首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small amounts of a mixture of fatty acid short‐chain‐alkyl esters (FASCAEs) were obtained from the fruits of twelve plant species of Celastraceae family, and in five of them the FASCAEs were present not only in the arils but also in the seeds. These mixtures contained 32 individual FASCAE species, which formed four separate fractions, viz. FA methyl, ethyl, isopropyl, and butyl esters (FAMEs, FAEEs, FAIPEs, and FABEs, resp.). The FASCAE acyl components included the residues of 16 individual C14–C24 saturated, mono‐, di‐, and trienoic FAs. Linoleic, oleic, and palmitic acids, and, in some cases, also α‐linolenic acid predominated in FAMEs and FAEEs, while myristic acid was predominant in FAIPEs. It can be suggested that, in the fruit arils of some plant species, FAMEs and FAEEs were formed at the expense of a same FA pool characteristic of a given species and were strongly different from FAIPEs and FABEs esters regarding the mechanism of their biosynthesis. However, as a whole, the qualitative and quantitative composition of various FASCAE fractions, as well as their FA composition, varied considerably depending on various factors. Therefore, separate FASCAE fractions seem to be synthesized from different FA pools other than those used for triacylglycerol formation.  相似文献   

2.
Duan Y  Zhu Z  Cai K  Tan X  Lu X 《PloS one》2011,6(5):e20265
Biodiesel is a renewable alternative to petroleum diesel fuel that can contribute to carbon dioxide emission reduction and energy supply. Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters (FAMEs) and fatty acid ethyl esters (FAEEs), and is currently produced through the transesterification reaction of methanol (or ethanol) and triacylglycerols (TAGs). TAGs are mainly obtained from oilseed plants and microalgae. A sustainable supply of TAGs is a major bottleneck for current biodiesel production. Here we report the de novo biosynthesis of FAEEs from glucose, which can be derived from lignocellulosic biomass, in genetically engineered Escherichia coli by introduction of the ethanol-producing pathway from Zymomonas mobilis, genetic manipulation to increase the pool of fatty acyl-CoA, and heterologous expression of acyl-coenzyme A: diacylglycerol acyltransferase from Acinetobacter baylyi. An optimized fed-batch microbial fermentation of the modified E. coli strain yielded a titer of 922 mg L(-1) FAEEs that consisted primarily of ethyl palmitate, -oleate, -myristate and -palmitoleate.  相似文献   

3.
We have found that in the alcoholic fermentation of amino acids by yeast isobutyl alcohol is produced from alanine and n-propyl and active amyl alcohols are formed from α-amino-n-butyric acid or threonine contrary to the F. Ehrlich’s scheme. These results suggest the close relationship among the formation of these higher alcohols and biosynthesis of valine from alanine and biosynthesis of isoleucine from α-amino-n-butyric acid or threonine.

In this report, we studied the formation of n-propyl alcohol and active amyl alcohol from α-amino-n-butyric acid using washed yeast cells.  相似文献   

4.
It has already been show that the helix senses of poly(β-benzyl L -aspartate) and poly(β-methyl L -aspartate) are left-handed, while the poly esters of n-propyl, isopropyl, n-butyl, and phenethyl L -asparate are all right-handed. The effect of changes in helix sense from the left-handed to the right-handed α-helical form on the infrared spectra of copolymers of benzyl L -aspartate with ethyl, n-butyl, isopropyl, n-propyl, and phenethyl L -aspartate have been studied. Those show that for the right-handed helical form the amide band frequencies fall within the range given by Elliott,7 while for the left-handed form the frequencies are higher. The frequency ranges for the two helix senses are given and have been used to show that poly (β-n-propyl L -aspartate) in chloroform solution undergoes a transition from the right-handed to the left-handed helix form on heating. Polarized infrared studies of the different copolymers show that the disposition of the side chain ester groups is different for the two forms. Although methyl L -aspartate forms a left-handed α-helix similar to benzyl L -aspartate, the introduction of methyl L -aspartate residues into poly (β-benzyl L -aspartate) prevents the formation of the ω-helix. The factors involved in the formation of this helix form are discussed.  相似文献   

