首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黑河中游荒漠草地地上和地下生物量的分配格局   总被引:2,自引:0,他引:2       下载免费PDF全文
草地生态系统中地上和地下生物量的分配方式对于研究生态系统碳储量和碳循环有着重要的意义。为了解黑河中游荒漠草地的地上和地下生物量分配格局, 从群落和个体两个水平对黑河中游的地上和地下生物量进行了调查。结果表明: 群落水平上地上生物量介于3.2-559.2 g·m-2之间, 地下生物量介于3.3-188.2 g·m-2之间, 个体水平上地上生物量介于6.1-489.0 g·株-1之间, 地下生物量介于2.4-244.2 g·株-1之间, 群落水平上的根冠比(R/S)为0.10-2.49, 个体水平上为0.07-1.55, 地下生物量均小于地上生物量, 群落水平上R/S值大于个体水平。群落和个体水平地上和地下生物量的拟合斜率分别为1.1001和0.9913, 与1没有显著差异, 说明地上与地下生物量呈等速生长关系。群落和个体水平土壤表层0-20 cm和0-30 cm的根系生物量分别占全部根系生物量的89.81%、96.95%和81.42%、93.62%, 表明地下生物量主要集中在0-20 cm和0-30 cm土壤表层。  相似文献   

2.
Biomass, primary production and nutrient budgets associated to Sarcocornia perennis subspecies (ssp.) alpini were studied in the Palmones River estuary salt marsh (Southern Spain) to evaluate the nutrient sequestration capacity of the low marsh. Above- and belowground living and dead biomass, as well as carbon, nitrogen and phosphorus content were monitored during 1 year. Additionally, the fate of aboveground detritus was evaluated in an experiment on litter decomposition. The detritus production of S. perennis ssp. alpini was almost equivalent to its annual primary production indicating a rapid turnover of biomass. We calculated that only 12% of the aboveground detritus was exported out of the low marsh while the rest was decomposed in the sediment with a rate of 0.8 year−1. Changes in concentrations of total carbon, nitrogen and phosphorus in the sediment showed patterns related to S. perennis ssp. alpini belowground biomass. Our results suggested that the sediment functions as a net sink for nutrients accumulating 550 g C m−2 year−1, 55 g N m−2 year−1, and 13 g P m−2 year−1.  相似文献   

3.
The emergence of variety of land-use changes due to continuous anthropogenic pressure in peri-urban areas may concomitantly result in modification of the structure of associated plant communities for their sustainable growth. In the present study, plant diversity, and above- and belowground biomass distribution among species were investigated to understand their dynamics across different season, soil, and site conditions in a dry tropical peri-urban region in India. From four study sites that covered contrasting land uses: abandoned brick kiln (ABK), grazing land (GL), Kali river bank (KRB), and agricultural land (AL), a total of 360 monoliths were randomly extracted in three seasons, and dry weights were estimated for aboveground and belowground parts of species individuals. Seasonal soil samples of the sites were analyzed for physico-chemical characteristics. Of the total 87 recorded species that were mainly annual weeds and ruderals, 77% were forbs and 23% grasses. The ranges of plant biomass recorded across all sites and seasons were: aboveground 228–738 g m−2, belowground 83–288 g m−2, and a total of 344–1,026 g m−2. The dominance of species differed between above- and belowground; some species dominated only above- or belowground, and others dominated in both layers. Above- and belowground biomass of the sites, differential community-biomass allocation to above- and belowground parts and species dominants varied significantly with site and season. ABK and AL sites showed lower species diversity and soil nutrients compared to GL and KRB sites. Belowground biomass significantly declined with increasing soil organic C and total N, indicating altered dry matter allocation under resource-scarce habitat conditions. Higher diversity occurred at both low- and high-biomass sites, reflective of enhanced ability of these plant communities to exploit resources maximally in spatio-temporal pattern.  相似文献   

