首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heats of formation (HOFs), electronic structure, energetic properties, and thermal stabilities for a series of 1,4-bis(1-azo-2,4-dinitrobenzene)-iminotetrazole derivatives with different substituents and substitution positions and numbers of nitrogen atoms in the nitrobenzene rings were studied using the DFT-B3LYP method. All the substituted compounds have higher HOFs than their parent compounds. As the number of nitrogen atoms in the nitrobenzene ring increases, the HOFs of the derivatives with the same substituent rise gradually. Replacing carbon atoms in the nitrobenzene with nitrogen atoms to form N–N bonds is very helpful in improving their HOFs. Most of the substituted compounds have higher HOMO–LUMO gaps than the corresponding unsubstituted compounds. Substitution of the –NO2, –NF2, or –ONO2 group and an increase in the number of nitrogen atoms in the nitrobenzene rings are useful for enhancing their detonation performance. The substituents’ substitution is not favorable for improving thermal stability. Considering detonation performance and thermal stability, five compounds may be considered potential candidates for high energy density compounds (HEDCs).  相似文献   

2.
Pharmacophore modeling studies were undertaken for a series of compounds belonging several groups of phosphoinositide 3-kinase (PI3K) p110α inhibitors: 4-morpholino-2-phenylquinazolines derivatives, pyrido[3′,2′:4,5]furo-[3,2-d]pyrimidine derivatives, imidazo[1,2-a]pyridine derivatives, sulfonylhydrazone substituted imidazo[1,2-a]pyridines, and LY294002. A five-point pharmacophore with three hydrogen bond acceptors (A), one hydrophobic group (H), and one aromatic ring (R) as pharmacophore features was developed. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a correlation coefficient of R 2 = 0.95 for training set compounds. The model generated showed excellent predictive power, with a correlation coefficient of Q 2 = 0.88 and r pret2 = 0.95 for a test set of 14 compounds. Furthermore, the structure–activity relationships of PI3K p110α inhibitors were elucidated and the activity differences between them discussed. Docking studies were also carried out wherein active and inactive compounds were docked into the active site of the PI3K p110α crystal structure to analyze PI3K p110α–inhibitor interactions. The results provide insights that will aid optimization of these classes of PI3K p110α inhibitors for better activity, and may prove helpful for further lead optimization and virtual screening.  相似文献   

3.
A new polynitro cage compound with the framework of HNIW and a tetrazole unit, i.e., 10-(1-nitro-1, 2, 3, 4-tetraazol-5-yl)) methyl-2, 4, 6, 8, 12-hexanitrohexaazaisowurtzitane (NTz-HNIW) has been proposed and studied by density functional theory (DFT) and molecular mechanics methods. Properties such as IR spectrum, heat of formation, thermodynamic properties, and crystal structure were predicted. The compound belongs to the Pbca space group, with the lattice parameters a = 15.07 ?, b = 12.56 ?, c = 18.34 ?, Z = 8, and ρ = 1.990 g·cm-3. The stability of the compound was evaluated by the bond dissociation energies and results showed that the first step of pyrolysis is the rupture of the N–NO2 bond in the side chain. The detonation properties were estimated by the Kamlet-Jacobs equations based on the calculated crystal density and heat of formation, and the results were 9.240 km·s-1 for detonation velocity and 40.136 GPa for detonation pressure. The designed compound has high thermal stability and good detonation properties and is probably a promising high energy density compound (HEDC).  相似文献   