5.
《Phytochemistry》1998,49(6):1509-1515
Several gibberellins in which the 16-methyl group of the 16-epimers of dihydro-GA5 had been replaced by ethyl, n-propyl and n-butyl were prepared and tested at doses of 1, 5 or 25 μg per plant for their effects on stem growth and flowering of the grass Lolium temulentum. The ethyl and n-propyl derivatives were most inhibitory of elongation, the exo-isomers being more active than the endo-forms. While both isomers of dihydro-GA5 promoted flowering, among the 17-alkyl analogues, only the exo-ethyl derivative showed significant activity.  相似文献   

6.
The metabolism of urethane and related compounds   总被引:4,自引:2,他引:2       下载免费PDF全文
1. Urethane is metabolized in the rat, rabbit and man by a process of N-hydroxylation. This occurs to a smaller extent when methyl, n-propyl and n-butyl carbamates are administered to the rat and rabbit. 2. Other metabolites which have been detected in urine of animals dosed with urethane and N-hydroxyurethane are ethylmercapturic acid, ethylmercapturic acid sulphoxide and N-acetyl-S-carbethoxycysteine. 3. Substances which appear to be S-ethylglutathione and S-ethylglutathione sulphoxide have been detected in the bile of rats dosed with urethane or N-hydroxyurethane. 4. Methyl, ethyl, n-propyl and n-butyl N-hydroxycarbamates are excreted unchanged in the urine of rats dosed with these compounds to extents depending on the dose administered. 5. Animals dosed with methyl, ethyl, n-propyl or n-butyl carbamate or the corresponding N-hydroxycarbamate excrete the corresponding carbamate and N-hydroxycarbamate in the urine. 6. Methyl, n-propyl and n-butyl carbamates and N-hydroxycarbamates are excreted more slowly than are urethane and N-hydroxyurethane. 7. The probable role of N-hydroxyurethane and the processes of alkylation and carbethoxylation, and of hydroxylamine, nitroxyl and hyponitrous acid in carcinogenesis and chemotherapy with urethane, have been discussed.  相似文献   

7.
The determination by gas chromatography (GC) of fatty acid methyl esters (FAMEs) prepared from complex biological samples is subject to interference from cholesterol. During sample injection on the GC system of FAMEs prepared from tissues that contain cholesterol, we observed a major contaminant that co-eluted with docosahexaenoic acid (DHA, 22:6n-3). To address this problem, FAMEs were purified on an amino-phase high-performance liquid chromatography (HPLC) column using a hexane–isopropanol gradient. The HPLC retention times for both the FAME fraction and cholesterol were stable and reproducible when the amino column was used for sample purification. The purified extracts were analyzed by GC without artifacts or impurity peaks after 50 analytical runs. The method described here will be useful for measurement of 22:6n-3 and other fatty acids important for studies of nutrition or pathology.  相似文献   

8.
The production of PHA from plant oils by Pseudomonas species soil isolated from a sugarcane crop was evaluated. Out of 22 bacterial strains three were able to use efficiently plant oils to grow and to accumulate PHA. Pseudomonas putida and Pseudomonas aeruginosa strains produced PHA presenting differences on monomer composition compatible with variability on monomer specificity of their PHA biosynthesis system. The molar fraction of 3-hydroxydodecanoate detected in the PHA was linearly correlated to the oleic acid supplied. A non-linear relationship between the molar fractions of 3-hydroxy-6-dodecenoate (3HDdΔ6) detected in PHA and the linoleic acid supplied was observed, compatible with saturation in the biosynthesis system capability to channel intermediate of β-oxidation to PHA synthesis. Although P. putida showed a higher 3HDdΔ6 yield from linoleic acid when compared to P. aeruginosa, in both species it was less than 10% of the maximum theoretical value. These results contribute to the knowledge about the biosynthesis of PHA with a controlled composition from plant oils allowing in the future establishing the production of these polyesters as tailor-made polymers.  相似文献   

