首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The aim of the present investigation was to lesion the noradrenergic system and to measure the effect on growth hormone (GH) secretion following peripheral administration of 2- and -adrenoceptor agonists. Direct injection of these agonists into the paraventricular nucleus of the hypothalamus (PVN) and its effect on GH secretion were also investigated. Systemic administration of N-2-chloroethyl-N-ethyl-2-bromobenzylamine (DSP4, 60 mg/kg, injected i.p. 10 days prior to experimentation) significantly decreased the noradrenaline (NA) content of the hippocampus, frontal cortex and hypothalamus but had no effect on the dopamine (DA) or serotonin (5-HT) content of these areas. Bilateral injection of 6-hydroxydopamine (6-OHDA, 10 g/l, 14 days prior to experimentation) into the medial forebrain bundle (MFB) caused a greater reduction of NA and also decreased the DA and 5-HT content of the hypothalamus. Analysis of the PVN of the hypothalami of rats following 6-OHDA lesion of the MFB showed significantly decreased NA and 5-HT content. Neither DSP4 treatment nor 6-OHDA lesion of the MFB affected the clonidine (250 g/kg, i.p.) induced stimulation of GH secretion. Injection of isoproterenol (1 mg/kg, i.p.) had varying effects on GH secretion. It stimulated GH release in control rats but not in DSP4 or MFB lesioned rats. Direct injection of clonidine (0.1 g/l) into the PVN significantly stimulated GH secretion, whereas injection of isoproterenol (2.5 g/l) into the PVN did not affect GH levels when compared to controls. The results of the present study do not support the hypothesis that hypoactivity of the central noradrenergic system may be the cause of the blunted GH response to clonidine observed in depressed patients.  相似文献   

2.
The effect of DSP4 [N-(2-chloroethyl)-N-ethyl-2 bromobenzylamine], a neurotoxin which selectively lesions noradrenergic projections from the locus coeruleus, on thyrotropin (TSH) secretion was investigated in the rat. DSP4 treatment (60 mg/kg injected i.p. 10 days prior to experimentation) significantly decreased the noradrenaline (NA) content of the hippocampus, frontal cortex and hypothalamus of the rat brain. DSP4 treatment did not affect the clonidine (250 g/kg, i.p.) or TSH-releasing-hormone (TRH 5 g/kg i.v.) induced stimulation or the isoproterenol induced inhibition of TSH secretion in the rat. These results suggest that the noradrenergic projection from the locus coeruleus to the hypothalamus does not play a significant role in the regulation of TSH secretion. Furthermore, the noradrenergic deficiency did not give rise to the development of the abnormal TSH response to TRH administration which is frequently observed in depression.  相似文献   

3.
Long-term administration of the antidepressant drug, desipramine (20 mg/kg/day, orally for 28 days), decreased the stimulatory effect of the 2-adrenoceptor agonist, clonidine (250 g/kg, i.p.) on thyrotropin (TSH) secretion in the rat, but did not alter basal TSH secretion. -Adrenoceptor-mediated inhibition of TSH secretion by isoproterenol (1 mg/ kg, i.p.) was unaffected by chronic desipramine treatment, as were the stimulatory effect of TSH-releasing hormone (TRH, 5 g/kg, i.v.) on TSH release and its inhibition by the -adrenoceptor antagonist, phentolamine (2 mg/kg, i.p.). These findings suggest that chronic desipramine treatment induces subsensitivity of 2-adrenoceptors which modulate TSH secretion in the rat while not affecting -adrenoceptor-mediated inhibition of TSH release. These findings suggest that pituitary TRH receptors are unchanged but that changes occurred at the hypothalamic level in 2-adrenoceptor-mediated stimulation of TRH release. Although cerebral -adrenoceptors have been shown convincingly to be down-regulated after chronic desipramine treatment, their function in the hypothalamic TRH system after 28 days of treatment with desipramine appears to be unimpaired.  相似文献   

