首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two characteristics of highly malignant cells are their increased motility and secretion of proteinases allowing these cells to penetrate surrounding basement membranes and metastasize. Activation of 21-kDa activated kinases (PAKs) is an important mechanism for increasing cell motility. Recently, we reported that binding of receptor-recognized forms of the proteinase inhibitor alpha2-macroglobulin (alpha2M*) to GRP78 on the cell surface of 1-LN human prostate cancer cells induces mitogenic signaling and cellular proliferation. In the current study, we have examined the ability of alpha2M* to activate PAK-1 and PAK-2. Exposure of 1-LN cells to alpha2M* caused a 2- to 3-fold increase in phosphorylated PAK-2 and a similar increase in its kinase activity toward myelin basic protein. By contrast, the phosphorylation of PAK-1 was only negligibly affected. Silencing the expression of the GRP78 gene, using either of two different mRNA sequences, greatly attenuated the appearance of phosphorylated PAK-2 in alpha2M*-stimulated cells. Treatment of 1-LN cells with alpha2M* caused translocation of PAK-2 in association with NCK to the cell surface as evidenced by the co-immunoprecipitation of PAK-2 and NCK in the GRP78 immunoprecipitate from plasma membranes. alpha2M*-induced activation of PAK-2 was inhibited by prior incubation of the cells with specific inhibitors of tyrosine kinases and phosphatidylinositol 3-kinase. PAK-2 activation was accompanied by significant increases in the levels of phosphorylated LIMK and phosphorylated cofilin. Silencing the expression of the PAK-2 gene greatly attenuated the phosphorylation of LIMK. In conclusion, we show for the first time the activation of PAK-2 in 1-LN prostate cancer cells by a proteinase inhibitor, alpha2-macroglobulin. These studies suggest a mechanism by which alpha2M* enhances the metastatic potential of these cells.  相似文献   

2.
Receptor-recognized forms of α2-macroglobulin (α2M*) bind to cancer cell surface GRP78, which functions as a signaling receptor promoting proliferation and survival. Patients with prostate, ovary, and skin cancer may develop auto-antibodies to the α2M* binding site which are receptor agonists whose presence indicates a poor prognosis. By contrast, antibodies directed against the COOH-terminal domain of GPR78 (anti-CTD antibody), are antagonists which down regulate pro-proliferative signaling and upregulate p53. Unfolded protein response (UPR) signaling plays an important role in cell survival and proliferation as well as apoptosis. We, therefore, studied the effect of anti-CTD antibody on UPR signaling in 1-LN and DU-145 prostate cancer cells. Treatment of these cells, which express GRP78 on their cell surface, with this antibody significantly downregulated IRE1-α, PERK, and ATF6α-dependent UPR signaling. By contrast, the pro-apoptotic protein GADD153 was elevated. Anti-CTD antibody treatment also elevated apoptotic components, cleaved PARP-1, and Erdj5. In general, a two to threefold effect was observed for the parameters which were studied. These studies suggest that anti-CTD antibody induces growth inhibitory and pro-apoptotic effects by modulating UPR signaling in human prostate cancer cells.  相似文献   

