首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Engagement of immune receptors by antigen may lead to activation, cell proliferation, differentiation and effector functions. It has recently been proposed that the initiation and propagation of the signaling events taking place in immune cells occur in specialized membrane regions called lipid rafts. These detergent-insoluble glycolipid domains are specialized membrane compartments enriched in cholesterol and glycolipids. They also contain many lipid-modified signaling proteins such as tyrosine kinases of the Src family, GPI (glycosylphosphatidylinositol)-linked proteins as well as adaptor proteins. The confinement of signaling molecules in membrane subdomains suggests that lipid rafts function as platforms for the formation of multicomponent transduction complexes. Indeed, upon receptor binding, immune receptors become raft-associated and additional components of the signaling pathways are recruited to rafts in order to form signaling complexes. It has been speculated that the entry of immune receptors into rafts can regulate cell activation. Accordingly, numerous experiments have provided substantial evidence that raft integrity is crucial for the initiation and maintenance of intracellular signals. Recent studies have also shown that the access and translocation of immune receptors to lipid rafts are developmentally regulated (immature versus mature cells, Th1 versus Th2 lymphocytes) and sensitive to pharmacological agents. The aim of the present review is to summarize the current knowledge of immune receptor signal transduction with particular emphasis on the role of membrane compartments in immune activation. Finally, experimental evidences indicating that these membrane structures may represent clinically relevant potential targets for immune regulation, will be discussed.  相似文献   

2.
Spontaneous segregation of cholesterol and sphingolipids as a liquid-ordered phase leads to their clustering in selected membrane areas, the lipid rafts. These specialized membrane domains enriched in gangliosides, sphingomyelin, cholesterol and selected proteins involved in signal transduction, organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating cell homeostasis. Sphingosine 1-phosphate, an important biologically active mediator, is involved in several signal transduction processes regulating a plethora of cell functions and, not only several of its downstream effectors tend to localize in lipid rafts, some of the enzymes involved in its pathway, of receptors involved in its signalling and its transporters have been often found in these membrane microdomains. Considering this, in this review we address what is currently known regarding the relationship between sphingosine 1-phosphate metabolism and signalling and plasma membrane lipid rafts.  相似文献   

3.
脂筏是细胞膜内由特殊脂质与蛋白质构成的微域。小窝是脂筏的一种形式,小窝标记蛋白有小窝蛋白和小窝舟蛋白。脂筏或小窝与生物信号传导、细胞蛋白转运和胆固醇平衡有关。最近实验证实哺乳动物精子膜具有脂筏结构,脂筏与膜胆固醇外逸对于启动受精的信号传导具有重要作用。  相似文献   

4.
Membrane microdomains, the so-called lipid rafts, function as platforms to concentrate receptors and assemble the signal transduction machinery. Internalization, in most cases, is carried out by different specialized structures, the clathrin-coated pits. Here, we show that several endocytic proteins are efficiently recruited to morphologically identified plasma membrane lipid rafts, upon activation of the epidermal growth factor (EGF) receptor (EGFR), a receptor tyrosine kinase. Analysis of detergent-resistant membrane fractions revealed that the EGF-dependent association of endocytic proteins with rafts is as efficient as that of signaling effector molecules, such as Grb2 or Shc. Finally, the EGFR, but not the nonsignaling transferrin receptor, could be localized in nascent coated pits that almost invariably contained raft membranes. Thus, specialized membrane microdomains have the ability to assemble both the molecular machineries necessary for intracellular propagation of EGFR effector signals and for receptor internalization.  相似文献   

5.
Lipid rafts are liquid-ordered membrane microdomains with a unique protein and lipid composition found on the plasma membrane of most, if not all, mammalian cells. A large number of signalling molecules are concentrated within rafts, which have been proposed to function as signalling centres capable of facilitating efficient and specific signal transduction. This review summarizes current knowledge regarding the composition, structure, and dynamic nature of lipid rafts, as well as a number of different signalling pathways that are compartmentalized within these microdomains. Potential mechanisms through which lipid rafts carry out their specialized role in signalling are discussed in light of recent experimental evidence.  相似文献   