9.
Carboxylic acids found in the cultured broth of Sporobolomyces odorus AHU 3246 which produces γ-lactones as principles of the aromatic flavor, were analyzed. The concentrate of methylated acids was steam-distilled and in the residue, succinic acid, nonanedioic acid (azelaic acid), undecanedioic acid and 2-hydroxy-3-phenylpropionic acid (β-phenyllactic acid) were identified as their methyl esters by GLC and spectroscopic methods. Phthalic acid and its mono-n-butyl ester were also found, but these compounds were thought to arise from di-n-butyl phthalate, one of impurities of deionized water.  相似文献   

10.
A ferulic acid esterase (FAE) from the thermophilic fungus Myceliophthora thermophila (synonym Sporotrichum thermophile), belonging to the carbohydrate esterase family 1 (CE-1), was functionally expressed in methylotrophic yeast Pichia pastoris. The putative FAE from the genomic DNA was successfully cloned in P. pastoris X-33 to confirm that the enzyme exhibits FAE activity. The recombinant FAE was purified to its homogeneity (39 kDa) and subsequently characterized using a series of model substrates including methyl esters of hydroxycinnamates, alkyl ferulates and monoferuloylated 4-nitrophenyl glycosides. The substrate specificity profiling reveals that the enzyme shows a preference for the hydrolysis of methyl caffeate and p-coumarate and a strong preference for the hydrolysis of n-butyl and iso-butyl ferulate. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 and C-2 linkages of arabinofuranose, whilst it was found capable of de-esterifying acetylated glucuronoxylans. Ferulic acid (FA) was efficiently released from destarched wheat bran when the esterase was incubated together with an M3 xylanase from Trichoderma longibrachiatum (a maximum of 41% total FA released after 1 h incubation). Prediction of the secondary structure of MtFae1a was performed in the PSIPRED server whilst modelling the 3D structure was accomplished by the use of the HH 3D structure prediction server.  相似文献   

11.
Biological availability of 106 esters of alcohols and aliphatic mono-, di- and tri-carboxylic acids and diethylene glycol succinate was compared by the mini-test with chicks. Chicks can utilize methyl esters of saturated fatty acids of carbon chain from 10 to 14, ethyl esters of those from 9 to 12, propyl caprate, n-butyl esters of those from 8 to 12, n-amyl esters of those from 6 to 12, n-hexyl n-butyrate and i-vaterate, and n-octyl and n-decyl acetates. Only 3 dicarboxylates, i.e. di-octyl and di-lauryl succinates and di-methyl cis-cyclopropane-l,2-dicarboxylate, were available among the dicarboxylates tested. Availability of ethyl esters of succinic, fumaric and citric, acid was unexpectedly low.  相似文献   

12.
Ethyl and acetate esters are naturally produced in various yeasts, plants, and bacteria. The biosynthetic pathways that produce these esters share a common reaction step, the condensation of acetyl/acyl‐CoA with an alcohol by alcohol‐O‐acetyl/acyltransferase (AATase). Recent metabolic engineering efforts exploit AATase activity to produce fatty acid ethyl esters as potential diesel fuel replacements as well as short‐ and medium‐chain volatile esters as fragrance and flavor compounds. These efforts have been limited by the lack of a rapid screen to quantify ester biosynthesis. Enzyme engineering efforts have also been limited by the lack of a high throughput screen for AATase activity. Here, we developed a high throughput assay for AATase activity and used this assay to discover a high activity AATase from tomato fruit, Solanum lycopersicum (Atf‐S.l). Atf1‐S.l exhibited broad specificity towards acyl‐CoAs with chain length from C4 to C10 and was specific towards 1‐pentanol. The AATase screen also revealed new acyl‐CoA substrate specificities for Atf1, Atf2, Eht1, and Eeb1 from Saccharomyces cerevisiae, and Atf‐C.m from melon fruit, Cucumis melo, thus increasing the pool of characterized AATases that can be used in ester biosynthesis of ester‐based fragrance and flavor compounds as well as fatty acid ethyl ester biofuels.  相似文献   