3.
Akt is a protein serine/threonine kinase that is involved in the regulation of diverse cellular processes. Phosphorylation of Akt at regulatory residues Thr-308 and Ser-473 leads to its full activation. The protein phosphatase 2A (PP2A) has long been known to negatively regulate Akt activity. The PP2A holoenzyme consists of the structural subunit (A), catalytic subunit (C), and a variable regulatory subunit (B). Here we report the identification of the specific B regulatory subunit that targets the PP2A holoenzyme to Akt. We found endogenous association of PP2A AB55C holoenzymes with Akt by co-immunoprecipitation analyses in pro-lymphoid FL5.12 cells. Akt was shown to associate with ectopically expressed B55alpha subunit in NIH3T3 cells. The direct interaction between B55alpha subunit and Akt was confirmed using in vitro pulldown analyses. Intriguingly, we found that overexpression of B55alpha subunit significantly impaired phosphorylation at Thr-308, but to a lesser extent at Ser-473 of Akt in both FL5.12 and NIH3T3 cells. Concomitantly, phosphorylation of a subset of Akt substrates, including FoxO3a, was substantially decreased by B55alpha overexpression in these cells. Silencing of B55alpha expression markedly increased phosphorylation at Thr-308 but not at Ser-473 in both FL5.12 cells and NIH3T3 cells. Consistently, PP2A AB55alphaC holoenzymes preferentially dephosphorylated phospho-Thr-308 rather than phospho-Ser-473 in in vitro dephosphorylation assays. Furthermore, B55alpha overexpression retarded proliferation of NIH3T3 cells, and knockdown of B55alpha expression increased survival of FL5.12 cells upon interleukin-3 deprivation. Together, our data demonstrate that B55alpha-dependent targeting of the PP2A holoenzyme to Akt selectively regulates Akt phosphorylation at Thr-308 to regulate cell proliferation and survival.  相似文献   

4.
5.
Cellular binding of receptor-recognized forms of alpha2-macroglobulin (alpha2M*) is mediated by the low-density lipoprotein receptor related protein (LRP) and the alpha2M signaling receptor (alpha2MSR). In nonmalignant cells, ligation of alpha2MSR promotes DNA synthesis and cellular proliferation. Here, we report that insulin treatment of highly metastatic 1-LN human prostate carcinoma selectively increases alpha2MSR expression and binding of alpha2M* to 1-LN cells. alpha2M* induces transient increases in intracellular calcium and inositol 1,4,5-trisphosphate in insulin-treated 1-LN cells, consistent with activation of alpha2MSR. Inhibition of signaling cascades activated by insulin blocks upregulation of alpha2MSR. By contrast, alpha2M* does not bind to nor induce intracellular signaling in PC-3 cells, even though 1-LN cells were subcloned from PC-3 cells. We suggest that alpha2M* behaves like a growth factor in these highly malignant cells. The 1-LN metastatic phenotype may result, in part, from aberrant expression of alpha2MSR, indicating the possible involvement of alpha2M* in tumor progression.  相似文献   

6.
cAMP regulates a wide range of processes through its downstream effectors including PKA, and the family of guanine nucleotide exchange factors. Depending on the cell type, cAMP inhibits or stimulates growth and proliferation in a PKA-dependent or independent manner. PKA-independent effects are mediated by PI 3-kinases-Akt signaling and EPAC1 (exchange protein directly activated by cAMP) activation. Recently, we reported PKA-independent activation of the protein kinase Akt as well co-immunoprecipitation of Epac1 with Rap1, p-Akt(Thr-308), and p-Akt(Ser-473) in forskolin-stimulated macrophages. To further probe the role of Epac1 in Akt protein kinase activation and cellular proliferation, we employed the cAMP analog 8-CPT-2-O-Me-cAMP, which selectively binds to Epac1 and triggers Epac1 signaling. We show the association of Epac1 with activated Akt kinases by co-immunoprecipitation and GST-pulldown assays. Silencing Epac1 gene expression by RNA interference significantly reduced levels of Epac1 mRNA, Epac protein, Rap1 GTP, p-ERK1/2, p-B-Raf, p110alpha catalytic subunit of PI 3-kinase, p-PDK, and p-p(70s6k). Silencing Epac1 gene expression by RNA interference also suppressed 8-CPT-2-O-Me-cAMP-upregulated protein and DNA synthesis. Concomitantly, 8-CPT-2-O-Me-cAMP-mediated upregulation of Akt(Thr-308) protein kinase activity and p-Akt(Thr-308) levels was prevented in plasma membranes and nuclei of the cells. In contrast, silencing Epac1 gene expression reduced Akt(Ser-473) kinase activity and p-Akt(Ser-473) levels in plasma membranes, but showed negligible effects on nuclear activity. In conclusion, we show that cAMP-induced Akt kinase activation and cellular proliferation is mediated by Epac1 which appears to function as an accessory protein for Akt activation.  相似文献   