4.
Patterns of both above- and belowground biomass and production were evaluated using published information from 200 individual data-sets. Data sets were comprised of the following types of information: organic matter storage in living and dead biomass (e.g. surface organic horizons and soil organic matter accumulations), above- and belowground net primary production (NPP) and biomass, litter transfers, climatic data (i.e. precipitation and temperature), and nutrient storage (N, P, Ca, K) in above- and belowground biomass, soil organic matter and litter transfers. Forests were grouped by climate, foliage life-span, species and soil order. Several climatic and nutrient variables were regressed against fine root biomass or net primary production to determine what variables were most useful in predicting their dynamics. There were no significant or consistent patterns for above- and belowground biomass accumulation or NPP change across the different climatic forest types and by soil order. Similarly, there were no consistent patterns of soil organic matter (SOM) accumulation by climatic forest type but SOM varied significantly by soil order—the chemistry of the soil was more important in determining the amount of organic matter accumulation than climate. Soil orders which were high in aluminum, iron, and clay (e.g. Ultisols, Oxisols) had high total living and dead organic matter accumulations-especially in the cold temperate zone and in the tropics. Climatic variables and nutrient storage pools (i.e. in the forest floor) successfully predicted fine root NPP but not fine root biomass which was better predicted by nutrients in litterfall. The importance of grouping information by species based on their adaptive strategies for water and nutrient-use is suggested by the data. Some species groups did not appear to be sensitive to large changes in either climatic or nutrient variables while for others these variables explained a large proportion of the variation in fine root biomass and/or NPP.  相似文献   

5.
香港芒萁群落养分的研究   总被引:4,自引:0,他引:4       下载免费PDF全文
本文研究香港芒萁群落养分的分配、季节动态和循环。研究结果表明:(1)N、P、K浓度在活物质大于死物质,地上部分大于地下部分。(2)植物的养分贮量是活物质大于死物质,地下部分大于地上部分。(3)当年生芒萁地上部养分贮量随生物量的增加而增加,但是,干物质生产率超过养分吸收率,使得N、P、K浓度由于生物量的增加而降低。(4)虽然芒萁群落的净第一性生产力大于其邻近的草地和灌木林,但其净第一性生产量中的N和P量却小于灌木林。(5)以土壤中的总N和总P来计算,生态系统中的N和P主要贮存于土壤库中,但以土壤有效K来计算,则有大约36%~50%的K贮存于植被中。(6)在研究期间,立枯体和死地被物中的N、P、K贮量逐渐增加,这表明在火灾后生态系统的立枯体和死地被物养分库有一个累积过程。(7)N、P、K通过枯枝落叶的归还量分别占它们在地上部净第一性生产量中的49.1%、30.8%和13.1%,而地上部净第一性生产量中的N和P的31.2%和46.6%来自于养分的内部循环。  相似文献   

6.
The distribution of tree biomass and the allocation of organic matter production were measured in an 11-yr-old Pinus caribaea plantation and a paired broadleaf secondary forest growing under the same climatic conditions. The pine plantation had significantly more mass aboveground than the secondary forest (94.9 vs 35.6 t ha-1 for biomass and 10.5 vs 5.0 t ha-1 for litter), whereas the secondary forest had significantly more fine roots (⩽2 mm diameter) than the pine plantation (10.5 and 1.0 t ha-1, respectively). Standing stock of dead fine roots was higher than aboveground litter in the secondary forest. In contrast, aboveground litter in pine was more than ten times higher than the dead root fraction. Both pine and secondary forests had similar total organic matter productions (19.2 and 19.4 t ha-1 yr-1, respectively) but structural allocation of that production was significantly different between the two forests; 44% of total production was allocated belowground in the secondary forest, whereas 94% was allocated aboveground in pine. The growth strategies represented by fast growth and large structural allocation aboveground, as for pine, and almost half the production allocated belowground, as for the secondary forest, illustrate equally successful, but contrasting growth strategies under the same climate, regardless of soil characteristics. The patterns of accumulation of organic matter in the soil profile indicated contrasting nutrient immobilization and mineralization sites and sources for soil organic matter formation.  相似文献   