4.
Bilateral injection of 6-hydroxydopamine into the medial forebrain bundle (MFB) significantly decreased monoamine concentrations in the hypothalamus. The noradrenaline and serotonin content of the paraventricular nucleus (PVN) was also significantly reduced. These drastic decreases in neurotransmitter concentration did not alter basal secretion of corticosterone. Isoproterenol. a -adrenoceptor agonist (1 mg/kg, i.p.), significantly stimulated corticosterone release in saline and MFB lesioned rats. This stimulation did not differ significantly between the two groups. Clonidine, an 2-adreceptor agonist, injected either intraperitoneally or intracerebrally just dorsal to the PVN, caused a dose-dependent increase in corticosterone secretion. The stimulation of corticosterone release by clonidine (250 g/kg, i.p.) was antagonised by the selective 2-adreceptors antagonist, yohimbine (1 mg/kg, i.p.) and significantly reduced by the MFB lesion. These results suggest that corticosterone secretion is stimulated by activation of 2-adreceptors which occur on noradrenergic nerve terminals in the PVN.  相似文献   

5.
On rats with genetically determined inclination to ethanol consumption under conditions of free choice between ethanol solution and water as liquids for drinking, we studied the effects of an analog of vasopressin (anVP, the tetrapeptide corresponding to the ring part of the molecule of this hormone) on the contents of noradrenaline (NA) and serotonin (5-HT) in the hypothalamus, midbrain, and neocortex and also on the contents of adrenaline (A), NA, and 5-HT in the blood. Injections of 1.0 g/kg anVP did not significantly change the above indices. Injections of this agent in a higher dose (5.0 g/kg) resulted in an increase in the content of NA in the hypothalamus by 80%, on average, and in a decrease in the A level in the blood by 40%. At the same time, the level of 5-HT in all the brain structures under study dropped rather sharply. After injection of 5.0 g/kg anVP against the background of acute alcohol intoxication (infusion of 4.0 g/kg ethanol into the stomach), the level of biogenic amines, which to a considerable extent changed under conditions of such intoxication, demonstrated clear trends toward normalization in all the studied brain structures.  相似文献   

6.
神经节苷脂对6-OHDA损毁交感神经末梢的对抗作用   总被引:1,自引:0,他引:1  
单次6-OHDA (15mg/kg.i.p.)注射后24h,可使雌性成年小鼠颌下腺内儿茶酚胺荧光神经末梢几乎完全消失;同时用 HPLC 测得腺体内去甲肾上腺素(NA)和多巴胺(DA)的含量下降至正常值的3—4%以下。随着受损交感神经末梢再生过程,NA 和 DA 水平有缓慢的恢复。在损毁2周时 NA 和 DA 含量分别达到正常水平的50%和28%,且在4周时完全恢复。在注射6-OHDA 的同时,和在损伤后12h 内给动物注射4次神经节苷脂(每次50mg/kg.i.p.)并在其后的一周內每天注射一次,可使颌下腺内 NA 含量维持在正常水平;在损毁后4h 及损毁前4d 开始施用神经节苷脂,也可不同程度地对抗交感神经末梢损伤,但作用强度不如前者。实验结果提示:(1)神经节苷脂通过减弱6-OHDA 及其代谢产物的损伤效应能够保护交感神经末梢膜,它可能还有促损伤末梢再生性长芽的作用;(2)损伤后神经节苷脂处理得越早,其效果越好。  相似文献   

