首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

2.
Summary To achieve reliable stable transformation of sweet potato, we first developed efficient shoot regeneration for stem explants, leaf disks, and petioles of sweet potato (Ipomoea batatas (L.) Lam.) cultivar Beniazuma. The shoot regeneration protocol enabled reproducible stable transformation mediated by Agrobacterium tumefaciens strain EHA105. The binary vector pIG121Hm contains the npt II (pnos) gene for kanamycin (Km) resistance, the hpt (p35S) gene for hygromycin (Hyg) resistance, and the gusA (p35S) reporter gene for β-glucuronidase (GUS). After 3 d co-cultivation, selection of calluses from the three explant types began first with culture on 50 mg l−1 of Km for 6 wk and then transfer to 30 mg l−1 of Hyg for 6–16 wk in Linsmaier and Skoog (1965) medium (LS) also containing 6.49 μM 4-fluorophenoxyacetic acid and 250 mgl−1 cefotaxime in the dark. The selected friable calluses regenerated shoots in 4 wk on LS containing 15.13 μM abscisic acid and 2.89 μM gibberellic acid under a 16h photoperiod of 30 μmol m−2s−1. The two-step selection method led to successful recovery of transgenic shoots from stem explants at 30.8%, leaf dises 11.2%, and petioles 10.7% stable transformation efficiencies. PCR analyses of 122 GUS-positive lines revealed the expected fragment for hpt. Southern hybridization of genomic DNA from 18 independent transgenic lines detected the presence of the gusA gene. The number of integrated T-DNA copies varied from one to four.  相似文献   

3.
Panicum meyerianum Nees is a wild relative of Panicum maximum Jacq. (guinea grass), which is an important warm-season forage grass and biomass crop. We investigated the conditions that maximized the transformation efficiency of P. meyerianum by Agrobacterium infection by monitoring the expression of the β-glucuronidase (GUS) gene. The highest activities of GUS in calli were achieved by the co-cultivation of plants with Agrobacterium at 28°C for 6 days. We transferred the ddsA gene, which encodes decaprenyl diphosphate synthase and is required for coenzyme Q10 (CoQ10) synthesis, into P. meyerianum by using our optimized co-cultivation procedure for transformation. We confirmed by PCR and DNA gel blot hybridization that all hygromycin-resistant plants retained stable insertion of the hpt and ddsA genes. We also demonstrated strong expression of S14:DdsA protein in the leaves of transgenic P. meyerianum. Furthermore, we showed that transgenic P. meyerianum produced CoQ10 at levels 11–20 times higher than that of non-transformants. By comparison, the CoQ9 level in transgenic plants was dramatically reduced. This is the first report of efficient Agrobacterium-mediated transfer of a foreign gene into the warm-season grass P. meyerianum.  相似文献   

4.
Agrobacterium tumefaciens-mediated transformation system was established for Hybanthus enneaspermus using leaf explants with the strain LBA4404 harbouring pCAMBIA 2301 carrying the nptII and gusA genes. Sensitivity of leaf explants to kanamycin was standardized (100 mg/l) for screening the transgenic plants. Transformation parameters (OD, virulence inducer, infection time, co-cultivation period, bactericidal antibiotics, etc.) influencing the gene transfer and integration were assessed in the present investigation. Fourteen-day pre-cultured explants were subjected with Agrobacterium strain LBA4404. Optimized parameters such as culture density of 0.5 OD600, infection time of 6 min, AS concentration of 150 µM with 3 days co-cultivation revealed maximum transformation efficiency based on GUS expression assay. The presence of gusA in transgenics was confirmed by polymerase chain reaction and Southern blotting analysis. The present transformation experiment yielded 20 shoots/explant with higher transformation efficiency (28 %). The protocol could be used to introduce genes for trait improvement as well as for altering metabolic pathway for secondary metabolites production.  相似文献   

5.
In the present study, an efficient Agrobacterium-mediated gene transformation system was developed for ramie [Boehmeria nivea (L.) Gaud.] based on the examinations of several factors affecting plant transformation efficiency. The effects of Agrobacterium cell density, acetosyringone, co-cultivation temperature, co-cultivation duration, co-cultivation photoperiod and pH on stable transformation were evaluated. Agrobacterium at a concentration of OD = 0.5–0.8 improved the efficiency of transformation. Concentration of acetosyringone at 50 mg/L during co-cultivation significantly increased transformation efficiency. Co-cultivation at 20°C, in comparison to 15, 25 and 28°C, consistently resulted in higher transformation frequencies. A relatively short co-cultivation duration (3 days) was optimal for ramie transformation. Co-cultivation medium at pH 5.9 and co-cultivation in darkness both improved the transformation efficiencies of ramie. An overall scheme for producing transgenic ramie is presented, through which an average transformation rate from 10.5 to 24.7% in five ramie varieties was obtained. Stable expression and integration of the transgenes were confirmed by histochemical GUS assay, kanamycin painting assay, PCR and Southern blotting. This optimized transformation system should be employed for efficient Agrobacterium-mediated transformation of ramie. An erratum to this article can be found at  相似文献   

