首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
胡传炯  周平贞  周启   《微生物学通报》1997,24(5):259-262
采用胶内裂解法快速检测了21株马桑根瘤内生菌纯培养物和4株弗兰克氏菌参考菌株的质粒,其中有5株马桑分离菌株和1株参考菌株含有质粒。除马桑菌株和参考菌株各有1株携带2个质粒外,其它菌株均只含有1个质粒。这些质粒的分子量约为13~20kb。根据所含质粒的大小和数目,将21株马桑分离菌株划分成4个质粒类群。实验还对菌丝体生长,细胞酶解和裂解等条件对质粒检测效果的影响进行了探讨。  相似文献   

6.
DNA sequence homology with the plasmid pSA30 carrying the cloned nifHDK genes from Klebsiella pneumoniae was revealed in ten Frankia spp. strains, nitrogen-fixing symbionts of non-legumes, irrespective of the strain phenotype (Nod+Fix+, Nod+ Fix- or Nod- Fix?). None of the Frankia spp. DNAs exhibited homology with the plasmid pRmSL26 harbouring the Rhizobium meliloti nod-genes encoding for early symbiotic functions.  相似文献   

7.
Five free-living Frankia strains isolated from Casuarina were investigated for occurrence of hydrogenase activity. Nitrogenase activity (acetylene reduction) and hydrogen evolution were also evaluated. Acetylene reduction was recorded in all Frankia strains. None of the Frankia strains had any hydrogenase activity when grown on nickel-depleted medium and they released hydrogen in atmospheric air. After addition of nickel to the medium, the Frankia strains were shown to possess an active hydrogenase, which resulted in hydrogen uptake but no hydrogen evolution. The hydrogenase activity in Frankia strain KB5 increased from zero to 3.86 μ mol H2 (mg protein)−1 h−1 after addition of up to 1.0 μ M Ni. It is likely that the hydrogenase activity could be enhanced even more as a response on further addition of Ni. It is indicated in this study that absence of hydrogenase activity in free-living Frankia isolated from Casuarina spp. is due to nickel deficiency. Frankia living in symbiosis with Casuarina spp. show hydrogenase activity. Therefore, the results also indicate that the hydrogenase to some extent is regulated by the host plant and/or that the host plant supplies the symbiotic microorganism with nickel. Moreover, the result shows that this Frankia is somewhat different from Frankia isolated from Alnus incana and Comptonia peregrina ., i.e., Frankia isolated from A. incana and C. peregrina showed a small hydrogen uptake activity even without addition of nickel.  相似文献   

8.
Little is known about Ceanothus-infective Frankia strains because no Frankia strains that can reinfect the host plants have been isolated from Ceonothus spp. Therefore, we studied the diversity of the Ceonothus-infective Frankia strains by using molecular techniques. Frankia strains inhabiting root nodules of nine Ceanothus species were characterized. The Ceanothus species used represent the taxonomic diversity and geographic range of the genus; therefore, the breadth of the diversity of Frankia strains that infect Ceanothus spp. was studied. DNA was amplified directly from nodular material by using the PCR. The amplified region included the 3' end of the 16S rRNA gene, the intergenic spacer, and a large portion of the 23S rRNA gene. A series of restriction enzyme digestions of the PCR product allowed us to identify PCR-restriction fragment length polymorphism (RFLP) groups among the Ceanothus-infective Frankia strains tested. Twelve different enzymes were used, which resulted in four different PCR-RFLP groups. The groups did not follow the taxonomic lines of the Ceanothus host species. Instead, the Frankia strains present were related to the sample collection locales.  相似文献   

9.
Plasmids in Frankia sp.   总被引:6,自引:0,他引:6  
A method to achieve cell lysis and isolate Frankia sp. plasmid DNA was developed. A screening of Frankia sp. strains belonging to different host compatibility groups (Alnus sp., Elaeagnus sp., Ceanothus sp.) showed that, of 39 strains tested, 4 (strains Cp11, ARgN22d, ArI3, and EUN1f) possessed plasmids ranging in size from 7.1 to 32.2 kilobase pairs as estimated from agarose gel electrophoresis and electron microscopy. A total of 11 plasmids were detected.  相似文献   