7.
It is now a recognized principle that various neuropeptides are neuronally co-localized with biogenic amine or aminoacid neurotransmitters. In the rat CNS it has previously been shown that TRH is co-localized with 5-HT (and also with substance P) in cell bodies of the posterior raphe that project to the spinal cord. Although TRH cell bodies are known to be widely distributed throughout the forebrain there is no other known co-localization with 5-HT. In this study we further specify the anatomical relationship of TRH with 5-HT by use of surgical and neurotoxic lesioning with reference to limbic forebrain regions wherein TRH is greatly increased following seizures. In groups of rats, the fimbria-fornix was lesioned alone, or combined with a lesion of the dorsal perforant path or the ventral perforant path. There was a sham lesioned control group. Additional groups were lesioned with 5, 7 dihydroxytryptamine, 100 g i.v.t., 45 min. after i.p. desipramine, 25 mg/kg. All rats were sacrificed three weeks after lesions. Indoleamines were determined by HPLC in left anterior cortex, left pyriform/olfactory cortex, left dorsal hippocampus and left ventral hippocampus. TRH was determined by specific RIA in the corresponding right brain regions. The modal n was 7 rats. The surgical lesions reduced 5-HT to below the detection limit in dorsal hippocampus in all three groups, and to 31–52% of control in all the ventral hippocampus groups. 5-HIAA was reduced to 19–37% of control in dorsal and to 30–51% of control in ventral hippocampus. TRH was reduced to 44–61% of control in dorsal hippocampus and to 48–53% of control in ventral hippocampus. As was repeatedly observed in our previous reports all TRH levels in ventral hippocampus were higher than in dorsal hippocampus. The 5, 7 dihydroxytryptamine treatment nearly eliminated the indoleamines from all the forebrain regions examined while TRH levels were unchanged. These results can be explained by our previous data showing that immunoreactive TRH is intrinsic and localized to the vicinity of both CA and dentate granule cells of the hippocampus, but about half of hippocampal TRH enters via fibers of the fimbria-fornix. The perforant path appears to contribute no TRH to hippocampus, but, results with the combined lesion groups showed some reduction of 5-HIAA in ventral hippocampus as is expected from the known perforant path contribution of 5-HT. Since the neurotoxic lesion had no effect on TRH, the 5-HT pathway through the fimbria-fornix is probably anatomically separate from a parallel TRH pathway there. This study shows that co-localization of TRH with 5-HT is very unlikely in four specific limbic forebrain regions.Special issue dedicated to Dr. Morris H. Aprison.  相似文献   

8.
Summary The effect of thyrotrophin-releasing hormone (TRH) on pituitary thyrotrophs was investigated in Snell dwarf mice (dw/dw) that are genetically deficient in thyrotrophin (TSH) and in normal animals of the same strain. The normal animals were treated with either saline or 10 g TRH per day for 2 weeks, while the dwarf mice were given daily injections of saline, 10 g TRH for 2 weeks or 10 g for 6 weeks. At the end of each experimental period, the pituitary glands were removed and fixed for light-microscopic analysis using immunocytochemistry, or for transmission electron-microscopic study. Compared to thyrotrophs observed in the pituitary glands of untreated normal mice, thyrotrophs in TRH-treated normal mice appeared to be more numerous by immunocytochemistry and showed signs of stimulation by electron microscopy. In contrast, immunostainable thyrotrophs could not be identified in the pituitary glands of untreated or TRH-treated dwarfs. However, a few cells exhibiting ultrastructural features of stimulated thyrotrophs, were noticeable in the dwarfs following TRH administration. Thus, while failing to induce the synthesis of immunoreactive TSH under the applied experimental conditions, exogenous TRH appeared to elicit differentiation of thyrotroph precursors into ultrastructurally recognizable thyrotrophs. The discrepancy between the immunocytochemical and ultrastructural findings remains unresolved; more work is required to clarify the question as to why ultrastructural maturation of thyrotrophs was unaccompanied by the production of immunoreactive TSH.  相似文献   