6.
Glial cell line-derived neurotrophic factor family ligands act through the receptor tyrosine kinase Ret, which plays important roles during embryonic development for cell differentiation, survival, and migration. Ret signaling is markedly affected by compartmentalization of receptor complexes into membrane subdomains. Ret can propagate biochemical signaling from within concentrates in cholesterol-rich membrane microdomains or lipid rafts, or outside such regions, but the mechanisms for, and consequences of, Ret translocation between these membrane compartments remain largely unclear. Here we investigate the interaction of Shc and Frs2 phosphotyrosine-binding domain-containing adaptor molecules with Ret and their function in redistributing Ret to specialized membrane compartments. We found that engagement of Ret with the Frs2 adaptor results in an enrichment of Ret in lipid rafts and that signal transduction pathways and chemotaxis responses depend on the integrity of such rafts. The competing Shc adaptor did not promote Ret translocation to equivalent domains, and Shc-mediated effects were less affected by disruption of lipid rafts. However, by expressing a chimeric Shc protein that localizes to lipid rafts, we showed that biochemical signaling downstream of Ret resembled that of Ret signaling via Frs2. We have identified a previously unknown mechanism in which phosphotyrosine-binding domain-containing adaptors, by means of relocating Ret receptor complexes to lipid rafts, segregate diverse signaling and cellular functions mediated by Ret. These results reveal the existence of a novel mechanism that could, by subcellular relocation of Ret, work to amplify ligand gradients during chemotaxis.  相似文献   

7.
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra and striatum. Glial cell line-derived neurotrophic factor (GDNF) can effectively promote the differentiation and survival of many types of neurons, especially dopaminergic neurons, suggesting it could be a treatment for PD. Lipid rafts are highly dynamic cell membrane domains that contain numerous signal protein receptors, providing an important platform for signal transduction. Compelling evidence indicates that alterations in lipid rafts are associated with PD, and some studies have reported that GDNF can regulate the expression of caveolin-1, a lipid raft-marker protein. However, the precise effects of GDNF on lipid rafts remain unknown. We developed a cellular PD model, purified detergent-resistant membranes (membrane rafts), and performed proteomic and lipid metabolomics analyses to examine changes in lipid rafts after GDNF treatment. The results showed considerable protein and lipid alterations in response to GDNF, especially altered levels of dopamine-β-hydroxylase, heat shock 70 kDa protein, neural cell adhesion molecule, cytoskeletal proteins, and long-chain polysaturated/unsaturated fatty acids. These findings reveal a new avenue to explore the relationships between GDNF, lipid rafts, and PD and support the hypothesis that GDNF may be a useful treatment for PD.  相似文献   

8.
Differential targeting of Shaker-like potassium channels to lipid rafts   总被引:16,自引:0,他引:16  
Ion channel targeting within neuronal and muscle membranes is an important determinant of electrical excitability. Recent evidence suggests that there exists within the membrane specialized microdomains commonly referred to as lipid rafts. These domains are enriched in cholesterol and sphingolipids and concentrate a number of signal transduction proteins such as nitric-oxide synthase, ligand-gated receptors, and multiple protein kinases. Here, we demonstrate that the voltage-gated K(+) channel Kv2.1, but not Kv4.2, targets to lipid rafts in both heterologous expression systems and rat brain. The Kv2.1 association with lipid rafts does not appear to involve caveolin. Depletion of cellular cholesterol alters the buoyancy of the Kv2.1 associated rafts and shifts the midpoint of Kv2.1 inactivation by nearly 40 mV without affecting peak current density or channel activation. The differential targeting of Kv channels to lipid rafts represents a novel mechanism both for the subcellular sorting of K(+) channels to regions of the membrane rich in signaling complexes and for modulating channel properties via alterations in lipid content.  相似文献   

