首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Early biochemical analyses of metabolic pathways assumed that the free diffusion of substrates and enzymes in an evenly mixed cellular space provided the interactions that enabled reactions to proceed. Metabolic complexes have since been shown to assemble and disassemble in response to changes in cellular conditions, and in turn, to channel metabolic intermediates within discreet cellular compartments, allowing for the efficient use or storage of energy. A fundamental component to the formation of metabolic complexes and the channeling of metabolites is the translocation of enzymes in response to specific extra- and intracellular signals. These generalities play an important role in the metabolism of glucose to glycogen within skeletal muscle and liver. In this review, the similarities and differences in skeletal muscle and liver glucose metabolism with regards to glucose transport and intracellular processing will be addressed during the fasted to fed transition. More specifically, the importance of isoform expression and protein translocation in the tissue specific control of glucose homeostasis will be covered.  相似文献   

3.
Insulin receptor substrate (IRS) proteins are important docking proteins in mediating the insulin signaling cascade. We have investigated the effect of short interfering RNA (siRNA) mediated knockdown of IRS-1 on insulin signaling cascade in primary human hepatocellular carcinoma HepG2 cell line and HepG2 cells overexpressing Akt1/PKB-alpha (HepG2-CA-Akt/PKB). IRS-1 knockdown in both cell lines resulted in reduction of insulin stimulated Akt1 phosphorylation at Ser 473. In parental HepG2 cells, IRS-1 knockdown resulted in reduction (ca. 50%) in the basal level of phosphorylated mTOR (Ser 2448) irrespective of insulin treatment. In contrast, HepG2-CA-Akt/PKB cells showed an upregulation in the basal level of phosphorylated mTOR (Ser 2448) (ca. 40%). Insulin mediated phosphorylation of mTOR was reduced. IRS-1 knockdown also reduced the cell proliferation of parental HepG2 cells by ca. 30% in the presence/absence of insulin, whereas in HepG2-CA-Akt/PKB the cell proliferation was reduced by 15% and treatment of insulin further reduced it to ca. 50% (vs. control). IRS-1 knockdown also reduced the glycogen synthase (GS) activity in parental HepG2 cells, however, it was upregulated in HepG2-CA-Akt/PKB cells. These results suggest that knockdown of IRS-1 abolished basal as well as insulin mediated phosphorylation/activity of proteins involved in cell proliferation or glycogen metabolism in the parental Hep2 cells. IRS-1 knockdown in cells overexpressing constitutively active Akt1/PKB-alpha either did not change or upregulated the basal levels of phosphorylated/active proteins. However, insulin mediated response was either not altered or downregulated in these cells.  相似文献   

4.
The ability of homogeneous glycogen phosphorylase kinase (Phk) from rabbit skeletal muscle to phosphorylate bovine brain myelin basic protein (MBP) was investigated. Phk could incorporate a maximum of 1.9 mol phosphate/mol MBP. The apparent Km and Vmax for Phk phosphorylation of MBP were 27 microM and 90 nmol/min per mg enzyme, respectively. Properties of MBP phosphorylation by Phk are similar to those of phosphorylase as a substrate. Only serine residues of MBP are phosphorylated by Phk. Phosphorylation sites of MBP by Phk are not identical to those by cAMP-dependent protein kinases.  相似文献   

5.
6.
Glycogen accumulation in pancreatic islet cells in situations of sustained hyperglycaemia may participate in the phenomenon of so-called B-cell glucotoxicity. Unexpectedly, however, previously little if any glycogen was found in islet cells of non-insulin-dependent diabetic Goto-Kakizaki rats (GK rats). Therefore, the activities of glycogen synthase, glycogen phosphorylase and α-amylase were measured in islets of control and GK rats. No significant difference in enzymatic activity was observed between the control and diabetic animals. In the liver, the activity of glycogen synthase appeared even somewhat higher in GK rats than in control animals. It is concluded that the diabetic syndrome in the GK rats does not involve any major anomaly of glycogen synthase and glycogen phosphorylase activity in the liver of these animals, as well as α-amylase, in pancreatic islets.  相似文献   

7.
Ren QG  Liao XM  Wang ZF  Qu ZS  Wang JZ 《FEBS letters》2006,580(10):2503-2511
Here, we demonstrated that lactacystin inhibited proteasome dose-dependently in HEK293 cells stably expressing tau. Simultaneously, it induces accumulation of both non-phosphorylated and hyperphosphorylated tau and decreases the binding of tau to the taxol-stabilized microtubules. Lactacystin activates glycogen synthase kinsase-3 (GSK-3) and decreases the phosphorylation of GSK-3 at serine-9. LiCl inhibits GSK-3 and thus reverses the lactacystin-induced accumulation of the phosphorylated tau. Lactacystin also inhibits protein phosphase-2A (PP-2A) and it significantly increases the level of inhibitor 1 of PP-2A. These results suggest that inhibition of proteasome by lactacystin induces tau accumulation and activation of GSK-3 and inhibition of PP-2A are involved.  相似文献   