6.
A critical step in the development of a reproducible Agrobacterium tumefaciens mediated transformation system for a recalcitrant species, such as pearl millet, is the establishment of optimal conditions for efficient T-DNA delivery into target tissue from which plants can be regenerated. A multiple shoot regeneration system, without any intervening callus phase, was developed and used as a tissue culture system for Agrobacterium-mediated transformation. Agrobacterium super virulent strain EHA105 harboring the binary vector pCAMBIA 1301 which contains a T-DNA incorporating the hygromycin phosphotransferase (hpt II) and β-glucuronidase (GUS) genes was used to investigate and optimize T-DNA delivery into shoot apices of pearl millet. A number of factors produced significant differences in T-DNA delivery; these included optical density, inoculation duration, co-cultivation time, acetosyringone concentration in co-cultivation medium and vacuum infiltration assisted inoculation. The highest transformation frequency of 5.79% was obtained when the shoot apex explants were infected for 30 min with Agrobacterium O.D.600 = 1.2 under a negative pressure of 0.5 × 105 Pa and co-cultivated for 3 days in medium containing 400 μM acetosyringone. Histochemical GUS assay and polymerase chain reaction (PCR) analysis confirmed the presence of the GUS gene in putative transgenic plants, while stable integration of the GUS gene into the plant genome was confirmed by Southern analysis. This is the first report showing reproducible, rapid and efficient Agrobacterium-mediated transformation of shoot apices and the subsequent regeneration of transgenic plants in pearl millet. The developed protocol will facilitate the insertion of desirable genes of useful traits into pearl millet.  相似文献   

7.
In the present study, an efficient Agrobacterium-mediated gene transformation system was developed for soybean [Glycine max (L.) Merrill] based on the examinations of several factors affecting plant transformation efficiency. Increased transformation efficiencies were obtained when the soybean cotyledonary node were inoculated with the Agrobacterium inoculum added with 0.02% (v/v) surfactant (Silwet L-77). The applications of Silwet L-77 (0.02%) during infection and l-cysteine (600 mg l−1) during co-cultivation resulted in more significantly improved transformation efficiency than each of the two factors alone. The optimized temperature for infected explant co-cultivation was 22°C. Regenerated transgenic shoots were selected and produced more efficiently with the modified selection scheme (initiation on shoot induction medium without hygromycin for 7 days, with 3 mg l−1 hygromycin for 10 days, 5 mg l−1 hygromycin for another 10 days, and elongation on shoot elongation medium with 8 mg l−1 hygromycin). Using the optimized system, we obtained 145 morphologically normal and fertile independent transgenic plants in five important Chinese soybean varieties. The transformation efficacies ranged from 3.8 to 11.7%. Stable integration, expression and inheritance of the transgenes were confirmed by molecular and genetic analysis. T1 plants were analyzed and transmission of transgenes to the T1 generation in a Mendelian fashion was verified. This optimized transformation system should be employed for efficient Agrobacterium-mediated soybean gene transformation.  相似文献   

8.
A protocol for Agrobacterium-mediated transformation was developed for embryogenic callus of an excellent climber species, Parthenocissus tricuspidata. A. tumefaciens strain EHA105 or C58 harboring the pCAMBIA2301 binary vector with the neomycin phosphotransferase (nptII) and β-glucuronidase (uidA) gene was used. Factors affecting the transformation efficiency, including the Agrobacterium strains, co-cultivation time, Agrobacterium concentration, and infection time, were evaluated. Strain EHA105 proved to be significantly better than C58, and 4 days of co-culture was critical for transformation. An Agrobacterium suspension at a concentration of 0.5–0.7 × 108 cells ml−1 (OD600 = 0.5–0.7) and an infection time of 40 min was optimal for transformation. By applying these optimized parameters, we recovered six independent transformed shoots that were kanamycin-resistant and contained the nptII gene, as verified by polymerase chain reaction (PCR) analysis. Southern blot analysis confirmed that T-DNA was stably integrated into the genome of three out of six PCR-positive lines. Furthermore, histochemical GUS assay revealed the expression of the uidA gene in kanamycin-resistant calli, somatic embryos, and leaves of transgenic plants.  相似文献   