4.
We report geometries, stabilization energies, symmetry adapted perturbation theory (SAPT) and quantum theory of atoms in molecules (QTAIM) analyses of a series of carbene–BX3 complexes, where X = H, OH, NH2, CH3, CN, NC, F, Cl, and Br. The stabilization energies were calculated at HF, B3LYP, MP2, MP4 and CCSD(T)/aug-cc-pVDZ levels of theory using optimized geometries of all the complexes obtained from B3LYP/aug-cc-pVTZ. Quantitatively, all the complexes indicate the presence of B–Ccarbene interaction due to the short B–Ccarbene distances. Inspection of stabilization energies reveals that the interaction energies increase in the order NH2 > OH > CH3 > F > H > Cl > Br > NC > CN, which is the opposite trend shown in the binding distances. Considering the SAPT results, it is found that electrostatic effects account for about 50% of the overall attraction of the studied complexes. By comparison, the induction components of these interactions represent about 40% of the total attractive forces. Despite falling in a region of charge depletion with ∇2 ρ BCP >0, the B–Ccarbene bond critical points (BCPs) are characterized by a reasonably large value of the electron density (ρ BCP) and HBCP <0, indicating that the potential energy overcomes the kinetic energy density at BCP and the B–Ccarbene bond is a polar covalent bond.  相似文献   

5.
Although Saccharomyces cerevisiae can form petite mutants with deletions in mitochondrial DNA (mtDNA) (ρ) and can survive complete loss of the organellar genome (ρo), the genetic factor(s) that permit(s) survival of ρ and ρo mutants remain(s) unknown. In this report we show that a function associated with the F1-ATPase, which is distinct from its role in energy transduction, is required for the petite-positive phenotype of S. cerevisiae. Inactivation of either the α or β subunit, but not the γ, δ, or ɛ subunit of F1, renders cells petite-negative. The F1 complex, or a subcomplex composed of the α and β subunits only, is essential for survival of ρo cells and those impaired in electron transport. The activity of F1 that suppresses ρo lethality is independent of the membrane Fo complex, but is associated with an intrinsic ATPase activity. A further demonstration of the ability of F1 subunits to suppress ρo lethality has been achieved by simultaneous expression of S. cerevisiae F1α and γ subunit genes in Kluyveromyces lactis– which allows this petite-negative yeast to survive the loss of its mtDNA. Consequently, ATP1 and ATP2, in addition to the previously identified AAC2, YME1 and PEL1/PGS1 genes, are required for establishment of ρ or ρo mutations in S. cerevisiae. Received: 20 March 1999 / Accepted: 18 July 1999  相似文献   

6.
The explosive sensitivity upon the formation of molecule-cation interaction between the nitro group of 3,4-dinitropyrazole (DNP) and H+, Li+, Na+, Be2+ or Mg2+ has been investigated using the B3LYP and MP2(full) methods with the 6-311++G** and 6-311++G(2df,2p) basis sets. The bond dissociation energy (BDE) of the C3–N7 trigger bond has also been discussed for the DNP monomer and the corresponding complex. The interaction between the oxygen atom of nitro group and H+ in DNP…H+ is partly covalent in nature. The molecule-cation interaction and bond dissociation energy of the C3–N7 trigger bond follow the order of DNP…Be2+ > DNP…Mg2+ > DNP…Li+ > DNP…Na+. Except for DNP…H+, the increment of the trigger bond dissociation energy in comparison with the DNP monomer correlates well with the molecule-cation interaction energy, natural charge of the nitro group, electron density ρ BCP(C3–N7), delocalization energy E (2) and NBO charge transfer. The analyses of atoms in molecules (AIM), natural bond orbital (NBO) and electron density shifts have shown that the electron density of the nitro group shifts toward the C3–N7 trigger bond upon the formation of the molecule-cation interaction. Thus, the trigger bond is strengthened and the sensitivity of DNP is reduced.  相似文献   

7.
In order to determine how environmental and physiological factors affect leaf gas exchange in a 9-year-old clonal eucalypt plantation (Eucalyptus grandis Hill ex. Maiden hybrids) in the State of Espirito Santo, Brazil, the diurnal patterns of predawn leaf water potential (Ψpd), and leaf gas exchange were monitored from November 1995 to August 1996. Soil water content (Θ) and microclimatic variables were also recorded. Most of the rainfall during the experimental period occurred from October to December 1995 and from March to April 1996, causing a significant variation in Θ and Ψpd. A high positive correlation (r 2=0.92) was observed between Ψpd and Θ measured at 0.3 m depth from the soil surface. During conditions of high soil water availability, the maximum values of stomatal conductance for water vapor (g s) and net photosynthetic rate (A) were over 0.4 mol m–2 s–2 and l5 μmol m–2 s–1, respectively. The results showed that Ψpd and leaf gas exchange of the examined trees were susceptible to changes in the water content of the upper soil layers, where the major concentration of active roots occur. Multiple linear regression analysis indicated that photosynthetic active radiation (Q), vapor pressure deficit (VPD), atmospheric CO2 molar fraction (C a), and Ψpd were the most important factors controlling g s whereas Q and VPD were the main microclimatic variables controlling A. Received: 5 November 1998 / Accepted: 10 November 1999  相似文献   