9.
Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs) that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium.  相似文献   

10.
Recent work to characterize the roles of lipid segregation in IgE receptor signaling has revealed a mechanism by which segregation of liquid ordered regions from disordered regions of the plasma membrane results in protection of the Src family kinase Lyn from inactivating dephosphorylation by a transmembrane tyrosine phosphatase. Antigen-mediated crosslinking of IgE receptors drives their association with the liquid ordered regions, commonly called lipid rafts, and this facilitates receptor phosphorylation by active Lyn in the raft environment. Previous work showed that the membrane skeleton coupled to F-actin regulates stimulated receptor phosphorylation and downstream signaling processes, and more recent work implicates cytoskeletal interactions with ordered lipid rafts in this regulation. These and other results provide an emerging view of the complex role of membrane structure in orchestrating signal transduction mediated by immune and other cell surface receptors.  相似文献   

11.
Lipid rafts are specialized structures on the plasma membrane that have an altered lipid composition as well as links to the cytoskeleton. It has been proposed that these structures are membrane domains in which neurotransmitter signalling might occur through a clustering of receptors and components of receptor-activated signalling cascades. The localization of these proteins in lipid rafts, which is affected by the cytoskeleton, also influences the potency and efficacy of neurotransmitter receptors and transporters. The effect of lipid rafts on neurotransmitter signalling has also been implicated in neurological and psychiatric diseases.  相似文献   

12.
Previously, it was shown that the recruitment of RET into lipid rafts by glial cell line-derived neurotrophic factor (GDNF)/GFRalpha1 is crucial for efficient signal transduction. Here, we show that the mouse GFRalpha4 is a functional, N-glycosylated, glycosylphosphatidylinositol (GPI)-anchored protein, which mediates persephin (PSPN)-induced phosphorylation of RET, but has an almost undetectable capacity to recruit RET into the 0.1% Triton X-100 insoluble membrane fraction. In spite of this, PSPN/mGFRalpha4 promotes neurite outgrowth in PC6-3 cells and survival of cerebellar granule neurons. As we show that also human PSPN/GFRalpha4 is unable to recruit RET into lipid rafts, we propose that the mammalian GFRalpha4 in this respect differs from GFRalpha1.  相似文献   

13.
Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes   总被引:1,自引:0,他引:1  
Flotillin-1 was recently shown to be enriched on detergent-resistant domains of the plasma membrane called lipid rafts. These rafts, enriched in sphingolipids and cholesterol, sequester certain proteins while excluding others. Lipid rafts have been implicated in numerous cellular processes including signal transduction, membrane trafficking, and molecular sorting. In this study, we demonstrate both morphologically and biochemically that lipid rafts are present on phagosomes. These structures are enriched in flotillin-1 and devoid of the main phagosomes membrane protein lysosomal-associated membrane protein (LAMP1). The flotillin-1 present on phagosomes does not originate from the plasma membrane during phagocytosis but accumulates gradually on maturing phagosomes. Treatment with bafilomycin A1, a compound that inhibits the proton pump ATPase and prevents the fusion of phagosomes with late endocytic organelles, prevents the acquisition of flotillin-1 by phagosomes, indicating that this protein might be recruited on phagosomes from endosomal organelles. A proteomic characterization of the lipid rafts of phagosomes indicates that actin, the alpha- and beta-subunits of heterotrimeric G proteins, as well as subunits of the proton pump V-ATPase are among the constituents of these domains. Remarkably, the intracellular parasite Leishmania donovani can actively inhibit the acquisition of flotillin-1-enriched lipid rafts by phagosomes and the maturation of these organelles. These results indicate that specialized functions required for phagolysosome biogenesis may occur at focal points on the phagosome membrane, and therefore represent a potential target of intracellular pathogens.  相似文献   