9.
Apical meristems of multiple shoots produced from axenic seedlings of Kentucky bluegrass (Poa pratensis L.) were used for Agrobacterium tumefaciens-mediated transformation. Transformation parameters were optimized for concentration of bacterial cells, duration of infection, and vacuum infiltration. The highest transformation frequency (1.42%) was obtained by infection with Agrobacterium suspension of OD600 = 0.6 for 5 min, under a negative pressure of 0.5 × 105 Pa. After co-cultivation, the herbicide-resistant plants were rooted and transplanted into flowerpots. Transgenic plants were confirmed by polymerase chain reaction (PCR) assay and Southern blot analysis. Using this transformation system, the betA gene encoding choline dehydrogenase and mutant als gene encoding the enzyme acetolactate synthase were introduced into three Kentucky bluegrass cultivars.  相似文献   

10.
A method to produce transgenic plants of Vitis rotundifolia was developed. Embryogenic cultures were initiated from leaves of in vitro grown shoot cultures and used as target tissues for Agrobacterium-mediated genetic transformation. A green fluorescent protein/neomycin phosphotransferase II (gfp/nptII) fusion gene that allowed for simultaneous selection of transgenic cells based on GFP fluorescence and kanamycin resistance was used to optimize parameters influencing genetic transformation. It was determined that both proembryonal masses (PEM) and mid-cotyledonary stage somatic embryos (SE) were suitable target tissues for co-cultivation with Agrobacterium as evidenced by transient GFP expression. Kanamycin at 100 mg l−1 in the culture medium was effective in suppression of non-transformed tissue and permitting the growth and development of transgenic cells, compared to 50 or 75 mg l−1, which permitted the proliferation of more non-transformed cells. Transgenic plants of “Alachua” and “Carlos” were recovered after secondary somatic embryogenesis from primary SE explants co-cultivated with Agrobacterium. The presence and stable integration of transgenes in transgenic plants was confirmed by PCR and Southern blot hybridization. Transgenic plants exhibited uniform GFP expression in cells of all plant tissues and organs including leaves, stems, roots, inflorescences and the embryo and endosperm of developing berries.  相似文献   

11.
A genetic transformation protocol for green ash (Fraxinus pennsylvanica) hypocotyl explants was developed. Green ash hypocotyls were transformed using Agrobacterium tumefaciens strain EHA105 harboring binary vector pq35GR containing the neomycin phosphotransferase (nptII) and β-glucuronidase (GUS) fusion gene, and an enhanced green fluorescent protein gene. Pre-cultured hypocotyl explants were transformed in the presence of 100 μM acetosyringone using 90 s sonication plus 10 min vacuum-infiltration. Kanamycin at 20 mg l−1 was used for selecting transformed cells. Adventitious shoots regenerated on Murashige and Skoog medium supplemented with 13.3 μM 6-benzylaminopurine, 4.5 μM thidiazuron, 50 mg l−1 adenine sulfate, and 10% coconut water. GUS- and polymerase chain reaction (PCR)-positive shoots from the cut ends of hypocotyls were produced via an intermediate callus stage. Presence of the GUS and nptII genes in GUS-positive shoots were confirmed by PCR and copy number of the nptII gene in PCR-positive shoots was determined by Southern blotting. Three transgenic plantlets were acclimatized to the greenhouse. This transformation and regeneration system using hypocotyls provides a foundation for Agrobacterium-mediated transformation of green ash. Studies are underway using a construct containing the Cry8Da protein of Bacillus thuringiensis for genetic transformation of green ash.  相似文献   

12.
Zoysia tenuifolia Willd. ex Trin. is one of the most popularly cultivated turfgrass. This is the first report of successful plant regeneration and genetic transformation protocols for Z. tenuifolia using Agrobacterium tumefaciens. Initial calli was induced from stem nodes incubated on a Murashige and Skoog (1962) (MS) medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 mg l−1 6-benzyladenine (BA), with a frequency of 53%. Compact calli were selected and subcultured monthly on the fresh medium. Sixty-nine percent of the calli could be induced to regenerate plantlets when the calli incubated on a MS medium supplemented with 0.2 mg l−1 BA under darkness. For genetic transformation, calli were incubated with A. tumefaciens strain EHA105 harboring the binary vector pCAMBIA 1301 which contains the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene (gus-int) as a reporter gene. Following co-cultivation, about 12% of the callus explants produced hygromycin resistant calli on MS medium supplemented with 2 mg l−1 2,4-D, 1 mg l−1 BA, 50 mg l−1 hygromycin, 500 mg l−1 cefotaxime after 8 weeks. Shoots were regenerated following transfer of the resistant calli to shoot induction medium containing 0.2 mg l−1 BA, 50 mg l−1 hygromycin, and 250 mg l−1 cefotaxime, and about 46% of the resistant calli differentiated into shoots. Finally, all the resistant shoots were rooted on 1/2 MS media supplemented with 50 mg l−1 hygromycin, 250 mg l−1 cefotaxime. The transgenic nature of the transformants was demonstrated by the detection of β-glucuronidase activity in the primary transformants and by PCR and Southern hybridization analysis. About 5% of the total inoculated callus explants produced transgenic plants after approximately 5 months. The procedure described will be useful for both, the introduction of desired genes into Z. tenuifolia and the molecular analysis of gene function.  相似文献   

