共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Aaron M Neiman 《Microbiology and molecular biology reviews》2005,69(4):565-584
Sporulation of the baker's yeast Saccharomyces cerevisiae is a response to nutrient depletion that allows a single diploid cell to give rise to four stress-resistant haploid spores. The formation of these spores requires a coordinated reorganization of cellular architecture. The construction of the spores can be broadly divided into two phases. The first is the generation of new membrane compartments within the cell cytoplasm that ultimately give rise to the spore plasma membranes. Proper assembly and growth of these membranes require modification of aspects of the constitutive secretory pathway and cytoskeleton by sporulation-specific functions. In the second phase, each immature spore becomes surrounded by a multilaminar spore wall that provides resistance to environmental stresses. This review focuses on our current understanding of the cellular rearrangements and the genes required in each of these phases to give rise to a wild-type spore. 相似文献
3.
4.
Sequencing of the region upstream from the yeast RAD3 gene has revealed an open reading frame (ORF) of 225 amino acids (aa) that could encode a 25.3-kDa polypeptide. The predicted aa sequence of this ORF is homologous with that of several eukaryotic adenylate kinase (Adk)-encoding genes, including the yeast gene, ADK1. These findings suggest that the yeast Saccharomyces cerevisiae has a second Adk-encoding gene, tentatively designated as ADK2. 相似文献
5.
Han G Gable K Kohlwein SD Beaudoin F Napier JA Dunn TM 《The Journal of biological chemistry》2002,277(38):35440-35449
The YBR159w gene encodes the major 3-ketoreductase activity of the elongase system of enzymes required for very long-chain fatty acid (VLCFA) synthesis. Mutants lacking the YBR159w gene display many of the phenotypes that have previously been described for mutants with defects in fatty acid elongation. These phenotypes include reduced VLCFA synthesis, accumulation of high levels of dihydrosphingosine and phytosphingosine, and accumulation of medium-chain ceramides. In vitro elongation assays confirm that the ybr159Delta mutant is deficient in the reduction of the 3-ketoacyl intermediates of fatty acid elongation. The ybr159Delta mutant also displays reduced dehydration of the 3-OH acyl intermediates of fatty acid elongation, suggesting that Ybr159p is required for the stability or function of the dehydratase activity of the elongase system. Green fluorescent protein-tagged Ybr159p co-localizes and co-immunoprecipitates with other elongating enzymes, Elo3p and Tsc13p. Whereas VLCFA synthesis is essential for viability, the ybr159Delta mutant cells are viable (albeit very slowly growing) and do synthesize some VLCFA. This suggested that a functional ortholog of Ybr159p exists that is responsible for the residual 3-ketoreductase activity. By disrupting the orthologs of Ybr159w in the ybr159Delta mutant we found that the ybr159Deltaayr1Delta double mutant was inviable, suggesting that Ayr1p is responsible for the residual 3-ketoreductase activity. 相似文献
6.
O. Louvet O. Roumanie C. Barthe M.-F. Peypouquet J. Schaeffer F. Doignon M. Crouzet 《Molecular & general genetics : MGG》1999,261(4-5):589-600
We identified the ORF YBR264c during the systematic sequencing of the Saccharomyces cerevisiae genome. It encodes a putative protein of 218 amino acids. We demonstrate here that the gene is indeed expressed and encodes
a new Ypt in yeast. This protein specifically binds guanine nucleotides and interacts via its C-terminal end with the unique
Rab GDP Dissociation Inhibitor (RabGDI). In accordance with a recent proposal, the gene is now designated YPT10. No mutant phenotype could be associated with inactivation of the gene. However, overexpression of YPT10 resulted in defects in growth; microscopic examination of such cells revealed an overabundance of vesicular and tubular structures,
suggesting some alteration in the function of the Golgi apparatus. In addition, degradation of the Ypt10 protein, which possesses
a PEST sequence, is shown to be dependent on proteasome activity.
Received: 29 October 1998 / Accepted: 25 January 1999 相似文献
7.