8.
A bioluminescent assay for glycogen phosphorylase in cultured cells   总被引:3,自引:0,他引:3  
A new method for the determination of glycogen phosphorylase (1,4 alpha-D-glucose:orthophosphate alpha-glucosyltransferase, EC 2.4.1.1) in cultured cells is described. The assay utilizes bacterial luciferase (EC 2.7) in a liquid scintillation spectrometer to measure NAD(P)H formed in a coupled enzyme reaction comprising glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and phosphoglucomutase (EC 2.7.5.1). This assay is highly sensitive, easily detecting as little as 10 microU phosphorylase, fast and simple to perform. With modifications this procedure can be extended to measure other glycogenolytic enzymes and intermediates.  相似文献   

9.
10.
Summary Post-receptor or post-binding events in the action of insulin have been investigated in cultured skin fibroblasts from an infant with leprechaunism. Both diminished binding of insulin and multiplication-stimulating activity (MSA) to these cells as well as deficits distal to binding were described in a previous publication. Exposure of control fibroblasts to low concentrations (0.001 to 0.01%) of trypsin for one min without glucose in the medium activated the enzyme glycogen synthase; activation was less than that observed with a maximally effective concentration (10–6 M) of insulin alone. In cells from the patient with leprechaunism, the effect of trypsin was much smaller than in the control fibroblasts. Exposing the control cells to soybean trypsin inhibitor before addition of trypsin prevented activation of glycogen synthase and demonstrated the specificity of the proteolytic action of trypsin. The rates of activation and inactivation of glycogen synthase in vitro were similar in extracts of the control subject's and the patient's fibroblasts and indicated that the enzymes regulating the phosphorylation/ dephosphorylation of glycogen synthase were intact in the patient's cells. Total glycogen synthase activity and glycogen content were also indistinguishable in control and leprechaun fibroblasts. These results are compatible with the presence of an abnormality in the structure or availability of the protease substrate from which chemical mediators of insulin action are formed in the patient's cells. Two possible models for a receptor-coupling complex are proposed. Either a mutation in a regulator-substrate unit of the receptor-coupling complexes for insulin and certain insulin-like growth factors or an alteration in the environment of the unit are postulated to explain the findings.Established Investigator of the American Diabetes Association.Abbreviations MSa multiplication-stimulating activity - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - EMEM growth medium, described in text - DPBS Dulbecco's phosphate-buffered saline - IM incubation medium, described in text - EDTA ethylenediaminetetraacetic acid - DTT dithiothreitol - ATP adenosine 5-triphosphate - UDPG uridine-5-diphosphoglucose - Tris tris (hydroxymethyl) aminomethane An abstract of this work was submitted for the Forty-Second Annual Meeting of the American Diabetes Association (Diabetes 31: 124A, 1982).  相似文献   

11.
The insulin-resistant brain state is related to late-onset sporadic Alzheimer's disease, and alterations in the insulin receptor (IR) and its downstream phosphatidylinositol-3 kinase signalling pathway have been found in human brain. These findings have not been confirmed in an experimental model related to sporadic Alzheimer's disease, for example rats showing a neuronal IR deficit subsequent to intracerebroventricular (i.c.v.) treatment with streptozotocin (STZ). In this study, western blot analysis performed 1 month after i.c.v. injection of STZ showed an increase of 63% in the level of phosphorylated glycogen synthase kinase-3alpha/beta (pGSK-3alpha/beta) protein in the rat hippocampus, whereas the levels of the unphosphorylated form (GSK-3alpha/beta) and protein kinase B (Akt/PKB) remained unchanged. Three months after STZ treatment, pGSK-3alpha/beta and Akt/PKB levels tended to decrease (by 8 and 9% respectively). The changes were region specific, as a different pattern was found in frontal cortex. Structural alterations were also found, characterized by beta-amyloid peptide-like aggregates in brain capillaries of rats treated with STZ. Similar neurochemical changes and cognitive deficits were recorded in rats treated with i.c.v. 5-thio-d-glucose, a blocker of glucose transporter (GLUT)2, a transporter that is probably involved in brain glucose sensing. The IR signalling cascade alteration and its consequences in rats treated with STZ are similar to those found in humans with sporadic Alzheimer's disease, and our results suggest a role for GLUT2 in Alzheimer's pathophysiology.  相似文献   