13.
An efficient transformation system was developed for Centaurea montana by co-cultivation of leaf explants with Agrobacterium tumefaciens strain AGL1 that contained a plasmid harboring the isopentenyl transferase gene under the control of the developmentally regulated Atmyb32 promoter of Arabidopsis thaliana and the gene encoding for hygromycin resistance under the control of the Cauliflower Mosaic Virus 35S (CaMV35S) promoter. A total of 990 explants were infected with Agrobacterium, and 18 shoots were regenerated resulting in an overall transformation efficiency of 1.8%. Molecular analyses, including PCR, Southern blotting and RT-PCR, were performed on T0 and T1 plants to confirm chromosomal integration and expression of the transgene in the phenotypically normal transformed plants. Transformation of C. montana was also performed using A. tumefaciens supervirulent strain EHA105 harboring the β-glucuronidase (GUS) reporter gene. Expression of the GUS gene in the putative transgenics was confirmed using a histochemical GUS assay.  相似文献   

14.
15.
Sesbania drummondii (Rydb.) Cory is a source for phytopharmaceuticals. It also hyperaccumulates several toxic heavy metals. Development of an efficient gene transfer method is an absolute requirement for the genetic improvement of this plant with more desirable traits due to limitations in conventional breeding methods. A simple protocol was developed for Agrobacterium-mediated stable genetic transformation of Sesbania. Agrobacterium tumefaciens strain EHA 101 containing the vector pCAMBIA 1305.1 having hptII and GUS plus genes was used for the gene transfer experiments. Evaluation of various parameters was carried out to assess the transformation frequency by GUS expression analysis. High transformation frequency was achieved by using 7-day-old precultured cotyledonary node (CN) explants. Further, the presence of acetosyringone (150 μM), infection of explants for 30–45 min and 3 days of cocultivation proved to be critical factors for greatly improving the transformation efficiency. Stable transformation of S. drummondii was achieved, and putative transgenic shoots were obtained on medium supplemented with hygromycin (25 mg l−1). GUS histochemical analysis of the putative transgenic tissues further confirmed the transformation event. Genomic Southern blot analysis was performed to verify the presence of transgenes and their stable integration. A transformation frequency of 4% was achieved for CN explants using this protocol.  相似文献   

16.
Li HQ  Xu J  Chen L  Li MR 《Plant cell reports》2007,26(10):1785-1789
Thellungiella halophila is a salt-tolerant close relative of Arabidopsis, which is adopted as a halophytic model for stress tolerance research. We established an Agrobacterium tumefaciens-mediated transformation procedure for T. halophila. Leaf explants of T. halophila were incubated with A. tumefaciens strain EHA105 containing a binary vector pCAMBIA1301 with the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene as a reporter gene. Following co-cultivation, leaf explants were cultured on selective medium containing 10 mg l−1 hygromycin and 500 mg l−1 cefotaxime. Hygromycin-resistant calluses were induced from the leaf explants after 3 weeks. Shoot regeneration was achieved after transferring the calluses onto fresh medium of the same composition. Finally, the shoots were rooted on half strength MS basal medium supplemented with 10 mg l−1 hygromycin. Incorporation and expression of the transgenes were confirmed by PCR, Southern blot analysis and GUS histochemical assay. Using this protocol, transgenic T. halophila plants can be obtained in approximately 2 months with a high transformation frequency of 26%.  相似文献   