8.
The pre-steady states of Pseudomonas species lipase inhibitions by p-nitrophenyl-N-substituted carbamates (1–6) are composed of two steps: (1) formation of the non-covalent enzyme–inhibitor complex (E:I) from the inhibitor and the enzyme and (2) formation of the tetrahedral enzyme–inhibitor adduct (E–I) from the E:I complex. From a stopped-flow apparatus, the dissociation constant for the E:I complex, KS, and the rate constant for formation of the tetrahedral E–I adduct from the E:I complex, k2 are obtained from the non-linear least-squares of curve fittings of first-order rate constant (kobs) versus inhibition concentration ([I]) plot against kobs=k2+k2[I]/(KS+[I]). Values of pKS, and log k2 are linearly correlated with the σ* values with the ρ* values of −2.0 and 0.36, respectively. Therefore, the E:I complexes are more positive charges than the inhibitors due to the ρ* value of −2.0. The tetrahedral E–I adducts on the other hand are more negative charges than the E:I complexes due to the ρ* value of 0.36. Formation of the E:I complex from the inhibitor and the enzyme are further divided into two steps: (1) the pre-equilibrium protonation of the inhibitor and (2) formation of the E:I complex from the protonated inhibitor and the enzyme.  相似文献   

9.
An effect of desiccation (a decrease of relative water content from 97% to 10% within 35 h) on Photosystem II was studied in barley leaf segments (Hordeum vulgare L. cv. Akcent) using chlorophyll a fluorescence and thermoluminescence (TL). The O-J-I-P fluorescence induction curve revealed a decrease of FP and a slight shift of the J step to a shorter time with no change in its height. The analysis of the fluorescence decline after a saturating light flash revealed an increased portion of slow exponential components with increasing desiccation. The TL bands obtained after excitation by continuous light were situated at about –27°C (Zv band – recombination of P680+QA ), –14 °C (A band – S3QA ), +12 °C (B band – S2/3QB ) and +45 °C (C band – TyrD+QA ). The bands related to the S-states of oxygen evolving complex (A and B) were reduced by desiccation and shifted to higher and lower temperatures, respectively. In accordance with this, the band observed at about +27 °C (S2QB ) after excitation by 1 flash fired at –10 °C and band at about +20 °C (S2/3QB ) after 2 flashes decreased with increasing water deficit and shifted to lower temperatures. A new band around 5 °C appeared in both regimes of TL excitation for a relative water content of under 42% and was attributed to the Q band (S2QA ). It is suggested that under desiccation, an inhibition of the formation of S2- and S3-states in OEC occurred simultaneously with a lowering of electron transport on the acceptor side of PS II. The temperature down-shift of the TL bands obtained after the flash excitation was induced at the initial phases of water stress, indicating a decrease of the activation energy for the S2/3QB recombination. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Changes in leaf physiology with tree age and size could alter forest growth, water yield, and carbon fluxes. We measured tree water flux (Q) for 14 ponderosa pine trees in two size classes (12 m tall and ∼40 years old, and 36 m tall and ∼ 290 years old) to determine if transpiration (E) and whole-tree conductance (g t) differed between the two sizes of trees. For both size classes, E was approximately equal to Q measured 2 m above the ground: Q was most highly correlated with current, not lagged, water vapor pressure deficit, and night Q was <12% of total daily flux. E for days 165–195 and 240–260 averaged 0.97 mmol m–2 (leaf area, projected) s–1 for the 12-m trees and 0.57 mmol m–2 (leaf area) s–1 for the 36-m trees. When photosynthetically active radiation (I P) exceeded the light saturation for photosynthesis in ponderosa pine (900 μmol m–2 (ground) s–1), differences in E were more pronounced: 2.4 mmol m–2 (leaf area) s–1 for the 12-m trees and 1.2 mmol m–2 s–1 for the 36-m trees, yielding g t of 140 mmol m–2 (leaf area) s–1 for the 12-m trees and 72 mmol m–2 s–1 for the 36-m trees. Extrapolated to forests with leaf area index =1, the 36-m trees would transpire 117 mm between 1 June and 31 August compared to 170 mm for the 12-m trees, a difference of 15% of average annual precipitation. Lower g t in the taller trees also likely lowers photosynthesis during the growing season. Received: 19 April 1999 / Accepted: 23 March 2000  相似文献   