9.
Extracellular fluid levels of glutamate were measured in the locus coeruleus during butorphanol (a mixed agonist at -, -, and -opioid receptors) withdrawal by using microdialysis in conscious butorphanol-dependent Sprague-Dawley rats. Guide cannulae were implanted chronically and rats were given intracerebroventricular (i.c.v.) infusions of butorphanol (26 nmol/l l/hr) or saline (1 l/hr) for 3 days. Microdialysis probes (2 mm tip) were inserted into the locus coeruleus 24 hr before precipitation of withdrawal by i.c.v. injection of naloxone (48 nmol/5 l). A separate series of rats was rendered dependent by peripheral injection of butorphanol (20 mg/kg, s.c., b.i.d.) for 5 days and naloxone (5 mg/kg, i.p.) was given to precipitate withdrawal. Single injections of butorphanol (26 nmol/5 l, i.c.v.) had no effect on the extracellular fluid levels of glutamate, compared to rats injected with vehicle. Behavioral evidence of withdrawal was detected following naloxone challenge in butorphanol-dependent rats (both i.c.v. and s.c. models), but not in nondependent, vehicle-treated rats. Significant increases (P<0.05) in levels of glutamate were noted after naloxone-precipitated withdrawal only in the butorphanol group. The glutamate levels in the locus coeruleus increased from 8.37±2.01 before, to 21.93±4.58 M in the first 15 min sample following i.c.v. injections of 48 nmol/5 l naloxone and from 10.84±1.74 before, to 26.01±6.19 M in the 15–30 min sample following i.p. injections of 5 mg/kg naloxone in the butorphanol-dependent rats, respectively. These results provide direct evidence to support the role of excitatory amino acids within the locus coeruleus in butorphanol withdrawal.  相似文献   

10.
Summary Using the histochemical method for the demonstration of DA, NA and 5-HT it has been possible to demonstrate, in reserpine treated rats, that intraventricularly administered DA, NA, -methyl-DA and -methyl-NA in doses of 1–2 g are specifically taken up by the parts of the DA and NA neurons lying close to the ventricles and the subarachnoidal space. The distribution of this uptake is described in detail. No uptake and accumulation of DA and NA was observed unless the monoamineoxidase had been inhibited whereas the -methylated compounds which are resistant to monoamineoxidase accumulated without monoamineoxidase inhibition. Intraventricularly administered 5-HT was specifically taken up and accumulated in the 5-HT neurons within the same zone provided that monoamineoxidase had been inhibited. The distribution of this uptake is described in detail. After high doses of CA (5–10 g) these amines accumulated to some extent also in the 5-HT neurons while no such accumulation was observed in the CA neurons after high doses of 5-HT. Thus, the present results indicate that there exists a specific reserpine-resistant, amine-concentrating mechanism at the nerve cell membrane of CA and 5-HT neurons. In areas where the exogenous amine concentrations probably were high there also occurred an accumulation of DA and NA in the CA neurons although the monoamineoxidase was not inhibited. Finally, in a certain area of the hypothalamus, CA was found to accumulate even after low doses (1–2 g), in nerve cell bodies which probably normally do not contain CA.This study was supported by a research grant from the Swedish Medical Research Council (12x-715-03) and by grants from M. Bergwalls stiftelse and C. Nathorsts stiftelse.  相似文献   

11.
The role of 5-hydroxytryptamine (5-HT) in the regulations of TSH secretion was studied in male rats using both peripheral and central administration of the drugs. Basal TSH levels were not modified by moderate doses of 5-HT (subcutaneously) or its precursors or antagonists (intraperitoneally) given 1 h before decapitation. The cold-stimulated TSH secretion was decreased by L-tryptophan (L-TRP, 400 mg/kg i.p.), quipazine (10 mg/kg i.p.) and 5-HT (1 or 5 mg/kg s.c. or i.v.) as well as by p-chlorophenylalanine (pCPA, 20 or more mg/kg i.p.) when the drugs were given 1 h before sampling. pCPA (100-400 mg/kg i.p.) was active 24-48 h after the injection but repetitive administration did not affect TSH levels. 5-HT (5 mg/kg s.c.) was effective also in pinealectomized animals. L-TRP and 5-hydroxytryptophan potentiated the TRH-stimulated TSH secretion when given 1 h before killing. 5-HT (10 microgram/rat) infused into the third ventricle enhanced the cold-stimulated TSH secretion when given 30-45 min before sampling. When injected into the medial basal hypothalamus, 50-HT (1-10 microgram/rat) had no effect on basal or stimulated TSH levels. The results suggest: (1) 5-HT does not play any role in the regulation of basal TSH secretion; (2) in the cold-stimulated TSH secretion 5-HT has a stimulatory action evidently inside the blood-brain barrier and also an inhibitory effect obviously outside this barrier.  相似文献   