Exceptional codon recognition by the glutamine tRNAs in Saccharomyces cerevisiae. 总被引:3,自引:0,他引:3 下载免费PDF全文
Recently, it was shown that wild-type glutamine tRNAs in yeast cause low-level nonsense suppression that can be enhanced by increasing glutamine tRNA gene copy number. In order to investigate glutamine tRNA behavior further, anticodon mutations that confer nonsense suppression were identified in yeast sup70 gene, which codes for glutamine tRNA(CAG). In this study we show that suppressors derived by mutation severely limit growth such that suppressor-bearing spores germinate but arrest cell division at approximately the 50 cell stage. Analysis of a sup70 deletion was used to establish that growth limitation results from loss of wild-type glutamine tRNA(CAG) function. By exploiting the growth inhibition of sup70 alleles, some exceptional codon recognition properties of glutamine tRNAs were revealed. Our results indicate that amber suppressor glutamine tRNA(UAG) can translate 5'-CAG-3' glutamine codons with low efficiency in the presence of an A/C mismatch at the first position of the codon, suggesting that reading may occur at a low level by a two-out-of-three reading mechanism. In addition, when glutamine tRNA(CAA) is over-expressed in vivo, it translates 5'-CAG-3' codons using a mechanism that resembles prokaryotic-like U/G wobble, which normally does not occur in yeast. Our studies also suggest that the yeast glutamine tRNA suppressors could potentially be exploited to express ciliated protozoan genes that normally contain internal 5'-UAG-3' and 5'-UAA-3' codons. 相似文献
8.
Type 2C protein phosphatase (PP2C) is a monomeric enzyme and requires Mg(2+) or Mn(2+) for its activity. Up to now, seven PP2C-like genes have been identified in the genome of Saccharomyces cerevisiae. However, the protein encoded by the sixth PP2C-like gene, YCR079w, has not been demonstrated to have PP2C activity. In this study, we show that YCR079w confers a rapamycin-resistant function in yeast cells, and we also demonstrate that the YCR079w-encoded protein exhibits characteristics of a typical PP2C. Therefore, YCR079w encodes the sixth PP2C, PTC6, in budding yeast. 相似文献
9.
Immunolocalization of Kex2 protease identifies a putative late Golgi compartment in the yeast Saccharomyces cerevisiae 总被引:31,自引:24,他引:31 下载免费PDF全文
The Kex2 protein of the yeast Saccharomyces cerevisiae is a membrane-bound, Ca2(+)-dependent serine protease that cleaves the precursors of the mating pheromone alpha-factor and the M1 killer toxin at pairs of basic residues during their transport through the secretory pathway. To begin to characterize the intracellular locus of Kex2-dependent proteolytic processing, we have examined the subcellular distribution of Kex2 protein in yeast by indirect immunofluorescence. Kex2 protein is located at multiple, discrete sites within wild-type yeast cells (average, 3.0 +/- 1.7/mother cell). Qualitatively similar fluorescence patterns are observed at elevated levels of expression, but no signal is found in cells lacking the KEX2 gene. Structures containing Kex2 protein are not concentrated at a perinuclear location, but are distributed throughout the cytoplasm at all phases of the cell cycle. Kex2-containing structures appear in the bud at an early, premitotic stage. Analysis of conditional secretory (sec) mutants demonstrates that Kex2 protein ordinarily progresses from the ER to the Golgi but is not incorporated into secretory vesicles, consistent with the proposed localization of Kex2 protein to the yeast Golgi complex. 相似文献
10.
During mitosis, genomic integrity is maintained by the proper coordination of mitotic events through the spindle checkpoint. The bifurcated spindle checkpoint blocks cell cycle progression at metaphase by monitoring unattached kinetochores and inhibits mitotic exit in response to the incorrect orientation of the mitotic spindle. Bfa1p is a spindle checkpoint regulator of budding yeast in the Bub2p checkpoint pathway for proper mitotic exit. We have isolated a novel Bfa1p interacting protein named Ibd2p in the budding yeast Saccharomyces cerevisiae. We found that IBD2 (Inhibition of Bud Division 2) is not an essential gene but its deletion mutant proceeded through the cell cycle in the presence of microtubule-destabilizing drugs, thereby inducing a sharp decrease in viability. In addition, overexpression of Mps1p caused partial mitotic arrest in ibd2Delta as well as in bub2Delta, suggesting that IBD2 encodes a novel component of the spindle checkpoint downstream of MPS1. Overexpression of Ibd2p induced mitotic arrest with increased levels of Clb2p in wild type and mad2Delta, but not in deletion mutants of BUB2 and BFA1. Pds1p was also stabilized by the overexpression of Ibd2p in wild-type cells. The mitotic arrest defects observed in ibd2Delta in the presence of nocodazole were restored by additional copies of BUB2, BFA1, and CDC5, whereas an extra copy of IBD2 could not rescue the mitotic arrest defects of bub2Delta and bfa1Delta. The mitotic arrest defects of ibd2Delta were not recovered by MAD2, or vice versa. Analysis of the double mutant combinations ibd2Deltamad2Delta, ibd2Deltabub2Delta, and ibd2Deltadyn1Delta showed that IBD2 belongs to the BUB2 epistasis group. Taken together, these data demonstrate that IBD2 encodes a novel component of the BUB2-dependent spindle checkpoint pathway that functions upstream of BUB2 and BFA1. 相似文献
11.