7.
The alpha2-macroglobulin signalling receptor is upregulated in highly metastatic 1-LN prostate cancer cells. Stimulation of 1-LN cells with activated alpha2-macroglobulin (alpha2M*) caused a two- to threefold increase in [3H]thymidine uptake and cell number. These events require the Ras-dependent MAPK and PI 3-kinase/Akt signalling cascades. Incubation of 1-LN cells with alpha2M* induced Grb2, shc, sos and Raf-1 expression, as well as phosphorylation of MEK 1/2, ERK 1/2, p38 MAPK and JNK. This treatment also increased PI 3-kinase activation, PDK1 expression, Akt phosphorylation and p70s6k phosphorylation. Levels of the early gene products c-fos protein and thymidylate synthase were comparably increased. Exposure of 1-LN cells to alpha2M* significantly raised the levels of phosphorylated CREB by about 15-20 min and phosphorylated p53 by about 60-90 min of incubation. We conclude that the growth regulatory effects of ligating the alpha2M* signalling receptor on 1-LN cells are exerted via the onset and crosstalk between the Ras-dependent MAPK and PI 3-kinase/Akt signalling cascades.  相似文献   

8.
Full activation of protein kinase B (PKB, also called Akt) requires phosphorylation on two regulatory sites, Thr-308 in the activation loop and Ser-473 in the hydrophobic C-terminal regulatory domain (numbering for PKB alpha/Akt-1). Although 3'-phosphoinositide-dependent protein kinase 1 (PDK1) has now been identified as the Thr-308 kinase, the mechanism of the Ser-473 phosphorylation remains controversial. As a step to further characterize the Ser-473 kinase, we examined the effects of a range of protein kinase inhibitors on the activation and phosphorylation of PKB. We found that staurosporine, a broad-specificity kinase inhibitor and inducer of cell apoptosis, attenuated PKB activation exclusively through the inhibition of Thr-308 phosphorylation, with Ser-473 phosphorylation unaffected. The increase in Thr-308 phosphorylation because of overexpression of PDK1 was also inhibited by staurosporine. We further show that staurosporine (CGP 39360) potently inhibited PDK1 activity in vitro with an IC(50) of approximately 0.22 microm. These data indicate that agonist-induced phosphorylation of Ser-473 of PKB is independent of PDK1 or PKB activity and occurs through a distinct Ser-473 kinase that is not inhibited by staurosporine. Moreover, our results suggest that inhibition of PKB signaling is involved in the proapoptotic action of staurosporine.  相似文献   

9.
10.
The low density lipoprotein receptor-related protein (LRP) is a scavenger receptor that binds to many proteins, some of which trigger signal transduction. Receptor-recognized forms of alpha(2)-Macroglobulin (alpha(2)M*) bind to LRP, but the pattern of signal transduction differs significantly from that observed with other LRP ligands. For example, neither Ni(2+) nor the receptor-associated protein, which blocks binding of all known ligands to LRP, block alpha(2)M*-induced signal transduction. In the current study, we employed alpha(2)-macroglobulin (alpha(2)M)-agarose column chromatography to purify cell surface membrane binding proteins from 1-LN human prostate cancer cells and murine macrophages. The predominant binding protein purified from 1-LN prostate cancer cells was Grp 78 with small amounts of LRP, a fact that is consistent with our previous observations that there is little LRP present on the surface of these cells. The ratio of LRP:Grp 78 is much higher in macrophages. Flow cytometry was employed to demonstrate the presence of Grp 78 on the cell surface of 1-LN cells. Purified Grp 78 binds to alpha(2)M* with high affinity (K(d) approximately 150 pm). A monoclonal antibody directed against Grp 78 both abolished alpha(2)M*-induced signal transduction and co-precipitated LRP. Ligand blotting with alpha(2)M* showed binding to both Grp 78 and LRP heavy chains in these preparations. Use of RNA interference to silence LRP expression had no effect on alpha(2)M*-mediated signaling. We conclude that Grp 78 is essential for alpha(2)M*-induced signal transduction and that a "co-receptor" relationship exists with LRP like that seen with several other ligands and receptors such as the uPA/uPAR (urinary type plasminogen activator or urokinase/uPA receptor) system.  相似文献   