12.
13.
Insulin alone at concentrations of less than 1 to 5 uU/ml increased the enzyme activities of glycogen synthase, synthase phosphatase, phosphorylase, and phosphorylase phosphatase in hepatoma H4 cells in culture in the presence and absence of serum. Increase in total and active forms of glycogen synthase and phosphorylase were observed. Cycloheximide blocked the action of insulin on glycogen synthase, glycogen synthase phosphatase and phosphorylase phosphatase. The enzymes with the exception of glycogen synthase phosphatase were expressed with greater hormonal sensitivity in the absence as compared to the presence of serum in terms of hormone concentration required and or time of onset.These results demonstrate that these glycogen metabolizing enzymes are under long term control by insulin, with glycogen synthase being the most sensitive of the enzymes studied to the action of the hormone.Supported by grants from NIH AM 14334 and AM 22125 (University of Virginia Diabetes Research and Training Center) and by a grant from Lilly Research Lab, and the March of Dimes  相似文献   

14.
15.
Stimulation of glycogen synthesis is one of the major physiological responses modulated by insulin. Although, details of the precise mechanism by which insulin action on glycogen synthesis is mediated remains uncertain, significant advances have been made to understand several steps in this process. Most importantly, recent studies have focussed on the possible role of glycogen synthase kinase-3 (GSK-3) and glycogen bound protein phosphatase-1 (PP-1G) in the activation of glycogen synthase (GS) - a key enzyme of glycogen metabolism. Evidence is also accumulating to establish a link between insulin receptor induced signaling pathway(s) and glycogen synthesis. This article summarizes the potential contribution of various elements of insulin signaling pathway such as mitogen activated protein kinase (MAPK), protein kinase B (PKB), and phosphatidyl inositol 3-kinase (PI3-K) in the activation of GS and glycogen synthesis.  相似文献   

16.
Diabetic dyslipidemia requires simultaneous treatment with hypoglycemic agents and lipid-modulating drugs. We recently described glycogen phosphorylase inhibitors that reduce glycogenolysis in cells and lower plasma glucose in ob/ob mice (J. Med. Chem., 41: 2934, 1998). In evaluating the series prototype, CP-320626, in dogs, up to 90% reduction in plasma cholesterol was noted after 2 week treatment. Cholesterol reductions were also noted in ob/ob mice and in rats. In HepG2 cells, CP-320626 acutely and dose-dependently inhibited cholesterolgenesis without affecting fatty acid synthesis. Inhibition occurred together with a dose-dependent increase in the cholesterol precursor, lanosterol, suggesting that cholesterolgenesis inhibition was due to lanosterol 14alpha-demethylase (CYP51) inhibition. In ob/ob mice, acute treatment with CP-320626 resulted in a decrease in hepatic cholesterolgenesis with concomitant lanosterol accumulation, further implicating CYP51 inhibition as the mechanism of cholesterol lowering in these animals. CP-320626 and analogs directly inhibited rhCYP51, and this inhibition was highly correlated with HepG2 cell cholesterolgenesis inhibition (R2 = 0.77). These observations indicate that CP-320626 inhibits cholesterolgenesis via direct inhibition of CYP51, and that this is the mechanism whereby CP-320626 lowers plasma cholesterol in experimental animals. Dual-action glycogenolysis and cholesterolgenesis inhibitors therefore have the potential to favorably affect both the hyperglycemia and the dyslipidemia of type 2 diabetes.  相似文献   

17.
Protein kinase B (also known as Akt) signaling regulates dopamine-mediated locomotor behaviors. Here the ability of cocaine to regulate Akt and glycogen synthase kinase 3 (GSK3) was studied. Rats were injected with cocaine or saline in a binge-pattern, which consisted of three daily injections of 15 mg/kg cocaine or 1 mL/kg saline spaced 1 h apart for 1, 3, or 14 days. Amygdala, nucleus accumbens, caudate putamen, and hippocampus tissues were dissected 30 min following the last injection and analyzed for phosphorylated and total Akt and GSK3(alpha and beta) protein levels using western blot analysis. Phosphorylation of Akt on the threonine-308 (Thr308) residue was significantly reduced in the nucleus accumbens and increased in the amygdala after 1 day of cocaine treatment; however, these effects were not accompanied by a significant decrease in GSK3 phosphorylation. Phosphorylation of Akt and GSK3 was significantly reduced after 14 days of cocaine administration, an effect that was only observed in the amygdala. Cocaine did not alter Akt or GSK3 phosphorylation in the caudate putamen or hippocampus. The findings in nucleus accumbens may reflect dopaminergic motor-stimulant activity caused by acute cocaine, whereas the effects in amygdala may be associated with changes in emotional state that occur after acute and chronic cocaine exposure.  相似文献   