12.
Abstract: The effect of the antidepressant and selective noradrenaline reuptake blocker desipramine (DMI) on noradrenergic transmission was evaluated in vivo by dual-probe microdialysis. DMI (1, 3, and 10 mg/kg, i.p.) dose-dependently increased extracellular levels of noradrenaline (NA) in the locus coeruleus (LC) area. In the cingulate cortex (Cg), DMI (3 and 10 mg/kg, i.p.) also increased NA dialysate, but at the lowest dose (1 mg/kg, i.p.) it decreased NA levels. When the α2-adrenoceptor antagonist RX821002 (1 µ M ) was perfused in the LC, DMI (1 mg/kg, i.p.) no longer decreased but rather increased NA dialysate in the Cg. In electrophysiological experiments, DMI (1 mg/kg, i.p.) inhibited the firing activity of LC neurons by a mechanism reversed by RX821002. Local DMI (0.01–100 µ M ) into the LC increased concentration-dependently NA levels in the LC and simultaneously decreased NA levels in the Cg. This decrease was abolished by local RX821002 administration into the LC. The results demonstrate in vivo that DMI inhibits NA reuptake at somatodendritic and nerve terminal levels of noradrenergic cells. The increased NA dialysate in the LC inhibits noradrenergic activity, which in part counteracts the effects of DMI on the Cg. The modulation of cortical NA release by activity of DMI at the somatodendritic level is mediated through α2-adrenoceptors located in the LC.  相似文献   

13.
The purpose of the paper was to study the morphological effects of retinoids on non-transformed cells such as thyrocytes. The formation of follicles was studied in primary cultures of porcine thyrocytes by adding retinol and thyroid stimulating hormone (TSH) to cells grown in the absence of TSH to form monolayers. The proliferation and apoptosis of thyrocytes were studied in cells both grown adherent to plastic surfaces and in suspension. Standard medium with traces of retinol and the same medium without retinol were used. Retinol alone was added to thyrocytes grown in the absence of TSH (TSH culture) or both retinol and TSH were added to cultures after stimulation with TSH (TSH culture). The concentration was varied from 0 to 80M for retinol and from 0 to 13M for retinoic acid. At a concentration of 13M, the effect of retinol was similar to that of retinoic acid. At concentrations higher than 40M, retinol reduced the formation of thyroglobulin-immunoreactive follicles, whereas up to 13M retinoic acid had no obvious influence on follicle formation. The retinoids induced apoptosis under all experimental conditions. In contrast, a significant decrease in proliferation and in the formation of thyroglobulin-immunoreactive follicles was observed only in adherent cells cultured in customary medium. The decrease in functional follicles after treatment with retinol suggests a de-differentiating effect of retinoids on normal thyrocytes and is in contrast with the differentiating effect of retinoids observed in cancer cells.  相似文献   

14.
Ji D  Sui ZY  Ma YY  Luo F  Cui CL  Han JS 《Neurochemical research》2004,29(11):2113-2120
The purpose of the present study is to elucidate whether ketamine, a non-competitive antagonist of the NMDA receptor, can suppress the morphine withdrawal syndrome in rats at a dose without affecting motor functions and to identify its site of action in the central nervous system. Rats were made dependent on morphine by multiple injections of morphine hydrochloride for 5 days. They were then given ketamine at the following doses and routes of administration: (a) intraperitoneal (i.p.) injections (2–16 mg/kg), (b) intracerebroventricular (i.c.v.) injections (4–100 g), and (c) intra-nucleus accumbens (NAc) or intra-amygdalar microinjections (0.4–10 g). Naloxone HCl (1 mg/kg, i.p.) was administered 3 h after the last ketamine injection to precipitate withdrawal syndrome, which was scored within a period of 30 min. Results showed that some of the precipitated withdrawal signs were dose-dependently suppressed by repeated injections of ketamine at 8 and 16 mg/kg, i.p. or 100 g, i.c.v. Dose-dependent suppression was observed by repeated microinjections (0.4–10 g) of ketamine to NAc, but not to amygdala. These results indicate that the NMDA receptor antagonist ketamine has the ability to suppress morphine withdrawal syndrome in experimental settings without motor interference, and NAc could be the critical CNS site mediating such effect.Special issue dedicated to Dr. Lawrence F. Eng.  相似文献   

