首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
Loss of expression of the cell-cell adhesion molecule E-cadherin is a hallmark of epithelial-mesenchymal transition (EMT) in development and in the progression from epithelial tumours to invasive and metastatic cancers. Here, we demonstrate that the loss of E-cadherin function upregulates expression of the neuronal cell adhesion molecule (NCAM). Subsequently, a subset of NCAM translocates from fibroblast growth factor receptor (FGFR) complexes outside lipid rafts into lipid rafts where it stimulates the non-receptor tyrosine kinase p59(Fyn) leading to the phosphorylation and activation of focal adhesion kinase and the assembly of integrin-mediated focal adhesions. Ablation of NCAM expression during EMT inhibits focal adhesion assembly, cell spreading and EMT. Conversely, forced expression of NCAM induces epithelial cell delamination and migration, and high NCAM expression correlates with tumour invasion. These results establish a mechanistic link between the loss of E-cadherin expression, NCAM function, focal adhesion assembly and cell migration and invasion.  相似文献   

4.
E-cadherin is a well characterized adhesion molecule that plays a major role in epithelial cell adhesion. Based on findings that expression of E-cadherin is frequently lost in human epithelial cancers, it has been implicated as a tumor suppressor in carcinogenesis of most human epithelial cancers. However, in ovarian cancer development, our data from the current study showed that E-cadherin expression is uniquely elevated in 86.5% of benign, borderline, and malignant ovarian carcinomas irrespective of the degree of differentiation, whereas normal ovarian samples do not express E-cadherin. Thus, we hypothesize that E-cadherin may play a distinct role in the development of ovarian epithelial cancers. Using an E-cadherin-expressing ovarian cancer cell line OVCAR-3, we have demonstrated for the first time that the establishment of E-cadherin mediated cell-cell adhesions leads to the activation of Akt and MAPK. Akt activation is mediated through the activation of phosphatidylinositol 3 kinase, and both Akt and MAPK activation are mediated by an E-cadherin adhesion-induced ligand-independent activation of epidermal growth factor receptor. We have also demonstrated that suppression of E-cadherin function leads to retarded cell proliferation and reduced viability. We therefore suggest that the concurrent formation of E-cadherin adhesion and activation of downstream proliferation signals may enhance the proliferation and survival of ovarian cancer cells. Our data partly explain why E-cadherin is always expressed during ovarian tumor development and progression.  相似文献   

5.
Mouse uterine epithelium is a tissue that undergoes cyclic endocrine-regulated cell dissociation and regeneration. It shows a dramatic cell loss following normal estrus. If pregnancy ensues, cell loss is averted during the first 2.5–3.5 days. However, this is followed by a precipitous loss of basal-lateral cell adhesion and apoptosis in preparation for blastocyst invasion. By comparing epithelia isolated by protease treatment, we show that a reduction of lateral cell adhesion is a primary event in these instances of normal tissue loss. It was readily induced in ovariectomized adult and immature mice by injections of estradiol (E2), and to some extent also by progesterone (P4). The reduction of lateral adhesion induced by including ethylene glycol-bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) in the isolation medium mimicked and was additive to the effect of E2 injection. However, the E2 effect was different in not being prevented by adding Ca2+. The E2 effect also was mimicked by the action on isolated epithelium of monoclonal antibody against the calcium-dependent cell adhesion molecule, E-cadherin, suggesting that inactivation of E-cadherin was induced by E2. In detergent extracts of estrous and metestrous epithelium there was an increase in 80-kDa extracellular domain of E-cadherin relative to the intact 120-kDa molecule. The loss of adhesion between 3.5 and 4.5 days of pregnancy was associated with a loss of both intact membrane-associated 120-kDa E-cadherin and cleavage products. Cleavage of 80-kDa E-cadherin was uniquely induced by E2 in ovariectomized adult and immature mice; P4 was without effect. The cleavage of E-cadherin correlated with increased basal accumulation of E-cadherin antigen in estrous and E2-injected mice and a loss of both basal and lateral antigen at 4.5 days of pregnancy. Only the E-cadherin antigen within junctional complexes appeared unaffected. The data are consistent with the hypothesis that the cyclic and pregnancy-dependent disruption of uterine epithelial integrity are promoted by E2-dependent modification of E-cadherin, including its extracellular cleavage. © 1996 Wiley-Liss, Inc.  相似文献   

6.