7.
Summary We estimated the density of subterranean termites Gnathamitermes tubiformans at 800,000 · ha-1 for a standing crop biomass of 2 kg · ha-1 Predation losses were estimated to be 5,73 kg · ha-1 · yr-1 representing the major release of nutrients from termites to surficial soil layers. Nutrient fluxes from termites to predators amounted to 410g N·ha-1·yr-1, 33 g S · ha-1 · yr-1 and 19 g P · ha-1 · yr-1. These fluxes account for 8% of the litter N, 1.5% of the litter P and 2.9% of the litter S. The termites fixed an estimated 66 g · ha-1 · yr-1 atmospheric N and returned an estimated 100 g · ha-1 · yr-1 in the surface gallery carton. Since losses of elements from subterannean termites were greater than standing crops, we estimated an annual turnover of N at 3.5 times per year, P of 2.5 times per year, and S of 2.5 per times per year.Since surface foraging, predation and alate flights are pulse regulated by rainfall, nutrient flows through subterranean termites are episodic and releases of nutrients accumulated in termite biomass preceeds or is coincident with productivity pulses of some shallow rooted plants. We propose that subterranean termites are important as regulators in desert nutrient cycles.  相似文献   

8.
A plant’s growth and fitness are influenced by species interactions, including those belowground. In primary successional systems, belowground organisms are known to have particularly important control over plant growth. Exotic plant invasions in these and other habitats may in part be explained by altered associations with belowground organisms compared to native plants. We investigated the growth responses of two foundation grasses on Great Lakes sand dunes, the native grass Ammophila breviligulata and the exotic grass Leymus arenarius, to two groups of soil organisms with important roles in dune succession: arbuscular mycorrhizal fungi (AMF) and plant-parasitic nematodes (PPN). We manipulated the presence/absence of two generalist belowground species known to occur in Great Lakes dunes, Rhizophagus intraradices (AMF) and Pratylenchus penetrans (PPN) in a factorial greenhouse experiment and assessed the biomass production and root architectural traits of the plants. There were clear differences in growth and above- and belowground architecture between Ammophila and Leymus, with Leymus plants being bigger, taller, and having longer roots than Ammophila. Inoculation with Rhizophagus increased above- and belowground biomass production by ~32% for both plant species. Inoculation with Pratylenchus decreased aboveground biomass production by ~36% for both plant species. However belowground, the exotic Leymus was significantly more resistant to PPN than the native Ammophila, and gained more benefits from AMF in belowground tri-trophic interactions than Ammophila. Overall, our results indicate that differences in plant architecture coupled with altered belowground interactions with AMF and PPN have the potential to promote exotic plant invasion.  相似文献   

9.
Summary Seasonal and total primary productivity was measured for a Carex meadow in southern Quebec, Canada. Forty-five one-meter2 plots were sampled for dry weight biomass, species composition, structure (species density, diversity, height) and soil parameters including macronutrient concentrations (Ca, K, Mg, Na, N, P), pH, organic matter, and water depth. Shoot net productivity and litter decomposition rates were computed for 20-day intervals May–September, inclusive. Relationships between all parameters were examined by principal components analysis.Dominant species included Carex lacustris, C. aquatilis, Calamagrostis canadensis, and Typha angustifolia. For a 130-day growth period, mean shoot net productivity was 6.3 g·m-2· da-1 and terminal standing crop 807 g·m-2. Terminal standing crop was very close to above ground biomass predicted by the Gorham equation based on thermal relations for Carex ecosystems and to total accumulated litter mass (779 g·m-2). Seasonal production showed a strong bimodal pattern with peak productivities in mid-June (15.3 g·m-2·da-1) and mid-July (4.3 g·m-2·da-1). Decomposition of the previous year's litter was 81% complete by late September.Soil fertility, fire incidence, and topographic position were the three most important gradients resolved by principal components analysis. The first component distinguished sediment-rich Typha angustifolia communities near open water from oligotrophic stands of Carex spp. on central areas of the meadow. Production levels correlated closely with extractable soil calcium (r=0.40**) and phosphorus levels (r=0.39**). Species diversity and stem density related inversely to productivity on this component. Fire incidence (component II) had a marked effect on species diversity due to surface scarification and removal of litter mass. Component III was a topographic gradient separating composition, and community structure.Magnesium and sodium levels decreased from upland to open water. Soil phosphorus increased markedly at water's edge related to mineral input by sedimentation. Pattern of N, P, K, and Ca coincided closely with total shoot production and litter mass levels suggesting closed biotic cycles of these elements.A model accounting for species diversity levels in Carex meadow was formulated based on the assumption that high productivity results in competitive species elimination.  相似文献   

10.

