occurs when m-tyrosine or tryptophan replace phenylalanine in the assay mixture. The predominant cause of the increase in activity of the enzyme immediately following preincubation at alkaline pH appears to be the increase in the rate of activation by the amino acid substrate. However, in the absence of substrate activation, phenylalanine hydroxylase preincubated at alkaline pH displays an approximately 2-fold greater intrinsic activity than the native enzyme.  相似文献   

14.
Bao X  Tian X  Zhao Z  Qu Y  Wang B  Zhang J  Liu T  Yang L  Lv J  Song C 《Cell and tissue research》2008,332(3):555-563
Immediately following the discovery of tryptophan hydroxylase in Drosophila, we demonstrated the presence of tryptophan hydroxylase in the brain of the beetle Harmonia axyridis (Coleoptera: Coccinellidae). However, whether tryptophan hydroxylase is present in the brains of other insects is still a matter of discussion. In the current study, sheep anti-tryptophan hydroxylase polyclonal antibody has been applied to test for tryptophan hydroxylase immunoreactivity in a broader taxonomic range of insect brains, including holometabolous and hemimetabolous insects: one species each of Coleoptera, Hymenoptera, Diptera, and Blattaria, and two species of Lepidoptera. All species show consistent tryptophan hydroxylase immunoreactivity with distribution patterns matching that of serotonin. The immuno-positive results of such an antibody in brains from diverse orders of insects suggest that specific tryptophan hydroxylase responsible for central serotonin synthesis is probably present in the brains of all insects. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by grants from the National Natural Science Foundation of China (grant no. 30470546) and the Natural Science Foundation of Jilin Province (grant no. 20030550–7).  相似文献   

15.
Inactivation of Brain Tryptophan Hydroxylase by Nitric Oxide   总被引:3,自引:3,他引:0  
Abstract: Tryptophan hydroxylase, the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter serotonin, is inactivated by nitric oxide (NO) and by the NO generators sodium nitroprusside, diethylamine/NO, S -nitroso- N -acetylpenicillamine, and S -nitrosocysteine. The inactivation occurs in an oxygen-free environment and is enhanced by dithiothreitol and ascorbic acid. Protection against the effect of NO on tryptophan hydroxylase is afforded by oxyhemoglobin, reduced glutathione, and exogenous Fe(II). Catalase partially protects the enzyme from NO-induced inactivation, whereas both superoxide dismutase and uric acid are without effect. These findings indicate that tryptophan hydroxylase is a target for NO and suggest that critical iron-sulfur groups in this enzyme serve as the substrate for NO-induced nitrosylation of the protein, resulting in enzyme inactivation.  相似文献   

16.
Abstract: Tryptophan hydroxylase, the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter serotonin, is inactivated by the nitric oxide generators sodium nitroprusside, diethylamine/nitric oxide complex, and S -nitroso- N -acetylpenicillamine. Physiological concentrations of tetrahydrobiopterin, the natural and endogenous cofactor for the hydroxylase, significantly enhance the inactivation of the enzyme caused by each of these nitric oxide generators. The substrate tryptophan does not have this effect. The chemically reduced (tetrahydro-) form of the pterin is required for the enhancement, because neither biopterin nor dihydrobiopterin is effective. The 6 S -isomer of tetrahydrobiopterin, which has little cofactor efficacy for tryptophan hydroxylase, does not enhance enzyme inactivation as does the natural 6 R -isomer. A number of synthetic, reduced pterins share with tetrahydrobiopterin the ability to enhance nitric oxide-induced inactivation of tryptophan hydroxylase. The tetrahydrobiopterin effect is not prevented by agents known to scavenge hydrogen peroxide, superoxide radicals, peroxynitrite anions, hydroxyl radicals, or singlet oxygen. On the other hand, cysteine partially protects the enzyme from both the nitric oxide-induced inactivation and the combined pterin/nitric oxide-induced inactivation. These results suggest that the tetrahydrobiopterin cofactor enhances the nitric oxide-induced inactivation of tryptophan hydroxylase via a mechanism that involves attack on free protein sulfhydryls. Potential in vivo correlates of a tetrahydrobiopterin participation in the inactivation of tryptophan hydroxylase can be drawn to the neurotoxic amphetamines.  相似文献   

17.
18.
Abstract: Tryptophan hydroxylase, the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter serotonin, is activated by protein kinase A and calcium/calmodulin-dependent protein kinase. One important aspect of the regulation of any enzyme by a phosphorylation-dephosphorylation cascade, and one that is lacking for tryptophan hydroxylase, lies in the identification of its site of phosphorylation by protein kinases. Recombinant forms of brain tryptophan hydroxylase were expressed as glutathione S -transferase fusion proteins and exposed to protein kinase A. This protein kinase phosphorylates and activates full-length tryptophan hydroxylase. The inactive regulatory domain of the enzyme (corresponding to amino acids 1–98) was also phosphorylated by protein kinase A. The catalytic core of the hydroxylase (amino acids 99–444), which expresses high levels of enzyme activity, was neither phosphorylated nor activated by protein kinase A. Conversion of serine-58 to arginine resulted in the expression of a full-length tryptophan hydroxylase mutant that, although remaining catalytically active, was neither phosphorylated nor activated by protein kinase A. These results indicate that the activation of tryptophan hydroxylase by protein kinase A is mediated by the phosphorylation of serine-58 within the regulatory domain of the enzyme.  相似文献   

19.
A 4a-carbinolamine intermediate is generated stoichiometrically during the tetrahydrobiopterin-dependent phenylalanine hydroxylation reaction catalyzed by phenylalanine hydroxylase. The dehydration of the carbinolamine is catalyzed by the enzyme, 4a-hydroxytetrahydropterin dehydratase. We have now examined the distribution of the dehydratase activity in various rat tissues by activity measurements and by immunoblot analysis to explore the possibility that the dehydratase may also play a role in tyrosine and tryptophan hydroxylation. The only two tissues that express relatively high dehydratase activity are liver and kidney, which are also the only two tissues that express phenylalanine hydroxylase activity. The dehydratase activity was generally very low in those tissues which contain high levels of tyrosine and tryptophan hydroxylase activity, except for the pineal gland. These results suggest that the dehydratase may not play an important role in the regulation of the synthesis of those neurotransmitters which are derived from the hydroxylated aromatic amino acids.  相似文献   

20.
The role of the serotonin (5-hydroxytryptamine) autoreceptor in the regulation of the activity of tryptophan hydroxylase was investigated in rat raphe slices. The activity of tryptophan hydroxylase was estimated by measuring the accumulation of 5-hydroxytryptophan in the presence of inhibition of aromatic L-amino acid decarboxylase using 3-hydroxy-4-bromobenzyloxy-amine by HPLC with fluorescence detection. Serotonin and its agonists N,N-dimethyl-5-methoxytryptamine and 1-(m-chlorophenyl)-piperazine reduced the formation of 5-hydroxytryptophan to 50-60% at 10(-5) M. The effect of serotonin was reversed by 10(-5) M methiothepin, an antagonist of the serotonin autoreceptor. The calmodulin antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and N-(6-aminohexyl)-1-naphthalenesulfonamide (W-5), dose-dependently reduced the basal formation of 5-hydroxytryptophan to 40-50% at 10(-6) and 10(-4) M, respectively. W-7 also reduced the activated formation by A-23187 or dibutyryl cyclic AMP in a dose-dependent manner. W-7 had no effect on 5-hydroxytryptophan formation reduced by serotonin at 10(-5) M. These results suggest that the role of the serotonin autoreceptor was related to the prevention of the calcium-calmodulin-dependent activation of tryptophan hydroxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号