Background  

Carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) is a transmembrane protein with multiple functions in different cell types. CEACAM1 expression is frequently mis-regulated in cancer, with down-regulation reported in several tumors of epithelial origin and de novo expression of CEACAM1 in lung cancer and malignant melanoma. In this report we analyzed the regulation of CEACAM1 expression in three breast cancer cell lines that varied in CEACAM1 expression from none (MCF7) to moderate (MDA-MB-468) to high (MCF10A, comparable to normal breast).  相似文献   

7.
Summary Human E-cadherin is a homophilic cell adhesion molecule and its expression is well preserved in normal human hepatocytes; a decrease in its expression has been observed in poorly differentiated hepatocellular carcinoma cells. We examined the alteration of E-cadherin and catenin expressions caused by differentiation inducers in human hepatocellular carcinoma cells. Hepatocellular carcinoma cell lines, HCC-T and HCC-M, were cultured with all-trans retinoic acid (ATRA), dexamethasone (DEX), sodium butyrate, and interferon-α. E-cadherin expression was only up-regulated by butyrate and interferon-α (IFN-α) in both cell lines, studied by means of fluorescence immunostaining and flow cytometry. The localization of E-cadherin staining was shown at their cell membrane. According to the increase in E-cadherin expression, β-catenin expression appeared at the cell membrane of both cell lines when treated with butyrate and IFN-α. Such an appearance was not observed when cells were treated with ATRA and DEX. Western blotting showed that α-and γ-catenin expression was not changed, while only the expression of β-catenin increased. β-Catenin oncogenic activation as a result of amino acid substitutions or interstitial deletions within or including parts of exon 3, which has been demonstrated recently, was not detected in these cell lines by direct deoxyribonucleic acid sequencing. These results suggest that the expression and interaction between E-cadherin and wild-type β-catenin are potentially modulated by butyrate and IFN-α, and that these two agents are potent inhibitors of hepatocellular carcinoma cell invasion and metastasis.  相似文献   

8.
Metastatic progression of most common epithelial tumors involves a heterogeneous, transient loss of expression of the homotypic cell adhesion protein, E-cadherin, rather than the uniform loss of a functional protein resulting from coding region mutation. Indeed, whereas E-cadherin loss may promote invasion, reexpression may facilitate cell survival within metastatic deposits. The mechanisms underlying such plasticity are unclear. We now show that the heterogeneous loss of E-cadherin expression in primary human breast cancers reflects a heterogeneous pattern of promoter region methylation, which begins early prior to invasion. In cultured human tumor cells, such heterogeneous methylation is dynamic, varying from allele to allele and shifting in relation to the tumor microenvironment. Following invasion in vitro, which favors diminished E-cadherin expression, the density of promoter methylation markedly increased. When these cells were cultured as spheroids, which requires homotypic cell adhesion, promoter methylation decreased dramatically, and E-cadherin was reexpressed. These data show that the methylation associated with E-cadherin loss in human breast cancer is heterogeneous and unstable and suggest that such epigenetic plasticity may contribute to the dynamic, phenotypic heterogeneity that drives metastatic progression.  相似文献   

9.
E-cadherin 参与形成细胞间黏附性连接,是胚胎发育过程中的一个关键因子。越来越多的研究表明,E-cadherin 在肿瘤的发生发 展过程中也发挥了至关重要的作用。在生物体内,E-cadherin 的表达和功能受到多个水平、多重因素的调控,而 E-cadherin 又可以影响 多条重要信号通路的活性,参与到多种生理病理过程中。E-cadherin 下调造成细胞间黏附性连接减少、极性减弱,细胞由上皮样转变为间 质样,这一变化是上皮间质转化(EMT)的重要标志之一。E-cadherin 与多种肿瘤的发生有一定的相关性。同时 E-cadherin 下调所引起 的 EMT 促进肿瘤细胞的迁移运动,肿瘤细胞侵袭力增强,促进转移的发生。近年来,大量研究关注到 E-cadherin 对肿瘤细胞的耐药及干 细胞特性的获得都有影响。综述 E-cadherin 在肿瘤发生发展中的作用,探讨以 E-cadherin 为靶点的肿瘤治疗的现状及展望。  相似文献   