Background and aims

Management approach may influence forage production as well as soil organic carbon (SOC) and soil total nitrogen (STN) accrued beneath perennial grass-legume components of irrigated crop rotations. This study aimed to evaluate effects of conventional, certified organic, and reduced-tillage management approaches on above- and belowground biomass production and C and N content in alfalfa-grass mixture, and their relationships with SOC and STN.

Methods

An alfalfa-grass mixture was established in 2009 on four replications under a sprinkler irrigation system. Soil characteristics were analyzed at planting time in 2009. Aboveground biomass production, coarse and fine roots, SOC, STN, aboveground biomass C and N, and coarse- and fine-root C and N were quantified in samples collected during 2009–2011.

Results

Conventional management produced more aboveground biomass than reduced-tillage and organic, but production under organic matched conventional and exceeded reduced-tillage in the last two harvests of the study. Root production was constant under the three approaches, but resulted in more SOC accrued under reduced-tillage than under the other two approaches.

Conclusions

Biomass production was favored by conventional seedbed preparation and soil fertility management while SOC accrual was favored by minimum soil disturbance. In addition, aboveground biomass was influenced by seasonal air temperature, precipitation, and nutrient mineralization from the previous season, so above-/belowground allocation changed seasonally.  相似文献   

11.
We studied the effect of long-term water table drawdown on the vascular plant community in an ombrotrophic bog in central Finland by measuring aboveground biomass and belowground production (by in-growth cores) across plant functional groups including herbs, shrubs, and trees. We compared drained and undrained portions 45 years after the installation of a drainage ditch network, which has lowered water levels of 15–20 cm on average in the drained part of the site. Although shrub fine root production did not differ significantly between sites, water table drawdown increased belowground tree fine root production by 740% (3.8 ± 5.4 SD and 28.1 ± 24.1 g m?2 y?1 in undrained and drained sites, respectively) at the expense of herb root production, which declined 38% (27.62 ± 16.40 and 10.58 ± 15.7 g m?2 y?1 in undrained and drained sites, respectively) yielding no significant overall change in total fine root production. Drainage effects on aboveground biomass showed a similar pattern among plant types, as aboveground tree biomass increased dramatically with drainage (79 ± 135 and 2546 ± 1551 g m?2 in drained and undrained sites, respectively). Although total shrub biomass was not significantly different between sites, shrubs allocated more biomass to stems than leaves in the drained site. Drainage also caused a significant shift in shrub species composition. Although trees dominated the aboveground biomass following water table drawdown, understorey vegetation, mainly shrubs, continued to dominate belowground fine root production, comprising 64% of total root production at the drained site. Aboveground biomass proved to be a good predictor of belowground production, suggesting that allometric relationships can be developed to estimate belowground production in these systems. Increase in tree root production can counteract decrease in herb fine root production following water table drawdown, emphasizing the importance of plant functional type responses to water table drawdown. Whether these changes will offset ecosystem C loss via increased plant C storage or stimulate soil organic matter decomposition via increased above- and belowground litter inputs requires further study.  相似文献   