The Saccharomyces cerevisiae STE14 gene encodes a methyltransferase that mediates C-terminal methylation of a-factor and RAS proteins. 总被引:9,自引:2,他引:9 下载免费PDF全文
Post-translational processing of a distinct group of proteins and polypeptides, including the a-factor mating pheromone and RAS proteins of Saccharomyces cerevisiae, results in the formation of a modified C-terminal cysteine that is S-isoprenylated and alpha-methyl esterified. We have shown previously that a membrane-associated enzymatic activity in yeast can mediate in vitro methylation of an isoprenylated peptide substrate and that this methyltransferase activity is absent in ste14 mutants. We demonstrate here that STE14 is the structural gene for this enzyme by expression of its product as a fusion protein in Escherichia coli, an organism in which this activity is lacking. We also show that a-factor, RAS1 and RAS2 are physiological methyl-accepting substrates for this enzyme by demonstrating that these proteins are not methylated in a ste14 null mutant. It is notable that cells lacking STE14 methyltransferase activity exhibit no detectable impairment of RAS function or cell viability. However, we did observe a kinetic delay in the rate of RAS2 maturation and a slight decrease in the amount of membrane localized RAS2. Thus, methylation does not appear to be essential for RAS2 maturation or localization, but the lack of methylation can have subtle effects on the efficiency of these processes. 相似文献
12.
13.
O. Louvet O. Roumanie C. Barthe M.-F. Peypouquet J. Schaeffer F. Doignon M. Crouzet 《Molecular genetics and genomics : MGG》1999,261(4-5):589-600
We identified the ORF YBR264c during the systematic sequencing of the Saccharomyces cerevisiae genome. It encodes a putative protein of 218 amino acids. We demonstrate here that the gene is indeed expressed and encodes a new Ypt in yeast. This protein specifically binds guanine nucleotides and interacts via its C-terminal end with the unique Rab GDP Dissociation Inhibitor (RabGDI). In accordance with a recent proposal, the gene is now designated YPT10. No mutant phenotype could be associated with inactivation of the gene. However, overexpression of YPT10 resulted in defects in growth; microscopic examination of such cells revealed an overabundance of vesicular and tubular structures, suggesting some alteration in the function of the Golgi apparatus. In addition, degradation of the Ypt10 protein, which possesses a PEST sequence, is shown to be dependent on proteasome activity. 相似文献
14.
15.
Autophagy is a degradation process accompanied by dynamic membrane organization. In the yeast, Saccharomyces cerevisiae, about 30 ATG (autophagy-related) genes have been identified as important genes for autophagy. Among them, 17 are indispensable for formation of the autophagosome, an organelle enclosed by a double lipid bilayer during starvation-induced autophagy. Recently, a central structure for autophagosome generation, termed the pre-autophagosomal structure, was identified. Despite intensive study, many questions regarding the mechanisms underlying autophagosome formation remain unanswered. In this review, we will give an overview of recent studies on the mechanisms of autophagosome formation and discuss these unresolved questions. 相似文献
16.
Stationary phase in the yeast Saccharomyces cerevisiae. 总被引:23,自引:0,他引:23
Growth and proliferation of microorganisms such as the yeast Saccharomyces cerevisiae are controlled in part by the availability of nutrients. When proliferating yeast cells exhaust available nutrients, they enter a stationary phase characterized by cell cycle arrest and specific physiological, biochemical, and morphological changes. These changes include thickening of the cell wall, accumulation of reserve carbohydrates, and acquisition of thermotolerance. Recent characterization of mutant cells that are conditionally defective only for the resumption of proliferation from stationary phase provides evidence that stationary phase is a unique developmental state. Strains with mutations affecting entry into and survival during stationary phase have also been isolated, and the mutations have been shown to affect at least seven different cellular processes: (i) signal transduction, (ii) protein synthesis, (iii) protein N-terminal acetylation, (iv) protein turnover, (v) protein secretion, (vi) membrane biosynthesis, and (vii) cell polarity. The exact nature of the relationship between these processes and survival during stationary phase remains to be elucidated. We propose that cell cycle arrest coordinated with the ability to remain viable in the absence of additional nutrients provides a good operational definition of starvation-induced stationary phase. 相似文献
17.