10.
The alpha(E)beta(7)integrin (defined by CD103) is expressed by most intra-epithelial lymphocytes (IEL) but by fewer than 2% peripheral blood lymphocytes (PBL). An important ligand for this molecule is the epithelial cell adhesion molecule E-cadherin. Loss of E-cadherin is associated with increased invasion and metastasis in bladder cancer. This study examines the role of the alpha(E)beta(7)-E-cadherin interaction in lymphocyte targeting of bladder cancer cells. Lymphocytes were activated in vitro by mixed lymphocyte reaction (MLR) and CD103 was upregulated by treatment with transforming growth factor beta (TGFbeta). The CD103(+) lymphocytes were used in a flow cytometric adhesion assay with bladder cancer cell lines, differing in expression of E-cadherin and intercellular adhesion molecule-1 (ICAM-1). Antibody blockade was used to confirm the relative importance of CD103 and ICAM-1 to intercellular adhesion. Lymphocytes with upregulated CD103 compared to control lymphocytes showed enhanced adhesion to an E-cadherin expressing bladder cancer cell line ( P=0.0003). This increased adhesion could be abrogated by anti-CD103 adhesion blockade. For ICAM-1 expressing bladder cells, adhesion of lymphocytes could be markedly reduced using anti-ICAM-1 blockade. In conclusion, the upregulation of CD103 by lymphocytes increases adhesion to E-cadherin expressing bladder cancer targets. Loss of E-cadherin in bladder cancer progression may provide a mechanism both for increased invasion and effective immune evasion.  相似文献   

11.
E-cadherin (epithelial cadherin) belongs to the calcium-dependent adhesion molecule superfamily and is implicated in the interactions of haematopoietic progenitors and bone marrow stromal cells. Adhesion capacity to bone marrow stroma was impaired for leukaemia cells, suggesting that a breakdown of adhesive mechanisms governed by an adhesion molecule may exist in leukaemic microenvironment. We previously found that E-cadherin was low expressed in primary acute leukaemia cells compared with normal bone marrow mononuclear cells. In this study, we investigate the functional importance of low E-cadherin expression in leukaemia cell behaviours and investigate its effects in the abnormal interaction of leukaemic cells with stromal cells. After expression of E-cadherin was restored by a demethylating agent in leukaemia cells, E-cadherin-specific adhesion was enhanced. Additionally, siRNA (small interfering RNA)-mediated silencing of E-cadherin in Raji cells resulted in a reduction of cell homophilic adhesion and enhancement of cell proliferation and colony formation. These results suggest that low expression of E-cadherin contributes to the vigorous growth and transforming ability of leukaemic cells.  相似文献   

12.
Compelling experimental evidence exists for a potent invasion suppressor role of the cell-cell adhesion molecule E-cadherin. In addition, a tumour suppressor effect has been suggested for E-cadherin. In human cancers, partial or complete loss of E-cadherin expression correlates with malignancy. To investigate the molecular basis for this altered expression we developed a comprehensive PCR/SSCP mutation screen for the human E-cadherin gene. For 49 breast cancer patients the occurrence of tumour-specific mutations in the E-cadherin gene was examined. No relevant DNA changes were encountered in any of 42 infiltrative ductal or medullary breast carcinoma samples. In contrast, four out of seven infiltrative lobular breast carcinomas harboured protein truncation mutations (three nonsense and one frameshift) in the extracellular part of the E-cadherin protein. Each of the four lobular carcinomas with E-cadherin mutations showed tumour-specific loss of heterozygosity of chromosomal region 16q22.1 containing the E-cadherin locus. In compliance with this, no E-cadherin expression was detectable by immunohistochemistry in these four tumours. These findings offer a molecular explanation for the typical scattered tumour cell growth in infiltrative lobular breast cancer.  相似文献   