18.
The yeast two-hybrid screen has been used to identify potential regions of interaction of the largest regulatory subunit, , of phosphorylase kinase (PhK) with two fragments of its protein substrate, glycogen phosphorylase b (Phb). One fragment, corresponding to residues 17-484 (PhbN"), contained the regulatory domain of the protein, but in missing the first 16 residues was devoid of the sole phosphorylation site of Phb, Ser14; the second fragment corresponded to residues 485-843 (PhbC) and contained the catalytic domain of Phb. Truncation fragments of the subunit were screened for interactions against these two substrate fragments. PhbC was not found to interact with any constructs; however, PhbN" interacted with a region of (residues 864-1014) that is near the phosphorylatable region of that subunit. PhbN" was also screened for interactions against a variety of fragments of the catalytic subunit of PhK; however, no interactions were detected, even with fulllength . Our results support the idea that amino acid residues proximal to the convertible serine of Phb are important for its specific interaction with the catalytic subunit of PhK, but that regions distinct from the convertible serine residue of Phb and from the catalytic domain of PhK may also be involved in the interaction of these two proteins.  相似文献   

19.
The regulatory effects of insulin, insulin-like growth factor 1 (IGF-1), and relaxin on glucose-6-phosphate dehydrogenase (G6PDH) and glycogen synthase (GS) activities have been studied in myometrium of pregnant women of control group and with diabetes mellitus of different etiology. In patients with type 1 diabetes G6PDH activity did not differ from the control group, but the enzyme activity was sharply decreased in pregnant women with type 2 diabetes and gestational diabetes. In the control group maximal stimulation of G6PDH activity was observed at 10?9 M of peptides and their stimulating effect decreased in the following order: insulin > relaxin > IGF-1. In pregnant women with types 1 diabetes insulin effect on the enzyme activity was lower than in the control, and the effects of IGF-1 and relaxin were absent. In the group of pregnant women with type 2 diabetes and gestational diabetes the effects of insulin and IGF-1 were decreased, but the effect of relaxin was somewhat higher thus giving the following order in their efficiency relaxin > IGF-1 = insulin. At 10?9 M peptides exhibited similar stimulating effects on the active form of GS-I, but had no influence on the total enzyme activity in the control group of pregnant women. In patients with type 1 diabetes GS activity remained unchanged (versus control), and peptides did not stimulate the enzyme activity. In patients with type 2 diabetes a significant decrease in GS activity was accompanied by the decrease in the effect of peptides, giving the following order of their efficiency: insulin = IGF-1 > relaxin. In myometrium of pregnant women with gestational (treated and untreated) diabetes GS activity decreased, the effect of insulin was weaker, whereas the effects of relaxin and IGF-1 increased thus giving the following order of their efficiency: relaxin > IGF-1 > insulin. Insulin therapy of type 1 diabetes incompletely restored sensitivity of the enzymes to the peptide actions. At the same time, in women with gestational diabetes and subjected to insulin therapy the stimulating effect of relaxin on the enzyme activities increased. This fact suggests that relaxin exhibits replacement functions under conditions of attenuated insulin action.  相似文献   

20.
Structure-based drug design has led to the discovery of a number of glucose analogue inhibitors of glycogen phosphorylase that have an increased affinity compared to α-D-glucose (Ki = 1.7 mM). The best inhibitor in the class of N-acyl derivatives of β-D-glucopyranosylamine, N-acetyl-β-D-glucopyranosylamine (1-GlcNAc), has been characterized by kinetic, ultracentrifugation, and crystallographic studies. 1-GlcNAc acts as a competitive inhibitor for both the b (Ki = 32 μM) and the α (Ki = 35 μM) forms of the enzyme with respect to glucose 1-phosphate and in synergism with caffeine, mimicking the binding of glucose. Sedimentation velocity experiments demonstrated that 1-GlcNAc was able to induce dissociation of tetrameric phosphorylase α and stabilization of the dimeric T-state conformation. Co-crystals of the phosphorylase b-1-GlcNAc-IMP complex were grown in space group P43212, with native-like unit cell dimensions, and the complex structure has been refined to give a crystallographic R factor of 18.1%, for data between 8 and 2.3 Å resolution. 1-GlcNAc binds tightly at the catalytic site of T-state phosphorylase b at approximately the same position as that of α-D-glucose. The ligand can be accommodated in the catalytic site with very little change in the protein structure and stabilizes the T-state conformation of the 280s loop by making several favorable contacts to Asn 284 of this loop. Structural comparisons show that the T-state phosphorylase b-1-GlcNAc-IMP complex structure is overall similar to the T-state phosphorylase b-α-D-glucose complex structure. The structure of the 1-GlcNAc complex provides a rational for the biochemical properties of the inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号