11.
Protein kinase B (PKB/Akt) plays a pivotal role in signaling pathways downstream of phosphatidylinositol 3-kinase, regulating fundamental processes such as cell survival, cell proliferation, differentiation, and metabolism. PKB/Akt activation is regulated by phosphoinositide phospholipid-mediated plasma membrane anchoring and by phosphorylation on Thr-308 and Ser-473. Whereas the Thr-308 site is phosphorylated by PDK-1, the identity of the Ser-473 kinase has remained unclear and controversial. The integrin-linked kinase (ILK) is a potential regulator of phosphorylation of PKB/Akt on Ser-473. Utilizing double-stranded RNA interference (siRNA) as well as conditional knock-out of ILK using the Cre-Lox system, we now demonstrate that ILK is essential for the regulation of PKB/Akt activity. ILK knock-out had no effect on phosphorylation of PKB/Akt on Thr-308 but resulted in almost complete inhibition of phosphorylation on Ser-473 and significant inhibition of PKB/Akt activity, accompanied by significant stimulation of apoptosis. The inhibition of PKB/Akt Ser-473 phosphorylation was rescued by kinase-active ILK but not by a kinase-deficient mutant of ILK, suggesting a role for the kinase activity of ILK in the stimulation of PKB/Akt phosphorylation. ILK knock-out also resulted in the suppression of phosphorylation of GSK-3beta on Ser-9 and cyclin D1 expression. These data establish ILK as an essential upstream regulator of PKB/Akt activation.  相似文献   

12.
13.
14.
Previous studies of the plasma proteinase inhibitor alpha2-macroglobulin (alpha2M) demonstrated that alpha2M-proteinase complexes (alpha2M*) modulate immune responses and promotes macrophage locomotion and chemotaxis. Alpha2M* binds to cell surface-associated glucose-regulated protein 78 (GRP78), which activates downstream signaling events. The role of p21-activated protein kinase-1 and -2 (PAK-1 and -2) in promoting cellular motility is well documented. In the current study, we examined the ability of alpha2M* to activate PAK-1 and PAK-2. Upon macrophage stimulation with alpha2M*, PAK-2 is autophosphorylated, resulting in increased kinase activity; however, PAK-1 is negligibly affected. Alpha2M*-stimulated macrophages showed a marked elevation in the levels of Rac x GTP. Receptor tyrosine phosphorylation upon binding of alpha2M* to GRP78, recruits PAK-2 to the plasma membrane via the adaptor protein NCK. Consistent with this hypothesis, silencing of GRP78 gene expression greatly attenuated the levels of membrane-associated PAK-2 and NCK. PAK-2 activity was markedly decreased by inhibition of tyrosine kinases and PI3K before alpha2M* stimulation. We further demonstrate that phosphorylation of Lin-11, Isl-1, Mec-3 (LIM) kinase and cofilin is promoted by treating macrophages with alpha2M*. Thus, alpha2M* regulates activation of the PAK-2-dependent motility mechanism in these cells.  相似文献   