15.
Summary Noradrenaline (NA) and 5-hydroxytryptamine (5-HT) accumulated on the proximal side of a ligature to the posterior salivary gland (PSG) nerves in the octopus PSG duct. The NA concentration continued to increase proximally up to 18 days after ligation when a level of 59 g/g was reached compared with 12 g/g distally and 16–18 g/g for the corresponding portions of the normal duct. The concentration of 5-HT after the same period was 8.5 g/g proximally and 0.7 g/g distally compared to 4–7 g/g for normal duct. Dopamine (DM) was undetectable either after ligation or in the non-ligated duct. Accumulations of dense-core synaptic vesicles were observed by electron microscopy in some of the axons on both sides of the ligature.The NA concentration in the gland shows a decrease 6–8 days post-ligation and by 16–18 days had fallen to 50% of the normal value. No change in the DM or 5-HT concentrations had occurred by this time. When the nerves had been ligated for 40 days the 5-HT level in the gland had also decreased but the DM concentration was comparable to control values. It is concluded that NA is the predominant aminergic neurotransmitter in the PSG nerves and that its transport from the brain to the gland is a continuous process.Ligating or cutting the PSG duct caused a decrease in diameter of the distal nerve bundles but many axons did not degenerate even after 40 days ligation. The continued existence of some of the axons may explain the slow depletion of monoamines from the gland. Morphological changes in the secretory cells of the glandular tubules were observed by light microscopy 40 days after interruption of the nerve supply. It is suggested that the PSG nerves are required for the maintenance of the glandular tubules.  相似文献   

16.
The nitric oxide (NO) synthase inhibitor NG-monomethyl-L-arginine (N-NMMA) and the competitive substrate for NO synthase L-arginine were used to determine the role of endogenous NO on the behavioral and neuroendocrine responsiveness following systemic corticotrophin in dexamethasone-suppressed rats. Corticotrophin (50-200 mU/kg, s.c.) dose-dependently decreased behavioral activity in the actimeter and produced significant anxiolytic and anti-risk activity in the plus-maze behavior test, without affecting systolic blood pressure. Rats given corticotrophin showed significant increased plasma corticosterone and reduced adrenal ascorbic acid level. These behavioral and adrenal responses of corticotrophin were dose dependently blocked by metyrapone (20 and 50 mg/kg, i.p.), an inhibitor of steroid 11-hydroxylase in adrenal and neural tissues that block steroidogenesis. Intracerebroventricular administration of L-NMMA (20 g/rat in 10 l) significantly prevented the behavioral hypoactivity and anxiolytic-like responses of corticotrophin without influencing the adrenal responsiveness. The effect of L-NMMA was completely reversed by preadministration of L-arginine (300 mg/kg, i.p.). These results suggest that neuronal nitric oxide pathway plays an important modulating role in the behavioral effects of corticotrophin by mechanisms other than those involving cardiovascular effects.  相似文献   