12.
地下根系是草原生态系统的重要组成部分,其生物量及其净生产力对地下碳库具有直接与间接作用,分析地下生物量季节动态与周转对深入揭示草原生态系统碳库动态及其固碳速率与潜力具有重要意义。应用钻土芯法对不同利用方式或管理措施下内蒙古草甸草原、典型草原地下生物量动态及其与温度、降水的相关性研究表明:草甸草原和典型草原地上生物量季节动态均为单峰型曲线,与上月降水显著正相关(P0.05),但地下生物量季节动态表现为草甸草原呈"S"型曲线,典型草原则是双峰型曲线,与温度、降水相关性均不显著(P0.05);两种草原根冠比和地下生物量垂直分布均为指数函数曲线,根茎型草原地下生物量集中在土壤0—5 cm,丛生型草原地下生物量集中于土壤5—10 cm,根冠比值在生长旺季(7—8月份)最小。草甸草原地下净生产力及碳储量范围分别为2167—2953 g m-2a-1和975—1329 gC m-2a-1,典型草原为2342—3333 g m-2a-1和1054—1450 gC m-2a-1,地下净生产力及其碳储量约为地上净生产力及其碳储量的10倍,具有较大的年固碳能力,且相对稳定;地下净生产力与地上净生产力呈显著负相关性(P0.05);地下生物量碳库是地上生物量碳库的10倍左右,适度放牧可增加地下生产力,但长期过度放牧显著降低其地下生物量与生产力,并使其垂直分布趋向于浅层化。  相似文献   

13.
Biomass, litterfall, litter standing crop, and decomposition was studied in a native subtropical alluvial forest locally known as Selva Marginal (SM) and an exotic Ligustrum lucidum forest (LF) at the Reserva Integral de Punta Lara, Buenos Aires Province, 34°47S and 58°1W. The alluvial forest site was at the southern limit of distribution of subtropical forests in South America. The Ligustrum forest was invading disturbed areas. Total biomass was 147.7 Mg/ha (86% aboveground and 14% belowground) in the SM, and 71.4 Mg/ha (93% and 7%, respectively) in the LF. Litterfall was 10.3 Mg/ha·yr and 13.8 Mg/ha·yr respectively. Annual leaf decomposition rate was greater for Ligustrum (k=4.07) than for SM species (k=1.48). The mean residence time of aboveground biomass was 12 yr for the SM and 5 yr for the LF. The k1 values (litterfall/standing crop) were 1.9 and 2.0 for SM and LF respectively. The influence of coastal road and wall in the hydroperiod, native forested wetland ecosystem survival and exotic forest invasion is discussed.  相似文献   

14.
Summary Measurements of litter fall and litter removal by crabs, in conjunction with estimates of litter decay by microbes and tidal export of litter from three high-intertidal mangrove forests were made during a year-long study in tropical northeastern Australia. In forests dominated by Ceriops tagal and Bruguiera exaristata, litter standing stocks remained low on the forest floor (mean 6 g·m-2), although litter fall was high; 822 and 1022 g·m-2·y-1, respectively. Sesarmid crabs removed 580 (Ceriops) and 803 (Bruguiera) g·m-2·y-1, or 71 and 79%, of the total annual litter fall from the forest floor. Relative to the rate of litter removal by crabs, microbial turnover of whole, unshredded litter was insignificant, accounting for <1% of annual litter fall. Export of litter by tides was estimated to remove 194 (Ceriops) and 252 (Bruguiera) g·m-2·y-1 or 24 and 25% of annual litter fall. In a forest dominated by Avicenniamarina, in which an ocypodid crab was more abundant than sesarmids, litter standing stocks were higher (mean 84 g·m-2) and crabs removed less litter; 173 g·m-2·y-1 or 33% of the annual litter fall of 519 g·m-2·y-1. Microbial turnover of intact litter was more important in the Avicennia forest (168 g·m-2·y-1 or 32% of annual litter fall), and tides exported 107 g·m-2·y-1 or 21% of litter production. In areas where sesarmid crabs were absent or rare in Ceriops forests, there were significantly higher standing stocks of litter and slower rates of leaf removal. Taking into account the probable assimilation efficiencies of sesarmid crabs feeding on mangrove leaves, we estimate that in Ceriops and Bruguiera forests leaf processing by crabs turns litter over at >75 times the rate of microbial decay alone, thus facilitating the high sediment bacterial productivity in these forests. The importance of litter processing by crabs increases with height in the intertidal in tropical Australia, in contrast to New World mangrove forests, where the reverse is true.Contribution No. 445 from the Australian Institute of Marine Science  相似文献   