17.
Efficient Agrobacterium tumefaciens-mediated transformation was achieved using embryogenic suspension cultures of sweetpotato (Ipomoea batatas (L.) Lam.) cv. Lizixiang. Cell aggregates from embryogenic suspension cultures were cocultivated with the A. tumefaciens strain EHA105 harboring a binary vector pCAMBIA1301 with gusA and hygromycin phosphotransferase II gene (hpt II) genes. Selection culture was conducted using 25 mg l−1 hygromycin. A total of 2,218 plants were regenerated from the inoculated 1,776 cell aggregates via somatic embryogenesis. β-glucuronidase (GUS) assay and PCR, dot blot and Southern blot analyses of the regenerated plants randomly sampled showed that 90.37% of the regenerated plants were transgenic plants. The number of integrated T-DNA copies varied from 1 to 4. Transgenic plants, when transferred to soil in a greenhouse and a field, showed 100% survival. No morphological variations were observed in the ex vitro transgenic plants. These results exceed all transformation experiments reported so far in the literature in quantity of independent events per transformation experiment in sweetpotato.  相似文献   

18.
To enhance bacterial wilt resistance in tomato plants and simplify the protocol of Agrobacterium tumefaciens mediated gene transfer, parameters affecting transformation efficiency in tomato have been optimized. A. tumefaciens strain EHA101, harboring a recombinant binary expression vector pTCL5 containing the Xa21 gene under the control of the CaMV 35S promoter was used for transformation. Five cultivars of tomato (Rio Grande, Roma, Pusa Ruby Pant Bahr and Avinash) were tested for transformation. Transformation efficiency was highly dependent on preculture of the explants with acetosyringone, acetosyringone in co-cultivation media, shoot regeneration medium and pre-selection after co-cultivation without selective agent. One week of pre-selection following selection along with 400 μM acetosyringone resulted in 92.3% transient GUS expression efficiency in Rio Grande followed by 90.3% in Avinash. The presence and integration of the Xa21 gene in putative transgenic plants was confirmed by polymerase chain reaction (PCR) and Southern blot analyses with 4.5–42.12% PCR-positive shoots were obtained for Xa21 and hygromycin genes, respectively. Transgenic plants of the all lines showed resistance to bacterial wilt. T1 plants (resulting from self-pollination of transgenic plants) tested against Pseudomonas solanacearum inoculation in glasshouse, showed Mendelian segregation.  相似文献   

19.
Leaf piece explants of five Brassica juncea (L.) Czern. cultivars were transformed with an Agrobacterium tumefaciens strain EHA105 harboring the plasmid pCAMBIA1301, which contains the β-glucuronidase (uidA) and hygromycin phosphotransferase (hpt) genes under the control of cauliflower mosaic virus 35S (CaMV35S) promoter. Transgenic plants were regenerated on Murashige and Skoog (MS) medium fortified with 8.87 μM 6-benzylaminopurine, 0.22 μM 2,4-dichlorophenoxyacetic acid, and 20 μM silver nitrate in the presence of 30 mg/l hygromycin. When co-culture took place in the presence of 100 μM acetosyringone, the efficiency of stable transformation was found to be approximately 19% in the T 0 generation, with the transgenic plants and their progeny showing constitutive GUS expression in different plant organs. Southern blot hybridization of uidA and hpt genes confirmed transgene integration within the genome of transformed plants of each cultivar. Inheritance of hpt gene for single copy T-DNA inserts showed a 3:1 pattern of Mendelian segregation in progeny plants through germination of T 1 seeds on MS medium containing 30 mg/l hygromycin. The protocol described here reports superior transformation efficiency over previously published protocols and should contribute to enhanced biotechnology applications in B. juncea.  相似文献   

20.
A highly efficient Agrobacterium-mediated transformation system for Lilium × formolongi was established by modifying the medium used for inoculation and co-cultivation. Meristematic nodular calli of Lilium were inoculated with an overnight culture of A. tumefaciens strain EHA101 containing the plasmid pIG121-Hm harboring an intron-containing β-glucuronidase (GUS), hygromycin phosphotransferase, and neomycin phosphotransferase II genes. The effects of ten different types of media and carbohydrates (sucrose, d-glucose, and l-arabinose) in both inoculation and co-cultivation media were evaluated. Interestingly, a dramatic increase in the frequency of transformation (25.4%) was observed when Murashige and Skoog (MS) medium containing sucrose and lacking KH2PO4, NH4NO3, KNO3, and CaCl2 was used. Hygromycin-resistant transgenic calli were obtained only in medium supplemented with sucrose. The effects of this modified medium were also investigated for Lilium cultivars ‘Acapulco’, ‘Casa Blanca’, and ‘Red Ruby’. The highest frequency of transformation (23.3%) was obtained for cv. Acapulco. Hygromycin-resistant calli were successfully regenerated into plantlets on plant growth regulator-free MS medium. Transgenic plants were confirmed by GUS histochemical assay, polymerase chain reaction (PCR), and Southern blot analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号