Müllner H Deutsch G Leitner E Ingolic E Daum G 《The Journal of biological chemistry》2005,280(14):13321-13328
Previous work from our laboratory (Zinser, E., Paltauf, F., and Daum, G. (1993) J. Bacteriol. 175, 2853-2858) demonstrated steryl ester hydrolase activity in the plasma membrane of the yeast Saccharomyces cerevisiae. Here, we show that the gene product of YEH2/ YLR020c, which is homologous to several known mammalian steryl ester hydrolases, is the enzyme catalyzing this reaction. Deletion of yeast YEH2 led to complete loss of plasma membrane steryl ester hydrolase activity whereas overexpression of the gene resulted in a significant elevation of the activity. Purification of enzymatically active Yeh2p close to homogeneity unambiguously identified this protein as a steryl ester hydrolase and thus as the first enzyme of this kind characterized in S. cerevisiae. In addition to evidence obtained in vitro experiments in vivo contributed to the characterization of this novel enzyme. Sterol analysis of yeh2Delta unveiled a slightly elevated level of zymosterol suggesting that the esterified form of this sterol precursor is a preferred substrate of Yeh2p. However, in strains bearing hybrid proteins with strongly enhanced Yeh2p activity decreased levels of all steryl esters were observed. Thus, it appears that Yeh2p activity is not restricted to distinct steryl esters but rather has broad substrate specificity. The fact that in a yeh2Delta deletion strain bulk steryl ester mobilization occurred at a similar rate as in wild type suggested that Yeh2p is not the only steryl ester hydrolase but that other enzymes with overlapping function exist in the yeast. 相似文献
18.
Membrane lipids of yeast mitochondria have been enriched by growing yeast cells in minimal medium supplemented with specific unsaturated fatty acids as the sole lipid supplement. Using the activity of marker enzymes for the outer (kynurenine hydroxylase) and inner (cytochrome c oxidase and oligomycin-sensitive ATPase) mitochondrial membranes, Arrhenius plots have been constructed using both promitochondria and mitochondria obtained from O2-adapting cells in the presence of a second unsaturated fatty acid (i.e. linoleate (N2) to elaidic (O2)). Transition temperatures which reflect the unsaturated fatty acid enrichment of the new membranes reveal interesting features involved in the mechanism of the assembly of these two mitochondrial membranes. This approach was further enforced with both lipid depletion and mitochondrial protein inhibition studies. Kynurenine hydroxylase which does not require fatty acid for its continued synthesis during aerobiosis seems to be incorporated into the preformed linoleate-anaerobic outer membrane. The newly synthesized activities of inner mitochondrial membrane enzymes on the other hand, appear to integrate their activity into newly formed aerobic-elaidic-rich inner membrane. These latter enzymes show a distinct dependence on fatty acid supplement for their continued synthesis during their aerobic phase. This suggests that O2-dependent proteo-lipid precursors are formed before these enzymes are integrated into their membrane mosaic. Two separate models are proposed to explain these results, one for the lipid-rich outer mitochondrial membrane and another for the protein-rich inner mitochondrial membrane. 相似文献
19.
The Saccharomyces cerevisiae ACP2 gene encodes an essential HMG1-like protein. 总被引:7,自引:6,他引:7 下载免费PDF全文
The high-mobility-group (HMG) proteins, a group of nonhistone chromatin-associated proteins, have been extensively characterized in higher eucaryotic cells. To test the biological function of an HMG protein, we have cloned and mutagenized a gene encoding an HMG-like protein from the yeast Saccharomyces cerevisiae. A yeast genomic DNA library was screened with an oligonucleotide designed to hybridize to any yeast gene containing an amino acid sequence conserved in several higher eucaryotic HMG proteins. DNA sequencing and Northern (RNA) blot analysis revealed that one gene, called ACP2 (acidic protein 2), synthesizes a poly(A)+ RNA in S. cerevisiae which encodes a 27,000-molecular-weight protein whose amino acid sequence is homologous to those of calf HMG1 and HMG2 and trout HMGT proteins. Standard procedures were used to construct a diploid yeast strain in which one copy of the ACP2 gene was mutated by replacement with the URA3 gene. When this diploid was sporulated and dissected, only half of the spores were viable. About half of the nonviable spores proceeded through two or three cell divisions and then stopped dividing; the rest did not germinate at all. None of the viable spores contained the mutant ACP2 gene, thus proving that the protein encoded by ACP2 is required for cell viability. The results presented here demonstrate that an HMG-like protein has an essential physiological function. 相似文献