15.
Shrub willow biomass crops (SWBC) have been developed as a biomass feedstock for bioenergy, biofuels, and bioproducts in the northeastern and midwestern USA as well as in Europe. A previous life cycle analysis in North America showed that the SWBC production system is a low-carbon fuel source. However, this analysis is potentially inaccurate due to the limited belowground biomass data and the lack of aboveground stool biomass data. This study provides new information on the above- and belowground biomass, the carbon–nitrogen (C/N) ratio, and the root/shoot (R/S) ratio of willow biomass crops (Salix × dasyclados [SV1]), which have been in production from 5 to 19 years. The measured amounts of biomass were: 2.6 to 4.1 odt ha?1 for foliage, 4.9 to 10.9 odt ha?1 for aboveground stool (AGS), 2.9 to 5.7 odt ha?1 for coarse roots (CR), 3.1 to 10.2 odt ha?1 for belowground stool (BGS), and 5.6 to 9.9 odt ha?1 for standing fine root (FR). The stem biomass production ranged from 7.0 to 18.0 odt ha?1?year?1 for the 5- and 19-year-old willows, respectively. C/N ratios ranged from 23 for foliage to 209 for belowground stool. An average R/S ratio of 2.0, calculated as total belowground biomass (BGS, CR, and FR) plus AGS divided by annual stem biomass, can be applied to estimate the total belowground biomass production of a mature SWBC. Based on AGS, BGS, and CR and standing FR biomass data, SWBC showed a net GHG potential of ?42.9 Mg CO2 eq?ha?1 at the end of seven 3-year rotations.  相似文献   

16.
R. S. Singh 《Plant Ecology》1993,106(1):63-71
Burning increased the mean annual canopy and belowground biomass of a dry tropical savanna by 40% and 12%, respectively, while littermass was reduced by 85% in comparison to control savanna. Mean annual aboveground and belowground net primary production were 471 and 631 g m-2 in control, and 584 and 688 g m-2 in burned savanna, respectively. Fire caused an increase in mean aboveground net production of 24% and in belowground net production of 9%.Concentration of carbon, nitrogen and phosphorus in vegetation of unburned plots ranged between 34.01–38.59%, 0.85–1.53% and 0.04–0.11% and in soil from 0.95–1%, 0.011–0.13% and 0.017–0.02%, respectively. Fire increased the mean concentrations of N and P by 16% and 42% in vegetation and 18.18% and 17.65% in soil, respectively. Thus winter fire can be an important tool for the management of dry tropical savanna with respect to biomass production and nutritive quality.  相似文献   

17.
The dwarf shrub Indigofera spinosa , indigenous to arid and semi-arid rangelands of northeastern Africa, is an important food source for livestock. Proper management of the shrub requires improved understanding of the effects of grazing and climatic variability on aboveground dry-matter allocation. Between 1986 and 1990, we compared the temporal variability of aboveground dry-matter allocation to different plant biomass compartments. We also compared dry-matter transfers between components; total live biomass to litter, standing dead to litter and live biomass to standing dead between continuously grazed and an ungrazed treatments. Partitioning of combined total dry-matter production among different structural organs (called allocation ratio) is influenced by phenological changes, episodic rainfall and her-bivory. Dry-matter production in the grazed treatment responded more markedly to episodic rainfall events more than in the ungrazed treatment. Exclusion of grazers failed to improve the relative growth rate (RGR) of shrub biomass, while grazing improved it. RGR declined in the ungrazed treatment following the accumulation of standing dead dry-matter, while m the grazed treatment it declined following the shedding of leaves. The shrub allocated more to total live biomass than to standing dead. Greater reduction of total live allocation ratio in the grazed than in the ungrazed treatment occurred during a dry year. The ungrazed treatment had higher standing dead allocation ratio than did the grazed treatment. Plants transferred more dry-matter from total live biomass compartment to litter, than from standing dead to or from total live biomass to standing dead independent of treatment. The rates of transfer were higher in the ungrazed than in the grazed treatment. The results suggest that I spinosa has evolved to respond to climatic variability and grazmgbyallocating dry allocating dry-matter differently between various compartments.  相似文献   