14.
Lipid rafts: bringing order to chaos   总被引:27,自引:0,他引:27  
Lipid rafts are subdomains of the plasma membrane that contain high concentrations of cholesterol and glycosphingolipids. They exist as distinct liquid-ordered regions of the membrane that are resistant to extraction with nonionic detergents. Rafts appear to be small in size, but may constitute a relatively large fraction of the plasma membrane. While rafts have a distinctive protein and lipid composition, all rafts do not appear to be identical in terms of either the proteins or the lipids that they contain. A variety of proteins, especially those involved in cell signaling, have been shown to partition into lipid rafts. As a result, lipid rafts are thought to be involved in the regulation of signal transduction. Experimental evidence suggests that there are probably several different mechanisms through which rafts control cell signaling. For example, rafts may contain incomplete signaling pathways that are activated when a receptor or other required molecule is recruited into the raft. Rafts may also be important in limiting signaling, either by physical sequestration of signaling components to block nonspecific interactions, or by suppressing the intrinsic activity of signaling proteins present within rafts. This review provides an overview of the physical characteristics of lipid rafts and summarizes studies that have helped to elucidate the role of lipid rafts in signaling via receptor tyrosine kinases and G protein-coupled receptors.  相似文献   

15.
Lipid rafts are characterized by their insolubility in nonionic detergents such as Triton X-100 at 4 degrees C. They have been studied in mammals, where they play critical roles in protein sorting and signal transduction. To understand the potential role of lipid rafts in lepidopteran insects, we isolated and analyzed the protein and lipid components of these lipid raft microdomains from the midgut epithelial membrane of Heliothis virescens and Manduca sexta. Like their mammalian counterparts, H. virescens and M. sexta lipid rafts are enriched in cholesterol, sphingolipids, and glycosylphosphatidylinositol-anchored proteins. In H. virescens and M. sexta, pretreatment of membranes with the cholesterol-depleting reagent saponin and methyl-beta-cyclodextrin differentially disrupted the formation of lipid rafts, indicating an important role for cholesterol in lepidopteran lipid rafts structure. We showed that several putative Bacillus thuringiensis Cry1A receptors, including the 120- and 170-kDa aminopeptidases from H. virescens and the 120-kDa aminopeptidase from M. sexta, were preferentially partitioned into lipid rafts. Additionally, the leucine aminopeptidase activity was enriched approximately 2-3-fold in these rafts compared with brush border membrane vesicles. We also demonstrated that Cry1A toxins were associated with lipid rafts, and that lipid raft integrity was essential for in vitro Cry1Ab pore forming activity. Our study strongly suggests that these microdomains might be involved in Cry1A toxin aggregation and pore formation.  相似文献   

16.
In T lymphocytes, lipid rafts are preferred sites for signal transduction initiation and amplification. Many cell membrane receptors, such as the TCR, coreceptors, and accessory molecules associate within these microdomains upon cell activation. However, it is still unclear in most cases whether these receptors interact with rafts through lipid-based amino acid modifications or whether raft insertion is driven by protein-protein interactions. In murine T cells, a significant fraction of CD2 associates with membrane lipid rafts. We have addressed the mechanisms that control the localization of rat CD2 at the plasma membrane, and its redistribution within lipid rafts induced upon activation. Following incubation of rat CD2-expressing cells with radioactive-labeled palmitic acid, or using CD2 mutants with Cys226 and Cys228 replaced by alanine residues, we found no evidence that rat CD2 was subjected to lipid modifications that could favor the translocation to lipid rafts, discarding palmitoylation as the principal mechanism for raft addressing. In contrast, using Jurkat cells expressing different CD2 and Lck mutants, we show that the association of CD2 with the rafts fully correlates with CD2 capacity to bind to Lck. As CD2 physically interacts with both Lck and Fyn, preferentially inside lipid rafts, and reflecting the increase of CD2 in lipid rafts following activation, CD2 can mediate the interaction between the two kinases and the consequent boost in kinase activity in lipid rafts.  相似文献   