11.
The aim of this study was to investigate the combined influence of three independent variables on the permeation kinetics of lisinopril from hydrogels for transdermal delivery. A three-factor, three-level Box–Behnken design was used to optimize the independent variables, Carbopol 971 P (X 1), menthol (X 2), and propylene glycol (X 3). Fifteen batches were prepared and evaluated for responses as dependent variables. The dependent variables selected were cumulative amount permeated across rat abdominal skin in 24 h (Q 24; Y 1), flux (Y 2), and lag time (Y 3). Aloe juice has been first time investigated as vehicle for hydrogel preparation. The ex vivo permeation study was conducted using Franz diffusion cells. Mathematical equations and response surface plots were used to relate the dependent and independent variables. The regression equation generated for the cumulative permeation of LSP in 24 h (Q 24) was Y 1 = 1,443.3–602.59X 1 + 93.24X 2 + 91.75X 3 − 18.95X 1 X 2 – 140.93X 1 X 3 – 4.43X 2 X 3 – 152.63X 1 2 – 150.03X2 2 − 213.9X 3 2. The statistical validity of the polynomials was established, and optimized formulation factors were selected by feasibility and grid search. Validation of the optimization study with 15 confirmatory runs indicated high degree of prognostic ability of response surface methodology. The use of Box–Behnken design approach helped in identifying the critical formulation parameters in the transdermal delivery of lisinopril from hydrogels.  相似文献   

12.
Preparative-scale fermentation of ginsenoside Rb1 (1) with Acremonium strictum AS 3.2058 gave three new compounds, 12β-hydroxydammar-3-one-20 (S)-O-β-d-glucopyranoside (7), 12β, 25-dihydroxydammar-(E)-20(22)-ene-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (8), and 12β, 20 (R), 25-trihydroxydammar-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (9), along with five known compounds, ginsenoside Rd (2), gypenoside XVII (3), ginsenoside Rg3 (4), ginsenoside F2 (5), and compound K (6). The structural elucidation of these metabolites was based primarily on one- and two-dimensional nuclear magnetic resonance and high-resolution electron spray ionization mass spectra analyses. Among these compounds, 26 are also the metabolites of ginsenoside Rb1 in mammals. This result demonstrated that microbial culture parallels mammalian metabolism; therefore, A. strictum might be a useful tool for generating mammalian metabolites of related analogs of ginsenosides for complete structural identification and for further use in pharmaceutical research in this series of compounds. In addition, the biotransformation kinetics was also investigated.  相似文献   