13.
3-Methylthiopropylamine hydrochloride was prepared from d,l-methionine and acetophenone in 90~92% yield by heating. Methionine sulfone was decarboxylated to γ-aminopropylmethyl sulfone, which migrated at the same rate as the authentic sample obtained from 3-methylthiopropylamine by hydrogen peroxide treatment. S-Alkylcysteines (R = methyl, ethyl, n-propyl, n-butyl and n-amyl) were also decarboxylated to give a product which showed new spots of 2-alkylthioethylamine with higher RF values than those of the corresponding amino acids.  相似文献   

14.
Summary An easy synthesis of N-protected amino acid esters, including tert-butyl esters, is described by the use of urethane N-protected carboxyanhydrides (UNCAs). Treating UNCAs with tert-butanol in the presence of potassium bicarbonate at 45°C yielded the corresponding N-protected amino acid tert-butyl esters in a very simple way. Benzyloxycarbonyl and tert-butyloxycarbonyl N-protected amino acid tert-butyl esters have been obtained by this procedure. Once more, this reaction showed the great reactivity of UNCAs.  相似文献   

15.
Sixteen new Cecropia juvenile hormone (JH) analogs with different alkyl substituents at C–7 and C–11 were synthesized as stereoisomeric mixtures. The epoxides with n-propyl or n-butyl and methyl groups at C-11 and methyl or ethyl group at C-7 showed high JH activity on Bombyx mori L. Structure-activity relationship of the JH analogs was discussed.  相似文献   

16.
Candida antarctica lipase fraction B (CAL-B) showed substrate specificity in the synthesis of esters in hexane involving reactions of short-chain acids having linear (acetic and butyric acids) and branched chain (isovaleric acid) structures, an unsaturated (tiglic acid) fatty acid, and phenylacetic acid with n-butanol and geraniol. The variation in the conversion to the esters was ca. 10%. Similar results were observed in a study of the alcohol specificity of the enzyme for esterification of acetic and butyric acids with four alcohols: n-butyl, isopentyl, 2-phenylethyl, and geraniol. Enantioselectivity of CAL-B in hexane with a range of chiral -substituted or -substituted carboxylic acids and n-butyl alcohol was analyzed. The results show that CAL-B can be employed as a robust biocatalyst in esterification reactions due to the high conversions obtained in the synthesis of short-chain flavor esters in an organic solvent, although this enzyme exhibited modest enantioselectivity with chiral short-chain carboxylic acids.  相似文献   

17.
Interaction of plant roots with arbuscular mycorrhizal fungi (AMF) is a complex trait resulting in cooperative interactions among the two symbionts including bidirectional exchange of resources. To study arbuscular mycorrhizal symbiosis (AMS) trait variation in the model plant Lotus japonicus, we performed an integrated multi‐omics analysis with a focus on plant and fungal phospholipid (PL) metabolism and biological significance of lysophosphatidylcholine (LPC). Our results support the role of LPC as a bioactive compound eliciting cellular and molecular response mechanisms in Lotus. Evidence is provided for large interspecific chemical diversity of LPC species among mycorrhizae with related AMF species. Lipid, gene expression and elemental profiling emphasize the Lotus–Glomus intraradices interaction as distinct from other arbuscular mycorrhizal (AM) interactions. In G. intraradices, genes involved in fatty acid (FA) elongation and biosynthesis of unsaturated FAs were enhanced, while in Lotus, FA synthesis genes were up‐regulated during AMS. Furthermore, FAS protein localization to mitochondria suggests FA biosynthesis and elongation may also occur in AMF. Our results suggest the existence of interspecific partitioning of PL resources for generation of LPC and novel candidate bioactive PLs in the Lotus–G. intraradices symbiosis. Moreover, the data advocate research with phylogenetically diverse Glomeromycota species for a broader understanding of the molecular underpinnings of AMS.  相似文献   