13.
New work by Lehembre et al. in The EMBO Journal reveals that the cell-adhesion molecule, NCAM, is at the heart of crosstalk between E-cadherin loss and reciprocal focal adhesion assembly during the epithelial to mesenchymal transition (EMT). NCAM upregulation induces the formation of novel signaling complexes that correlate with NCAM-dependent focal adhesion assembly, migration, and cancer cell invasion.  相似文献   

14.
Here we report on the role of alpha-catenin in the cellular localization of activated leukocyte cell adhesion molecule, ALCAM, and cadherin-mediated cell adhesion in human prostate cancer cells. Cell lines that have a functional E-cadherin-mediated cell adhesion (DU-145 and LNCaP) show ALCAM staining at cell-cell contacts. In contrast, in cell lines that lack alpha-catenin expression (ALVA-31, PC-3, and PPC-1), E-cadherin-mediated adhesion is disturbed and ALCAM staining is cytoplasmic. A role of alpha-catenin in the recruitment of E-cadherin and ALCAM to cell-cell contacts was established by transfection of an alpha-N-catenin construct into cell lines ALVA-31 and PC-3. This resulted not only in the correct assembly of E-cadherin/alpha-catenin complexes at the cell membrane but also in localization of ALCAM to cell-cell contacts, indicating that indeed alpha-catenin affects ALCAM localization.  相似文献   

15.
Oral cancer is a prevalent type of cancer in Asian countries. Several studies indicated that garlic extracts such as diallyl disulfide (DADS) and diallyl trisulfide (DATS) have anticancer effects. However, the inhibitory effects of water soluble garlic extracts, S-allylcysteine (SAC), on the malignant progression of oral cancer have not been studied well yet. Thus, the purpose of this study was to investigate the inhibitory effects of SAC on the proliferation and progression of human oral squamous cancer CAL-27 cells.In the present study, we demonstrated that SAC dose dependently inhibited the growth of human oral squamous cancer cells. Our results showed that SAC induced the expression of E-cadherin adhesion molecule. Immunocytochemical staining result also revealed that SAC could restore the distribution of E-cadherin molecule on cell membrane. We further demonstrated that SAC stabilized the adherent junction complex of E-cadherin/β-catenin in oral cancer cells. Treatment with the MAPK/MEK specific inhibitor, PD098059, could up-regulate the expression of E-cadherin molecule. Furthermore, SAC significantly inhibited the activation of MAPK/ERK signaling pathway. These findings were associated with the down-regulation of the SLUG repressor protein.In conclusion, our results indicated that SAC effectively inhibited the proliferation, up-regulated the expression of E-cadherin molecule and stabilized the E-cadherin/β-catenin adherent junction complex in human oral squamous cancer cells. The mechanism of action was in part through the suppression of MAPK/ERK signaling pathway and down-regulation of the SLUG repressor protein.  相似文献   

16.
17.
Cell dissociation and acquisition of cell motility are major events in morphogenesis, wound repair, and cancer invasion and metastasis. We have used the NBT-II bladder carcinoma cell line as a model system to study the mechanisms of these events. Upon exposure to acidic fibroblast growth factor (aFGF), NBT-II cells undergo morphological changes that resemble those described in epithelial-mesenchymal transitions, i.e., dissociation of some or all polygonal epithelial cells and their transformation into motile, fibroblastic-like cells. The disruption of intercellular contacts, which accompanies cell dissociation and acquisition of motility, is correlated with a redistribution of E-cadherin, a Ca(2+)-dependent cell adhesion molecule, over the entire cell surface and within the cytoplasm. However, these modifications are not accompanied by a reduction of the intercellular adhesiveness or a loss of E-cadherin expression. Moreover, the formation of intercellular contacts between fibroblastic-like NBT-II cells results in the relocation of epithelial cadherin (E-cadherin) immunoreactivity on lateral membranes, but is not sufficient to abrogate cell motility. Finally, the overexpression of E-cadherin by NBT-II cells stably transfected with a plasmid containing the mouse E-cadherin cDNA does not impair the scattering effect of aFGF, indicating that high levels of E-cadherin expression do not prevent cells from disrupting their intercellular connections. Altogether, these results suggest that the scattering activity of aFGF is not mediated by direct modulations of E-cadherin expression.  相似文献   