15.
Mechanical signals can inactivate glycogen synthase kinase 3β (GSK3β), resulting in stabilization of β-catenin. This signaling cascade is necessary for the inhibition of adipogenesis in mesenchymal stem cells (MSC) that is produced by a daily strain regimen. We investigated whether Akt is the mechanically activated kinase responsible for phosphorylation and inactivation of GSK3β in MSC. Mechanical strain (2% magnitude, 0.17 Hz) induced phosphorylation of Akt at Ser-473 and Thr-308 in parallel with phosphorylation of GSK3β at Ser-9. Inhibiting Akt (Akt1/2 kinase inhibitor treatment or Akt knockdown) prevented strain-induced phosphorylation of GSK3β at Ser-9. Inhibition of PI3K prevented Thr-308 phosphorylation, but strain-induced Ser-473 phosphorylation was measurable and induced phosphorylation of GSK3β, suggesting that Ser-473 phosphorylation is sufficient for the downstream mechanoresponse. As Rictor/mTORC2 (mammalian target of rapamycin complex 2) is known to transduce phosphorylation of Akt at Ser-473 by insulin, we investigated whether it contributes to strain-induced Ser-473 phosphorylation. Phosphorylation of Ser-473 by both mechanical and insulin treatment in MSC was prevented by the mTOR inhibitor KU0063794. When mTORC2 was blocked, mechanical GSK3β inactivation was prevented, whereas insulin inhibition of GSK3β was still measured in the absence of Ser-473 phosphorylation, presumably through phosphorylation of Akt at Thr-308. In sum, mechanical input initiates a signaling cascade that is uniquely dependent on mTORC2 activation and phosphorylation of Akt at Ser-473, an effect sufficient to cause inactivation of GSK3β. Thus, mechanical regulation of GSK3β downstream of Akt is dependent on phosphorylation of Akt at Ser-473 in a manner distinct from that of growth factors. As such, Akt reveals itself to be a pleiotropic signaling molecule whose downstream targets are differentially regulated depending upon the nature of the activating input.  相似文献   

16.
Endothelial nitric-oxide synthase (eNOS) is an important regulatory enzyme in the cardiovascular system catalyzing the production of NO from arginine. Multiple protein kinases including Akt/PKB, cAMP-dependent protein kinase (PKA), and the AMP-activated protein kinase (AMPK) activate eNOS by phosphorylating Ser-1177 in response to various stimuli. During VEGF signaling in endothelial cells, there is a transient increase in Ser-1177 phosphorylation coupled with a decrease in Thr-495 phosphorylation that reverses over 10 min. PKC signaling in endothelial cells inhibits eNOS activity by phosphorylating Thr-495 and dephosphorylating Ser-1177 whereas PKA signaling acts in reverse by increasing phosphorylation of Ser-1177 and dephosphorylation of Thr-495 to activate eNOS. Both phosphatases PP1 and PP2A are associated with eNOS. PP1 is responsible for dephosphorylation of Thr-495 based on its specificity for this site in both eNOS and the corresponding synthetic phosphopeptide whereas PP2A is responsible for dephosphorylation of Ser-1177. Treatment of endothelial cells with calyculin selectively blocks PKA-mediated dephosphorylation of Thr-495 whereas okadaic acid selectively blocks PKC-mediated dephosphorylation of Ser-1177. These results show that regulation of eNOS activity involves coordinated signaling through Ser-1177 and Thr-495 by multiple protein kinases and phosphatases.  相似文献   

17.
Akt (= protein kinase B), a subfamily of the AGC serine/threonine kinases, plays critical roles in survival, proliferation, glucose metabolism, and other cellular functions. Akt activation requires the recruitment of the enzyme to the plasma membrane by interacting with membrane-bound lipid products of phosphatidylinositol 3-kinase. Membrane-bound Akt is then phosphorylated at two sites for its full activation; Thr-308 in the activation loop of the kinase domain is phosphorylated by 3-phosphoinositide-dependent kinase-1 (PDK1) and Ser-473 in the C-terminal hydrophobic motif by a putative kinase PDK2. The identity of PDK2 has been elusive. Here we present evidence that conventional isoforms of protein kinase C (PKC), particularly PKCbetaII, can regulate Akt activity by directly phosphorylating Ser-473 in vitro and in IgE/antigen-stimulated mast cells. By contrast, PKCbeta is not required for Ser-473 phosphorylation in mast cells stimulated with stem cell factor or interleukin-3, in serum-stimulated fibroblasts, or in antigen receptor-stimulated T or B lymphocytes. Therefore, PKCbetaII appears to work as a cell type- and stimulus-specific PDK2.  相似文献   