13.
Aiming at the use of vitamin B12 as a drug delivery carrier for cytotoxic agents, we have reacted vitamin B12 with trans-[PtCl(NH3)2(H2O)]+, [PtCl3(NH3)] and [PtCl4]2−. These Pt(II) precursors coordinated directly to the Co(III)-bound cyanide, giving the conjugates [{Co}–CN–{trans-PtCl(NH3)2}]+ (5), [{Co}–CN–{trans-PtCl2(NH3)}] (6), [{Co}–CN–{cis-PtCl2(NH3)}] (7) and [{Co}–CN–{PtCl3}] (8) in good yields. Spectroscopic analyses for all compounds and X-ray structure elucidation for 5 and 7 confirmed their authenticity and the presence of the central “Co–CN–Pt” motif. Applicability of these heterodinuclear conjugates depends primarily on serum stability. Whereas 6 and 8 transmetallated rapidly to bovine serum albumin proteins, compounds 5 and 7 were reasonably stable. Around 20% of cyanocobalamin could be detected after 48 h, while the remaining 80% was still the respective vitamin B12 conjugates. Release of the platinum complexes from vitamin B12 is driven by intracellular reduction of Co(III) to Co(II) to Co(I) and subsequent adenosylation by the adenosyltransferase CobA. Despite bearing a rather large metal complex on the β-axial position, the cobamides in 5 and 7 are recognized by the corrinoid adenosyltransferase enzyme that catalyzes the formation of the organometallic C–Co bond present in adenosylcobalamin after release of the Pt(II) complexes. Thus, vitamin B12 can potentially be used for delivering metal-containing compounds into cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Spin-restricted DFT (X3LYP and B3LYP) and ab initio (MP2(fc) and CCSD(fc)) calculations in conjunction with the Aug-CC-pVDZ and Aug-CC-pVTZ basis sets were performed on a series of hydrogen bonded complexes PN···HX (X = F, Cl, Br) to examine the variations of their equilibrium gas phase structures, energetic stabilities, electronic properties, and vibrational characteristics in their electronic ground states. In all cases the complexes were predicted to be stable with respect to the constituent monomers. The interaction energy (ΔE) calculated using a super-molecular model is found to be in this order: PN···HF > PN···HCl > PN···HBr in the series examined. Analysis of various physically meaningful contributions arising from the Kitaura-Morokuma (KM) and reduced variational space self-consistent-field (RVS-SCF) energy decomposition procedures shows that the electrostatic energy has significant contribution to the over-all interaction energy. Dipole moment enhancement (Δμ) was observed in these complexes expected of predominant dipole-dipole electrostatic interaction and was found to follow the trend PN···HF > PN···HCl > PN···HBr at the CCSD level. However, the DFT (X3LYP and B3LYP) and MP2 levels less accurately determined these values (in this order HF < HCl < HBr). Examination of the harmonic vibrational modes reveals that the PN and HX bands exhibit characteristic blue- and red shifts with concomitant bond contraction and elongation, respectively, on hydrogen bond formation. The topological or critical point (CP) analysis using the static quantum theory of atoms in molecules (QTAIM) of Bader was considered to classify and to gain further insight into the nature of interaction existing in the monomers PN and HX, and between them on H-bond formation. It is found from the analysis of the electron density ρ c , the Laplacian of electron charge density ∇2ρc, and the total energy density (H c ) at the critical points between the interatomic regions that the interaction N···H is indeed electrostatic in origin (ρc > 0, ∇2ρc > 0 and Hc > 0 at the BCP) whilst the bonds in PN (ρc > 0, ∇2ρc > 0 and Hc < 0) and HX ((ρc > 0, ∇2ρc < 0 and Hc < 0)) are predominantly covalent. A natural bond orbital (NBO) analysis of the second order perturbation energy lowering, E(2), caused by charge transfer mechanism shows that the interaction N···H is n(N) → BD*(HX) delocalization.  相似文献   