17.
Lipid rafts are meso-scale (5-200 nm) cell membrane domains where signaling molecules assemble and function. However, due to their dynamic nature, it has been difficult to unravel the mechanism of signal transduction in lipid rafts. Recent advanced imaging techniques have revealed that signaling molecules are frequently, but transiently, recruited to rafts with the aid of protein-protein, protein-lipid, and/or lipid-lipid interactions. Individual signaling molecules within the raft are activated only for a short period of time. Immobilization of signaling molecules by cytoskeletal actin filaments and scaffold proteins may facilitate more efficient signal transmission from rafts. In this review, current opinions of how the transient nature of molecular interactions in rafts generates digital-like signal transduction in cell membranes, and the benefits this phenomenon provides, are discussed.  相似文献   

18.
Among the various hematopoi;etic cells, platelets are critical for maintaining the integrity of the vascular system. They must be rapidly activated by sequential and coordinated mechanisms in order to efficiently prevent haemorrhage upon vascular injury. Several signal transduction pathways lead to platelet activation in vitro and in vivo, among them, several are initiated via receptors or co-receptors containing immuno-receptor tyrosine-based activation motifs (ITAM) which trigger downstream signalling like the immune receptors in lymphocytes. However, in contrast to immune cells for which the role of lipid rafts in signalling has largely been described, the involvement of laterally segregated membrane microdomains in platelet activation has been investigated only recently. The results obtained until now strongly suggest that early steps of platelet activation via the collagen receptor GpVI or via FcgammaRIIa occur preferentially in these microdomains where specific proteins efficiently organize key downstream signalling pathways. In addition, lipid rafts also contribute to platelet activation via heterotrimeric G-protein-coupled receptors. They are sites where the phosphoinositide (PI) metabolism is highly active, leading to a local generation of lipid second messengers such as phosphatidylinositol 3,4,5-trisphosphate. Here, evidence is accumulating that cholesterol-enriched membrane microdomains are part of a general process that contributes to the efficiency and the coordination of platelet activation mechanisms. Here we will discuss the biochemical and functional characterizations of human platelet rafts and their potential impact in platelet physiopathology.  相似文献   

19.
Eukaryotic cells plasma membranes are organized into microdomains of specialized function such as lipid rafts and caveolae, with a specific lipid composition highly enriched in cholesterol and glycosphingolipids. In addition to their role in regulating signal transduction, multiple functions have been proposed, such as anchorage of receptors, trafficking of cholesterol, and regulation of permeability. However, an extensive understanding of their protein composition in human heart, both in failing and non-failing conditions, is not yet available. Membrane microdomains were isolated from left ventricular tissue of both failing (n = 15) and non-failing (n = 15) human hearts. Protein composition and differential protein expression was explored by comparing series of 2-D maps and subsequent identification by LC-MS/MS analysis. Data indicated that heart membrane microdomains are enriched in chaperones, cytoskeletal-associated proteins, enzymes and protein involved in signal transduction pathway. In addition, differential protein expression profile revealed that 30 proteins were specifically up- or down-regulated in human heart failure membrane microdomains. This study resulted in the identification of human heart membrane microdomain protein composition, which was not previously available. Moreover, it allowed the identification of multiple proteins whose expression is altered in heart failure, thus opening new perspectives to determine which role they may play in this disease.  相似文献   

20.
The existence of sphingolipid- and cholesterol-rich membrane microdomains called "lipid rafts", as well as their role in lymphocyte biology, has been widely debated during the last few years. Plasma membrane microdomains seem to be primarily involved in initiation and propagation of the signal transduction cascade associated with lymphocyte activation. In this review, we discuss the recent literature suggesting that, during lymphocyte activation and chemotaxis, lipid rafts act as platforms to compartmentalise signalling and facilitate specific protein-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号