10.
Characterization of the 20S proteasome from the actinomycete Frankia   总被引:1,自引:0,他引:1  
Frankia is an actinomycete that fixes atmospheric nitrogen in symbiotic association with the root systems of a variety of non-leguminous plants, denominated actinorhizal plants. Information on the biology of proteolysis in Frankia is almost non-existent as it is extremely difficult to grow this organism. We have purified 20S proteasomes from Frankia strain ACN14a/ts-r. It is composed of one alpha-subunit and one beta-subunit, which assemble into the canonical structure of four rings of seven subunits each. The enzyme displayed a chymotrypsin-like activity against synthetic substrates and was sensitive to lactacystin, a specific proteasome inhibitor. Analysis of the structural genes and the flanking regions revealed a similar organization to Rhodococcus erythropolis, Mycobacterium tuberculosis and Streptomyces coelicolor and showed that the beta-subunit is encoded with a 52-amino-acid propeptide that is cleaved off in the course of the assembly. We report also for the first time the in vitro assembly of chimeric proteasomes composed of Frankia and Rhodococcus erythropolis subunits, which are correctly assembled and proteolytically active.  相似文献   

11.
崔玉海  秦敏 《遗传学报》1990,17(5):405-410
应用无色肽酶(Achromopeptidase)加溶菌酶系统破壁,提取分别来自色赤杨、细枝木麻黄和沙棘的3株代表性Frankia菌株的总DNA。以可在很多革兰氏阴性细菌中稳定复制和诱动转移的广谱寄主性质粒pLAFR1为载体,构建了其基因组文库。基于经EcoRI酶切后的Frankia总DNA中有与根瘤菌结瘤基因同源性的片段,以豌豆根瘤菌结瘤基因为探针,通过菌落原位杂交对文库进行了筛选,较强杂交克隆经斑点杂交复筛,初步得到了几个阳性克隆,为进一步研究Frankia的结瘤基因及有关共生固氮的其它基因奠定了基础。  相似文献   

12.
Abstract: Ineffective, non-infective actinomycetous isolates obtained from actinorhizal nodules of Coriaria nepalensis and Datisca cannabina were identified as Frankia using whole cell fatty acid analysis. The isolates exhibited fatty-acid patterns very similar to those of confirmed Frankia strains from other host plants ( Alnus, Casuarina, Colletia, Comptonia, Elaeagnus and Hippophae ). All Frankia strains, including Coriaria and Datisca isolates, showed fatty-acid profiles very distinct from those of other actinomycetes used as controls ( Actinomyces, Geodermatophilus, Nocardia, Mycobacterium and Streptomyces ). For the genus Frankia , a characteristic pattern of five fatty acids (15:0; 15:1; 16:0 iso; 17:0 and 17:1) was found. These fatty acids comprised 75% or more of the total content. All Frankia strains could be placed into three subgroups. Coriaria isolates were found in the largest subgroup which contained most Frankia strains from other hosts while ineffective strains from Alnus, Elaeagnus and Datisca were distributed in all three subgroups of Frankia .  相似文献   

13.
pSAM2 is a conjugative Streptomyces ambofaciens mobile genetic element that can transfer and integrate site specifically in the genome. The chromosomal attachment site (attB) for pSAM2 site-specific recombination for two Frankia species was analyzed. It overlaps putative proline tRNA genes having a 3'-terminal CCA sequence, an uncommon feature among actinomycetes. pSAM2 is able to integrate into a cloned Frankia attB site harbored in Streptomyces lividans. The integration event removes the 3'-terminal CCA sequence and introduces a single nucleotide difference in the T psi C loop of the putative Frankia tRNA(Pro) gene. Major differences between the attP sequence from pSAM2 and the Frankia attB sequence restrict the identity segment to a 43-bp-long region. Only one mismatch is found between these well-conserved att segments. This nucleotide substitution makes a BstBI recognition site in Frankia attB and was used to localize the recombination site in a 25-bp region going from the anticodon to the T psi C loop of the tRNA(Pro) sequence. Integration of pSAM2 into the Frankia attB site is the first step toward introduction of pSAM2 derivatives into Frankia spp.  相似文献   