18.
Summary Growth cycles and production of aboveground and belowground giant cutgrass (Zizaniopsis miliacea (Michx.) Doell and Asch.) were studied in a freshwater tidal marsh along the lower Savannah River near Savannah, Georgia, USA. Minimum aboveground live standing crop (142 g/m2) occurred in March with a steady increase thereafter to an October maximum (1,039 g/m2) followed by a rapid decline. Giant cutgrass aboveground net primary production was approximately 1,530 g/m2/yr. Rhizomes (358 g/m2/yr) and roots (160 g/m2/yr) yielded an annual belowground production of 518 g/m2/yr. Total above and belowground annual net production was estimated at 2,048 g/m2/yr.Present Address: Institute of Ecology, University of Georgia, Athens, Georgia, 30602, USA  相似文献   

19.
We estimated carbon and nitrogen stocks in aboveground biomass (AGB) and belowground biomass (BGB) along an elevation range in forest sites located on the steep slopes of the Serra do Mar on the north coast of the State of São Paulo, southeast Brazil. In elevations of 100 m (lowland), 400 m (submontane), and 1000 m (montane) four 1-ha plots were established, and above- (live and dead) and belowground (live and dead) biomass were determined. Carbon and nitrogen concentrations in each compartment were determined and used to convert biomass into carbon and nitrogen stocks. The carbon aboveground stock (CAGB) varied along the elevation range from approximately 110 to 150 Mg·ha−1, and nitrogen aboveground stock (NAGB), varied from approximately 1.0 to 1.9 Mg·ha−1. The carbon belowground stock (CBGB) and the nitrogen belowground stock (NBGB) were significantly higher than the AGB and varied along the elevation range from approximately 200–300 Mg·ha−1, and from 14 to 20 Mg·ha−1, respectively. Finally, the total carbon stock (CTOTAL) varied from approximately 320 to 460 Mg·ha−1, and the nitrogen total stock (NTOTAL) from approximately 15 to 22 Mg·ha−1. Most of the carbon and nitrogen stocks were found belowground and not aboveground as normally found in lowland tropical forests. The above- and belowground stocks, and consequently, the total stocks of carbon and nitrogen increased significantly with elevation. As the soil and air temperature also decreased significantly with elevation, we found a significantly inverse relationship between carbon and nitrogen stocks and temperature. Using this inverse relationship, we made a first approach estimate that an increase of 1°C in soil temperature would decrease the carbon and nitrogen stocks in approximately 17 Mg·ha−1 and 1 Mg·ha−1 of carbon and nitrogen, respectively.  相似文献   

20.
V. R. Smith 《Polar Biology》1987,8(2):135-153
Summary Studies of plant standing crop and nutrient concentrations have enabled an assessment of the seasonal changes in nutrient standing stocks (the mass of nutrients per m2) in two mire-grasslands at Marion Island (46°54S, 37°45E). Mire-grasslands are an important component of the island's vegetation, occurring on very wet peats and dominated by graminoids and bryophytes. Peak aboveground standing stocks of N, P and K in the vascular plant species of the mire-grasslands mostly occurred earlier in the season than did peak aboveground biomass, implying that aboveground accumulation rates of these nutrients were greater than the rate of biomass accumulation. Maximum Ca standing stocks coincided in the season with peak shoot biomass. Depending on the plant species, peak Mg and Na standing stocks occurred either before, or later than, peak shoot biomass. Total (above-plus belowground) standing stocks of nutrients (N+P+K+Ca+Mg+Na) at the time of peak aboveground biomass were 51 g m-2 at study mire 1 and 44 g m-2 at study mire 2. The most abundant element in the vegetation was N, followed by K. The net quantities of most nutrients translocated into the aboveground growth were mostly greater than the seasonal mean standing stocks in the aerial biomass. Except for Ca, nutrient standing stocks in the vegetation of the mire-grasslands are in the upper part of the range reported for sub-Arctic and Arctic graminoid communities. They are more similar to standing stocks at oceanic moorlands, montane grasslands and heath communities. Low Ca concentrations occur in the plants so that Ca standing stocks are lower than in most comparable northern hemisphere communities. Pool sizes (i.e. total quantities contained in the plant/soil system to a depth of 25 cm) of N, P, K and Ca are in the lower part of the range reported for wet, graminoid-dominated tundra and tundra-like communities of the northern hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号