15.
Preparative-scale fermentation of gallic acid (3,4,5-trihydroxybenzoic acid) (1) with Beauveria sulfurescens ATCC 7159 gave two new glucosidated compounds, 4-(3,4-dihydroxy-6-hydroxymethyl-5-methoxy-tetrahydro-pyran-2-yloxy)-3-hydroxy-5-methoxy-benzoic acid (4), 3-hydroxy-4,5-dimethoxy-benzoic acid 3,4-dihydroxy-6-hydroxymethyl-5-methoxy-tetrahydro-pyran-2-yl ester (7), along with four known compounds, 3-O-methylgallic acid (2), 4-O-methylgallic acid (3), 3,4-O-dimethylgallic acid (5), and 3,5-O-dimethylgallic acid (6). The new metabolite genistein 7-O-β-D-4″-O-methyl-glucopyranoside (8) was also obtained as a byproduct due to the use of soybean meal in the fermentation medium. The structural elucidation of the metabolites was based primarily on 1D-, 2D-NMR, and HRFABMS analyses. Among these compounds, 2, 3, and 5 are metabolites of gallic acid in mammals. This result demonstrated that microbial culture parallels mammalian metabolism; therefore, B. sulfurescens might be a useful tool for generating mammalian metabolites of related analogs of gallic acid (1) for complete structural identification and for further use in investigating pharmacological and toxicological properties in this series of compounds. In addition, a GRE (glucocorticoid response element)-mediated luciferase reporter gene assay was used to initially screen for the biological activity of the 6 compounds, 26 and 8, along with 1 and its chemical O-methylated derivatives 913. Among the 12 compounds tested, 1113 were found to be significant, but less active than the reference compounds of methylprednisolone and dexamethasone.  相似文献   

16.
Based on fully optimized geometric structures at DFT-B3LYP/6-311G** level, we calculated electronic structures, heats of formation, strain energies, bond dissociation energies and detonation performance (detonation velocity and detonation pressure) for a series of polynitraminecubanes. Our results have shown that energy gaps of cubane derivatives are much higher than that of triaminotrinitrobenzene (TATB), which means that cubane derivatives may be more sensitive than TATB. Polynitraminecubanes have high and positive heats of formation, and a good linear relationship between heats of formation and nitramine group numbers was presented. As the number of nitramine groups in the molecule increases, the enthalpies of combustion values are increasingly negative, but the specific enthalpy of combustion values decreases. It is found that all cubane derivatives have high strain energies, which are affected by the number and position of nitramine group. The calculated bond dissociation energies of C-NHNO2 and C-C bond show that the C-C bond should be the trigger bond in the pyrolysis process. It is found that detonation velocity (D), detonation pressure (P) and molecule density (ρ) have good linear relationship with substituented group numbers. Heptanitraminecubane and octanitraminecubane have good detonation performance over 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), and they can be regarded as potential candidates of high energy density compounds (HEDCs). The results have not only shown that these compounds may be used as HEDCs, but also provide some useful information for further investigation.  相似文献   