14.
High-N(2)-fixing activities of Frankia populations in root nodules on Alnus glutinosa improve growth performance of the host plant. Therefore, the establishment of active, nodule-forming populations of Frankia in soil is desirable. In this study, we inoculated Frankia strains of Alnus host infection groups I, IIIa, and IV into soil already harboring indigenous populations of infection groups (IIIa, IIIb, and IV). Then we amended parts of the inoculated soil with leaf litter of A. glutinosa and kept these parts of soil without host plants for several weeks until they were spiked with [(15)N]NO(3) and planted with seedlings of A. glutinosa. After 4 months of growth, we analyzed plants for growth performance, nodule formation, specific Frankia populations in root nodules, and N(2) fixation rates. The results revealed that introduced Frankia strains incubated in soil for several weeks in the absence of plants remained infective and competitive for nodulation with the indigenous Frankia populations of the soil. Inoculation into and incubation in soil without host plants generally supported subsequent plant growth performance and increased the percentage of nitrogen acquired by the host plants through N(2) fixation from 33% on noninoculated, nonamended soils to 78% on inoculated, amended soils. Introduced Frankia strains representing Alnus host infection groups IIIa and IV competed with indigenous Frankia populations, whereas frankiae of group I were not found in any nodules. When grown in noninoculated, nonamended soil, A. glutinosa plants harbored Frankia populations of only group IIIa in root nodules. This group was reduced to 32% +/- 23% (standard deviation) of the Frankia nodule populations when plants were grown in inoculated, nonamended soil. Under these conditions, the introduced Frankia strain of group IV was established in 51% +/- 20% of the nodules. Leaf litter amendment during the initial incubation in soil without plants promoted nodulation by frankiae of group IV in both inoculated and noninoculated treatments. Grown in inoculated, amended soils, plants had significantly lower numbers of nodules infected by group IIIa (8% +/- 6%) than by group IV (81% +/- 11%). On plants grown in noninoculated, amended soil, the original Frankia root nodule population represented by group IIIa of the noninoculated, nonamended soil was entirely exchanged by a Frankia population belonging to group IV. The quantification of N(2) fixation rates by (15)N dilution revealed that both the indigenous and the inoculated Frankia populations of group IV had a higher specific N(2)-fixing capacity than populations belonging to group IIIa under the conditions applied. These results show that through inoculation or leaf litter amendment, Frankia populations with high specific N(2)-fixing capacities can be established in soils. These populations remain infective on their host plants, successfully compete for nodule formation with other indigenous or inoculated Frankia populations, and thereby increase plant growth performance.  相似文献   

15.
Bacteria of the genus Frankia are mycelium-forming actinomycetes that are found as nitrogen-fixing facultative symbionts of actinorhizal plants. Although soil-dwelling actinomycetes are well-known producers of bioactive compounds, the genus Frankia has largely gone uninvestigated for this potential. Bioinformatic analysis of the genome sequences of Frankia strains ACN14a, CcI3, and EAN1pec revealed an unexpected number of secondary metabolic biosynthesis gene clusters. Our analysis led to the identification of at least 65 biosynthetic gene clusters, the vast majority of which appear to be unique and for which products have not been observed or characterized. More than 25 secondary metabolite structures or structure fragments were predicted, and these are expected to include cyclic peptides, siderophores, pigments, signaling molecules, and specialized lipids. Outside the hopanoid gene locus, no cluster could be convincingly demonstrated to be responsible for the few secondary metabolites previously isolated from other Frankia strains. Few clusters were shared among the three species, demonstrating species-specific biosynthetic diversity. Proteomic analysis of Frankia sp. strains CcI3 and EAN1pec showed that significant and diverse secondary metabolic activity was expressed in laboratory cultures. In addition, several prominent signals in the mass range of peptide natural products were observed in Frankia sp. CcI3 by intact-cell matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). This work supports the value of bioinformatic investigation in natural products biosynthesis using genomic information and presents a clear roadmap for natural products discovery in the Frankia genus.  相似文献   

16.
The 181 251 bp accessory plasmid pSmeSM11b of Sinorhizobium meliloti strain SM11, belonging to a dominant indigenous S. meliloti subpopulation identified during a long-term field release experiment, was sequenced. This plasmid has 166 coding sequences (CDSs), 42% of which encode proteins with homology to proteins of known function. Plasmid pSmeSM11b is a member of the repABC replicon family and contains a large gene region coding for a conjugation system similar to that of other self-transmissible plasmids in Rhizobium and Agrobacterium. Another pSmeSM11b gene region, possibly involved in sugar metabolism and polysaccharide catabolism, resembled a region of S. meliloti 1021 megaplasmid pSymB and in the genome of Sinorhizobium medicae WSM419. Another module of plasmid pSmeSM11b encodes proteins similar to those of the nitrogen-fixing actinomycete Frankia CcI3, and which are likely to be involved in the synthesis of a secondary metabolite. Several ORFs of pSmeSM11b were predicted to play a role in nonribosomal peptide synthesis. Plasmid pSmeSM11b has many mobile genetic elements, which contribute to the mosaic composition of the plasmid.  相似文献   