17.
Abstract: Milnacipran, a dual noradrenaline (NA) and serotonin (5-hydroxytryptamine, 5-HT) uptake inhibitor, increased extracellular levels of NA and 5-HT in hypothalamus of freely moving guinea pigs as measured by microdialysis. The basal levels of both monoamines, which were tetrodotoxin sensitive, were increased in a dose-dependent manner and to a similar extent after the intraperitoneal administration of milnacipran (10 and 40 mg/kg i.p.). Levels of the NA metabolite 4-hydroxy-3-methoxyphenylglycol (MHPG) were decreased by milnacipran at 10 and 40 mg/kg i.p., whereas those of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) showed no effect. Subcutaneous injection of 5-HT1A and β-adrenergic receptor antagonist (−)-pindolol alone, at 10 mg/kg, had no effect on the extracellular levels of NA or 5-HT. The concomitant administration of (−)-pindolol (10 mg/kg s.c.) with milnacipran (10 mg/kg i.p.) increased severalfold the effect of milnacipran on the extracellular levels of NA and 5-HT. These results indicate that milnacipran, by blocking the uptake of NA and 5-HT, increases virtually equipotently the extracellular levels of NA and 5-HT, confirming previous in vitro studies. In addition, the antagonism of 5-HT1A autoreceptors by (−)-pindolol potentiates the action of milnacipran on both NA and 5-HT systems, without modifying the ratio of these activities.  相似文献   

18.
The effects of graded doses ofd-pipecolic acid (0.005–5 g/animals s.c.) on tolerance to the hypothermic effect of ethanol (4 g/kg i.p.) were investigated in mice.d-pipecolic acid itself did not change the core temperature or the acute hypothermic response to a single dose of ethanol. Repeatedd-pipecolic acid administration, however, blocked the development of tolerance to the hypothermic effect of ethanol. The development of tolerance could be observed in the control group. It is assumed thatd-pipecolic acid is capable of counteracting the tolerance effect of ethanol.  相似文献   

19.
Summary Changes in thyroid structure induced by a decrease in TSH or iodide-dependent stimulation were quantified by stereological analysis of light micrographs. Studies were carried out on intact (R5) and hypophysectomized (R 5H) rats receiving 5 g iodide, and on intact rats (R5O) receiving 50 g iodide daily.For R 5H- and R5O-thyroids, the mean parameters of the epithelial cells, height, volume and lateral membrane area, were smaller than those of R 5-thyroids. An inverse shift was observed for the apical membrane area, whereas the peripheral membrane area was unchanged. The number of epithelial cells was similar in each of the three groups; however, the number of follicles was greater in R 5-thyroids, suggesting that follicular fusion occurs in R 5O- and R 5H-thyroids. This was confirmed by direct observation.The present results demonstrate that in adult rats a lack of TSH or an increased iodide diet (insufficient to produce a physiopathological state) induce follicle fusion probably by means of cellular reorganization. This increase in follicle size could be involved in the regulation of thyroid iodine turnover.  相似文献   

20.
We tested the effects of the potent acaricides, avermectin B1a (AVM) and 22,23-dihydroavermectin B1 (ivermectin; IVM) when injected directly into partially fed and fully engorged female ticks. When injected into small ticks (Amblyomma hebraeum Koch), neither drug (up to 100 g/kg b.w.) inhibited subsequent engorgement nor affected oviposition latency, weight of total egg mass laid nor viability of laid eggs. At higher concentrations (1000 and 5000 g/kg b.w.), AVM and IVM were markedly toxic. When injected into engorged ticks, both drugs increased oviposition latency, and reduced fecundity at about 75–100 g/kg b.w. Vitellogenesis, as assessed by a spectrophotometric assay of the ovaries, was not inhibited. Also at 50–100 g/kg b.w., AVM and IVM caused paralysis of the abdominal dorso-ventral muscles and the leg muscles. Both drugs, at 7 days post-injection, proved detrimental to salivary gland function in both small and large ticks, but had little effect on salivary gland weight. At concentrations which did not inhibit oviposition (20–50 g/kg b.w.) many of the eggs dried out even though they were kept at high RH. We then demonstrated inAmblyomma americanum, Dermacentor andersoni andD. albipictus that removal of egg wax (by extraction with hexane) induced a marked increase in water permeability. IVM neither increased water permeability ofD. andersoni eggs nor diminished the amount of egg wax deposited on the surface of the eggs, when injected posteriorly through the alloscutum. However, injection of IVM, dimethylsulphoxide (vehicle for IVM) or distilled water through the articulation between the capitulum and scutum (anterior injection), did markedly reduce the wax coating and increased egg permeability. We suggest that anterior injection damages Gené's organ and thus causes the latter effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号