17.
Twenty samples of unpolished (rough) rice collected in Arkansas and Texas during the 1995 harvesting season from fields exhibiting Fusarium sheath rot disease or panicle blight were previously shown to include 8 samples positive for fumonisin B1(FB1) in the range 2.2–5.2 ppm, and moniliformin (MON), but no beauvericin (BEA), deoxynivalenol, its derivatives or zearalenone were detected. Fifteen cultures of F. proliferatum were established from the 20 rough rice samples. Single spore isolates of each culture were grown on rice and tested for the production of fumonisins (FB1, FB2, FB3, etc.), MON and BEA. All 15 isolates produced FB1, FB2, MON and BEA in culture on rice. No deoxynivalenol, its derivatives orzearalenone were detected. Seven cultures produced FB1 at >50ppm (range 80–230 ppm), with therest producing FB1 in the range 14–43 ppm.FB2 was produced in the range 5–47 ppm, and those cultures which produced the most FB1 also produced the most FB2. Of the 15 cultures producing MON, 11 produced it at >100 ppm in the range 188–6018 ppm, with the rest producing in the range 7–64 ppm. BEA was produced in the range 109–1350 ppm. Other derivatives of fumonisins, including FA1, FA2 and partially hydrolyzed FB1, as well asseveral unknown metabolites including a compound with MW 414, were identified in culture extracts by continuous flow fast atom bombardment with ion spraymass spectrometry (CF/FAB/MS). Further study is needed to identify the factors that control production of FB1, MON and BEA by F.proliferatu in culture and in field samples. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Tyrosinase catalyzes the ortho hydroxylation of monophenols and the subsequent oxidation of the diphenolic products to the resulting quinones. In efforts to create biomimetic copper complexes that can oxidize C–H bonds, Stack and coworkers recently reported a synthetic μ-η22-peroxodicopper(II)(DBED)2 complex (DBED is N,N′-di-tert-butylethylenediamine), which rapidly hydroxylates phenolates. A reactive intermediate consistent with a bis-μ-oxo-dicopper(III)-phenolate complex, with the O–O bond fully cleaved, is observed experimentally. Overall, the evidence for sequential O–O bond cleavage and C–O bond formation in this synthetic complex suggests an alternative mechanism to the concerted or late-stage O–O bond scission generally accepted for the phenol hydroxylation reaction performed by tyrosinase. In this work, the reaction mechanism of this peroxodicopper(II) complex was studied with hybrid density functional methods by replacing DBED in the μ-η22-peroxodicopper(II)(DBED)2 complex by N,N′-dimethylethylenediamine ligands to reduce the computational costs. The reaction mechanism obtained is compared with the existing proposals for the catalytic ortho hydroxylation of monophenol and the subsequent oxidation of the diphenolic product to the resulting quinone with the aim of gaining some understanding about the copper-promoted oxidation processes mediated by 2:1 Cu(I)O2-derived species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The contributions of circulating angiotensin II (Ang II) and catecholamines to cardiovascular control in the spiny dogfish were investigated by monitoring the effects of exogenous and endogenous dogfish [Asn1, Pro3, Ile5]-Ang II (dfAng II) on plasma catecholamine levels and blood pressure regulation. Bolus intravenous injections of dfAng II (30–1200 pmol kg−1) elicited dose-dependent increases in plasma adrenaline and noradrenaline concentrations, caudal artery pressure (P CA), and systemic vascular resistance (R S), and a decrease in cardiac output (Q). Similar injections of Ang II in dogfish pre-treated with the α-adrenoceptor antagonist yohimbine (4 mg kg−1) also elicited dose-dependent increases in plasma catecholamine levels yet the cardiovascular effects were abolished. Dogfish treated with yohimbine were hypotensive and had elevated levels of plasma Ang II and catecholamines. Intravenous injection of the smooth muscle relaxant papaverine (10 mg kg−1) elicited a transient decrease in P CA and R S, and increases in plasma Ang II and catecholamine levels. In dogfish first treated with lisinopril (10−4 mol kg−1), an angiotensin converting enzyme inhibitor, papaverine treatment caused a more prolonged and greater decrease in P CA and R S, an attenuated increase in plasma catecholamines, and no change in plasma Ang II. By itself, lisinopril treatment had little effect on P CA, and no effect on R S, plasma Ang II or catecholamines. In yohimbine-treated dogfish, papaverine treatment elicited marked decreases in P CA, R S, and Q, and increases in plasma Ang II and catecholamines. Among the three papaverine treatments, there was a positive linear relationship between plasma Ang II and catecholamine concentrations, and the cardiovascular and hormonal changes were most pronounced in the yohimbine + papaverine treatment. Therefore, under resting normotensive conditions, while Ang II does not appear to be involved in cardiovascular control, catecholamines play an important role. However, during a hypotensive stress elicited by vascular smooth muscle relaxation, Ang II indirectly contributes to cardiovascular control by dose-dependently stimulating catecholamine release. Accepted: 24 February 1999  相似文献   

20.
A theoretical study on the geometries and electronic structures of W@Au12AE (AE=NO+, BF, CN, or BO) was carried out to gain insight into interactions between W@Au12 and ligands isoelectronic with CO. The best configuration for the adsorption site is on-top type for all five complexes. After complexing with boron ligands (BF or BO), the axial Au–W bond distance in W@Au12 is lengthened notably, but NO+ has the opposite effect on the axial Au–W bond. A charge transfer and energy decomposition analysis shows that the metal–ligand bonds have enhanced σ-donation strength from NO+ to BO. Furthermore, the A–E bond strength in the complexes becomes weaker with stronger π-back-donation interactions. Finally, W@Au12CO has the largest HOMO–LUMO gap, making it the most stable in terms of kinetic stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号