18.
The function of Akt (protein kinase B) is regulated by phosphorylation on two sites conserved within the AGC kinase family: the activation loop (Thr-308) in the kinase core and a hydrophobic phosphorylation site on the carboxyl terminus (Ser-473). Thr-308 is phosphorylated by the phosphoinositide-dependent kinase-1, (PDK-1), whereas the mechanism of phosphorylation of the hydrophobic site, tentatively referred to as the PDK-2 site, is unknown. Here we report that phosphorylation of the hydrophobic motif requires catalytically competent Akt. First we show that a kinase-inactive construct of Akt fails to incorporate phosphate at Ser-473 following IGF-1 stimulation in vivo but does incorporate phosphate at Thr-308 and a second carboxyl-terminal site, Thr-450; this ligand triggers the phosphorylation of both sites in wild-type enzyme. Neither does a catalytically inactive construct in which phosphorylation at the activation loop is blocked, T308A, become phosphorylated on the hydrophobic site in response to stimulation. Second, we show that Akt autophosphorylates on the hydrophobic site in vitro: phosphorylation of the activation loop by PDK-1 triggers the phosphorylation of the hydrophobic site in kinase-active, but not thermally inactivated, Akt alpha. Thus, Akt is regulated by autophosphorylation at the Ser-473 hydrophobic site.  相似文献   

19.
Wey S  Luo B  Lee AS 《PloS one》2012,7(6):e39047
GRP78, a master regulator of the unfolded protein response (UPR) and cell signaling, is required for inner cell mass survival during early embryonic development. However, little is known about its role in adult hematopoietic stem cells (HSCs) and hematopoiesis. Here we generated a conditional knockout mouse model that acutely deletes Grp78 in the adult hematopoietic system. Acute GRP78 ablation resulted in a significant reduction of HSCs, common lymphoid and myeloid progenitors, and lymphoid cell populations in the mutant mice. The GRP78-null induced reduction of the HSC pool could be attributed to increased apoptosis. Chimeric mice with Grp78 deletion only in the hematopoietic cells also showed a loss of HSCs and lymphopenia, suggesting a cell intrinsic effect. Analysis of GRP78 deficient bone marrow (BM) cells showed constitutive activation of all the major UPR signaling pathways, including activation of eIF2α, ATF6, xbp-1 splicing, as well as caspase activation. A multiplex cytokine assay further revealed alteration in select cytokine and chemokine serum levels in the mutant mice. Collectively, these studies demonstrate that GRP78 plays a pleiotropic role in BM cells and contributes to HSC survival and the maintenance of the lymphoid lineage.  相似文献   

20.
Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) on serine 51 integrates general translation repression with activation of stress-inducible genes such as ATF4, CHOP, and BiP in the unfolded protein response. We sought to identify new genes active in this phospho-eIF2alpha-dependent signaling pathway by screening a library of recombinant retroviruses for clones that inhibit the expression of a CHOP::GFP reporter. A retrovirus encoding the COOH terminus of growth arrest and DNA damage gene (GADD)34, also known as MYD116 (Fornace, A.J., D.W. Neibert, M.C. Hollander, J.D. Luethy, M. Papathanasiou, J. Fragoli, and N.J. Holbrook. 1989. Mol. Cell. Biol. 9:4196-4203; Lord K.A., B. Hoffman-Lieberman, and D.A. Lieberman. 1990. Nucleic Acid Res. 18:2823), was isolated and found to attenuate CHOP (also known as GADD153) activation by both protein malfolding in the endoplasmic reticulum, and amino acid deprivation. Despite normal activity of the cognate stress-inducible eIF2alpha kinases PERK (also known as PEK) and GCN2, phospho-eIF2alpha levels were markedly diminished in GADD34-overexpressing cells. GADD34 formed a complex with the catalytic subunit of protein phosphatase 1 (PP1c) that specifically promoted the dephosphorylation of eIF2alpha in vitro. Mutations that interfered with the interaction with PP1c prevented the dephosphorylation of eIF2alpha and blocked attenuation of CHOP by GADD34. Expression of GADD34 is stress dependent, and was absent in PERK(-)/- and GCN2(-)/- cells. These findings implicate GADD34-mediated dephosphorylation of eIF2alpha in a negative feedback loop that inhibits stress-induced gene expression, and that might promote recovery from translational inhibition in the unfolded protein response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号