18.
Conidiobolus coronatus is an entomopathogenic fungus which has a potential as a biological control agent of insects. The cuticular and internal lipid composition of infected and noninfected Tettigonia viridissima males were analyzed by GC/MS. A total of 49 compounds were identified in the infected and noninfected males, including fatty acids, fatty acid methyl esters (FAMEs), n‐alkanes, alcohols, sterols, and other organic compounds. The most abundant components of the cuticular and internal lipids of the insects were fatty acids. After exposure to C. coronatus, the cuticular lipids of the T. viridissima males contained 17 free fatty acids from C(8) to C(22), while the cuticular lipids of the noninfected insects contained only 15 fatty acids from C(12) to C(24). The cuticular and internal lipids of both the infected and the noninfected males also contained five FAMEs from C(15) to C(19), seven n‐alkanes from C(25) to C(34), five alcohols from C(16) to C(25), five sterols, and the following six other organic compounds: azelaic acid, phenylacetic acid, glutaric acid, benzoic acid, sebacic acid, and glycerol. The compounds which were present only in the cuticular lipids of the infected males could be due to fungal infection.  相似文献   

19.
The effect of low temperatures on polyamines, jasmonates, abscisic acid (ABA), and antioxidant activities was investigated in apple fruitlets. Although endogenous ABA concentrations were not significantly different between untreated control fruit kept at −2°C and those kept at 20°C, endogenous jasmonic acid (JA), putrescine, and spermidin concentrations at −2°C were generally higher than those at 20°C. Endogenous ABA concentrations increased in n-propyl dihydrojasmonate (PDJ)—or spermine-treated fruit in comparison to the untreated control at 20 and −2°C. The applications of PDJ or spermine decreased low-temperature injuries such as splitting and spotting in fruit. Although the IC50 of 1,1-diphenil-2-pycrylhydrazyl (DPPH)-radical scavenging activities was not significantly different among the treatments, the IC50 of O2 -scavenging activities in PDJ-treated or Spm-treated fruit at 5 days after the low-temperature treatment was lower than in the untreated control at 20 and −2°C. The expression of MdCHS increased in Spm-treated fruit. The concentrations of ascorbic acid, catechin, chlorogenic acid, epi-catechin, and phloridzin in Spm-treated fruit were higher than in the untreated control at −2 or 20°C. These facts suggest that ABA, jasmonates and polyamines may be associated with low-temperature stress tolerance in apple fruitlets.  相似文献   

20.
Cultivated strawberry, one of the major fruit crops worldwide, is an evergreen plant with shallow root system, and thus sensitive to environmental changes, including drought stress. To investigate the effect of 5-aminolevulinic acid (ALA), a new environment-friendly plant growth regulator, on strawberry drought tolerance and its possible mechanisms, we treated strawberry (Fragaria × annanasa Duch. cv. ‘Benihoppe’) with 15% polyethylene glycol 6000 to simulate osmotic stress with or without 10 mg l−1 ALA. We found that ALA significantly alleviated PEG-inhibited plant growth and improved water absorption and xylem sap flux, indicating ALA mitigates the adverse effect of osmotic stress on strawberry plants. Gas exchange and chlorophyll fluorescence analysis showed that ALA mitigated PEG-induced decreases of Pn, Gs, Tr, Pn/Ci, photosystem I and II reaction center activities, electron transport activity, and photosynthetic performance indexes. Equally important, ALA promoted PEG-increased antioxidant enzyme activities and repressed PEG-increased malondialdehyde and superoxide anion in both leaves and roots. Specially, ALA repressed H2O2 increase in leaves, but stimulated it in roots. Furthermore, ALA repressed abscisic acid (ABA) biosynthesis and signaling gene expressions in leaves, but promoted those in roots. In addition, ALA blocked PEG-downregulated expressions of plasmalemma and tonoplast aquaporin genes PIP and TIP in both leaves and roots. Taken together, ALA effectively enhances strawberry drought tolerance and the mechanism is related to the improvement of water absorption and conductivity. The tissue-specific responses of ABA biosynthesis, ABA signaling, and H2O2 accumulation to ALA in leaves and roots play key roles in ALA-improved strawberry tolerance to osmotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号