17.
Frankia spp. strains typically induce N2-fixing root nodules on actinorhizal plants. The majority of host plant taxa associated with the uncultured Group 1 Frankia strains, i.e., Ceanothus of the Rhamnaceae, Datisca glomerata (Datiscaceae), and all actinorhizal members of the Rosaceae except Dryas, are found in California. A study was conducted to determine the distribution of Frankia strains among root nodules collected from both sympatric and solitary stands of hosts. Three DNA regions were examined, the 5' end of the 16S rRNA gene, the internal transcribed spacer region between the 16S and 23S rRNA genes, and a portion of the glutamine synthetase gene (glnA). The results suggest that a narrow range of Group 1 Frankia spp. strains dominate in root nodules collected over a large area of California west of the Sierra Nevada crest with no apparent host-specificity. Comparisons with Group 2 Frankia strain diversity from Alnus and Myrica within the study range suggest that the observed low diversity is peculiar to Group 1 Frankia strains only. Factors that may account for the observed lack of genetic variability and host specificity include strain dominance over a large geographical area, current environmental selection, and (or) a past evolutionary bottleneck.  相似文献   

18.
李志真 《微生物学报》2008,48(11):1432-1438
[目的]了解福建省放线菌结瘤植物共生固氮菌Frankia的遗传多样性.[方法]利用16S-23SrDNA间隔区(rrn)和nifD-K基因间隔区的PCR扩增和RFLP技术,分析了福建省木麻黄、杨梅、桤木、胡颓子等共生Frankia纯培养菌株的遗传差异.[结果]17个菌株获得rrn扩增片段,2个杨梅菌株和1个胡颓子菌株扩增未成功,酶切图谱经聚类分析表明6个地点的细枝木麻黄、短枝木麻黄、粗枝木麻黄12个共生Frankia菌株同源性高,属于一个类群,2个地点的4个杨梅菌株和1个四川桤木菌株亲缘关系近,为另一类群.25个Frankia菌株的,nifD-K基因间隔区PCR-RFLP分析结果显示,7个地点的3种木麻黄14个菌株聚类为一个类群,4个地点的7个杨梅菌株、2个地点的2个四川桤木菌株以及1个台湾桤木菌株聚类为另一个类群,胡颓子菌株则为独立的类群.[结论]研究结果表明福建省共生Frankia遗传多样性丰富.  相似文献   

19.
自然环境胁迫对旱冬瓜Frankia菌基因多样性的影响   总被引:6,自引:1,他引:5  
利用rep-PCR方法,研究云南鸡足山及无量山不同生境下旱冬瓜根瘤内Frankia菌基因多样性及其变化,以了解不同自然环境胁迫对Frankia菌基因多样性的影响。结果表明,多样性随地域、海拔和坡向不同而变化,鸡足山Frankia菌基因类型比无量山丰富。鸡足山旱冬瓜根瘤内的Frankia菌在山底2300m处,Shannon指数平均为0.90;山顶海拔2650m以上,Shannon指数随之上升到1.33。南坡Frankia菌多样性高于北坡,表明多样性指数与环境胁迫大小成正相关,自然环境胁迫是产生和保持Frankia菌基因多样性的重要因子之一。  相似文献   

20.
The actinomycete genus Frankia forms nitrogen-fixing symbioses with 8 different families of actinorhizal plants, representing more than 200 different species. Very little is known about the initial molecular interactions between Frankia and host plants in the rhizosphere. Root exudates are important in Rhizobium-legume symbiosis, especially for initiating Nod factor synthesis. We measured differences in Frankia physiology after exposure to host aqueous root exudates to assess their effects on actinorhizal symbioses. Casuarina cunninghamiana root exudates were collected from plants under nitrogen-sufficient and -deficient conditions and tested on Frankia sp. strain CcI3. Root exudates increased the growth yield of Frankia in the presence of a carbon source, but Frankia was unable to use the root exudates as a sole carbon or energy source. Exposure to root exudates caused hyphal "curling" in Frankia cells, suggesting a chemotrophic response or surface property change. Exposure to root exudates altered Congo red dye binding, which indicated changes in the bacterial surface properties at the fatty acid level. Fourier transform infrared spectroscopy (FTIR) confirmed fatty acid changes and revealed further carbohydrate changes. Frankia cells preexposed to C. cunninghamiana root exudates for 6 days formed nodules on the host plant significantly earlier than control cells. These data support the hypothesis of early chemical signaling between actinorhizal host plants and Frankia in the rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号