18.
Tumor progression is characterized by loss of cell adhesion and increase of invasion and metastasis. The cell adhesion molecule E-cadherin is frequently down-regulated or mutated in tumors. In addition to down-regulation of cell adhesion, degradation of the extracellular matrix by matrix metalloproteinases is necessary for tumor cell spread. To investigate a possible link between E-cadherin and matrix metalloproteinase 3 (MMP-3), we examined expression of MMP-3 in human MDA-MB-435S cells transfected with wild-type (wt) or three different tumor-associated mutant E-cadherin variants with alterations in exons 8 or 9, originally identified in gastric carcinoma patients. In the presence of wt E-cadherin, the MMP-3 protein level was decreased in cellular lysates and in the supernatant where a secreted form of the protein is detectable. Down-regulation of MMP-3 was not found in MDA-MB-435S transfectants expressing mutant E-cadherin variants which indicates that E-cadherin mutations interfere with the MMP-3 suppressing function of E-cadherin. The mechanism of regulation of MMP-3 by E-cadherin is presently not clear. We have previously found that cell motility is enhanced by expression of the mutant E-cadherin variants used in this study. Here, we found that application of the synthetic inhibitor of MMP-3 NNGH and small interfering RNA (siRNA) directed against MMP-3 reduce mutant E-cadherin-enhanced cell motility. Taken together, our results point to a functional link between MMP-3 and E-cadherin. MMP-3 is differentially regulated by expression of wt or mutant E-cadherin. On the other hand, MMP-3 plays a role in the enhancement of cell motility by mutant E-cadherin. Both observations may be highly relevant for tumor progression since they concern degradation of the extracellular matrix and tumor cell spread.  相似文献   

19.
E-cadherin regulates the function of the EphA2 receptor tyrosine kinase.   总被引:31,自引:0,他引:31  
EphA2 is a member of the Eph family of receptor tyrosine kinases, which are increasingly understood to play critical roles in disease and development. We report here the regulation of EphA2 by E-cadherin. In nonneoplastic epithelia, EphA2 was tyrosine-phosphorylated and localized to sites of cell-cell contact. These properties required the proper expression and functioning of E-cadherin. In breast cancer cells that lack E-cadherin, the phosphotyrosine content of EphA2 was decreased, and EphA2 was redistributed into membrane ruffles. Expression of E-cadherin in metastatic cells restored a more normal pattern of EphA2 phosphorylation and localization. Activation of EphA2, either by E-cadherin expression or antibody-mediated aggregation, decreased cell-extracellular matrix adhesion and cell growth. Altogether, this demonstrates that EphA2 function is dependent on E-cadherin and suggests that loss of E-cadherin function may alter neoplastic cell growth and adhesion via effects on EphA2.  相似文献   

20.
Osteoblast cadherin (OB-cadherin, also known as cadherin-11) is a Ca2+-dependent homophilic cell adhesion molecule that is expressed mainly in osteoblasts. OB-cadherin is expressed in prostate cancer and may be involved in the homing of metastatic prostate cancer cells to bone. The extracellular domain of OB-cadherin may be used to inhibit the adhesion between prostate cancer cells and osteoblasts. In this report, we describe the expression of the extracellular domain of OB-cadherin as an Fc fusion protein (OB-CAD-Fc) in human embryonic kidney 293FT cells using a bicistronic retroviral vector. Coexpression of GFP and OB-CAD-Fc through the bicistronic vector permitted enrichment of OB-CAD-Fc-expressing cells by fluorescence-activated cell sorting. Recombinant OB-CAD-Fc proteins were secreted into cell medium, and about 0.85 mg of purified OB-CAD-Fc protein was purified from 1 l of the conditioned medium using immobilized protein A-affinity chromatography. The purified OB-CAD-Fc was biologically active because it supported the adhesion of PC3 cells and L cells transduced with OB-cadherin. The availability of OB-CAD-Fc offers opportunities to test whether OB-CAD-Fc can be used to inhibit OB-cadherin-mediated prostate cancer bone metastasis in vivo or to generate antibodies for inhibiting the adhesion between prostate cancer cells and osteoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号