首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using an exhaustive data compilation, Iberian vascular plant species richness in 50 times 50 UTM grid cells was regressed against 24 explanatory variables (spatial, geographical, topographical, geological, climatic, land use and environmental diversity variables) using Generalized Linear Models and partial regression analysis in order to ascertain the relative contribution of primary, heterogeneous and spatially structured variables. The species richness variation accounted for by these variables is reasonably high (65% of total deviance). Little less than half of this variation is accounted for spatially structured variables. A purely spatial component of variation is hardly significant. The most significant variables are those related to altitude, and particularly maximum altitude, whose cubic response reflects the occurrence of the maximum number of species at the highest altitudes. This result highlighted the importance of Iberian mountains as hotspots of diversity and the relevance of large and small scale historical factors in contemporary plant distribution patterns. Climatic or energy-related variables contributed little, whereas geological (calcareous and acid rocks) and, to a lesser extent, environmental heterogeneity variables (land use diversity and altitude range) seem to be more important.  相似文献   

2.
Aim  Although the breeding ranges of most Western Palaearctic migratory passerines are well documented in Europe, their overwintering ranges and patterns of species richness in Africa remain poorly understood. To illustrate potential patterns of species richness despite severely limited data, we extrapolated species ranges from a new and unique data bank of locality records that documents overwintering locations of these birds in Africa.
Location  Sub-Saharan Africa.
Methods  We predicted potential geographical distributions of 60 species of passerine birds based on overwintering records using bioclimatic models. We then combined these predictions to estimate potential species richness and explored response shapes using spatial linear regression. We also evaluated the evidence for a mid-domain effect using a one-dimensional null model.
Results  Spatial linear regression analyses of the species richness pattern revealed non-linear relationships to seasonality in precipitation, minimum net primary productivity, minimum average temperature, habitat heterogeneity, percentage of tree cover, distance from the Sahara Desert and inter-annual variability in net primary productivity. The explanatory power of these variables decreased with geographic range size. The one-dimensional null model of species richness based on distance from the Sahara Desert did not show evidence of a mid-domain effect.
Main conclusions  Distributions of migrants seem generally strongly determined by distance from the Sahara Desert working in concert with climatic effects, but this cannot adequately explain richness patterns of species with small ranges in Africa, many of which are of substantial conservation concern.  相似文献   

3.
中国北方典型草地物种丰富度与生产力的关系   总被引:13,自引:0,他引:13  
利用2002–2004年内蒙古和甘肃南部几种典型草地的实测资料,研究了不同尺度物种丰富度与生产力的关系,并初步探讨了其形成机制。结果显示,温带草地的物种丰富度随生产力的增加而增加,但受空间尺度影响。在群落尺度(同一群落),在7种样方数大于15的群落中,仅沙生针茅(Stipaglareosa)群落物种丰富度与生产力呈现单峰型关系,其余均呈现线性正相关关系;在植被类型尺度,物种丰富度–生产力之间表现为显著的正相关关系;在研究区尺度,物种丰富度随生产力的增加而显著增加。研究还表明,研究区群落生产力的变化范围为13–368g·m–2·yr–1,物种丰富度为4–35种;生产力从高到低的顺序为:高寒草甸>草甸草原>典型草原>荒漠草原。  相似文献   

4.
Aim To test the mechanisms driving bird species richness at broad spatial scales using eigenvector‐based spatial filtering. Location South America. Methods An eigenvector‐based spatial filtering was applied to evaluate spatial patterns in South American bird species richness, taking into account spatial autocorrelation in the data. The method consists of using the geographical coordinates of a region, based on eigenanalyses of geographical distances, to establish a set of spatial filters (eigenvectors) expressing the spatial structure of the region at different spatial scales. These filters can then be used as predictors in multiple and partial regression analyses, taking into account spatial autocorrelation. Autocorrelation in filters and in the regression residuals can be used as stopping rules to define which filters will be used in the analyses. Results Environmental component alone explained 8% of variation in richness, whereas 77% of the variation could be attributed to an interaction between environment and geography expressed by the filters (which include mainly broad‐scale climatic factors). Regression coefficients of environmental component were highest for AET. These results were unbiased by short‐scale spatial autocorrelation. Also, there was a significant interaction between topographic heterogeneity and minimum temperature. Conclusion Eigenvector‐based spatial filtering is a simple and suitable statistical protocol that can be used to analyse patterns in species richness taking into account spatial autocorrelation at different spatial scales. The results for South American birds are consistent with the climatic hypothesis, in general, and energy hypothesis, in particular. Habitat heterogeneity also has a significant effect on variation in species richness in warm tropical regions.  相似文献   

5.
The mid‐domain effect (MDE) aims to explain spatial patterns in species richness invoking only stochasticity and geometrical constraints. In this paper, we used simulations to show that its main qualitative prediction, a hump‐shaped pattern in species richness, converges to the expectation of a spatially bounded neutral model when communities are linked by short‐distance migration. As these two models can be linked under specific situations, neutral theory may provide a mechanistic population level basis for MDE. This link also allows establishing in which situations MDE patterns are more likely to be found. Also, in this situation, MDE models could be used as a first approximation to understand the role of both stochastic (ecological drift and migration) and deterministic (adaptation to environmental conditions) processes driving the spatial structure of species richness.  相似文献   

6.
Aim To determine the empirical relationships between species richness and spatial turnover in species composition across spatial scales. These have remained little explored despite the fact that such relationships are fundamental to understanding spatial diversity patterns. Location South‐east Scotland. Methods Defining local species richness simply as the total number of species at a finer resolution than regional species richness and spatial turnover as turnover in species identity between any two or more areas, we determined the empirical relationships between all three, and the influence of spatial scale upon them, using data on breeding bird distributions. We estimated spatial turnover using a measure independent of species richness gradients, a fundamental feature which has been neglected in theoretical studies. Results Local species richness and spatial turnover exhibited a negative relationship, which became stronger as larger neighbourhood sizes were considered in estimating the latter. Spatial turnover and regional species richness did not show any significant relationship, suggesting that spatial species replacement occurs independently of the size of the regional species pool. Local and regional species richness only showed the expected positive relationship when the size of the local scale was relatively large in relation to the regional scale. Conclusions Explanations for the relationships between spatial turnover and local and regional species richness can be found in the spatial patterns of species commonality, gain and loss between areas.  相似文献   

7.
8.
Aim To determine the relationship between the distribution of climate, climatic heterogeneity and pteridophyte species richness gradients in Australia, using an approach that does not assume potential relationships are spatially invariant and allows for scale effects (extent of analysis) to be explicitly examined. Location Australia, extending from 10° S to 43° S and 112° E to 153° E. Method Species richness within 50 × 50 km grid cells was determined using point distribution data. Climatic surfaces representing the distribution and availability of water and energy at 1 km and 5 km cell resolutions were obtained. Climate at the 50 km resolution of analysis was represented by their mean and standard deviation in that area. Relationships were assessed using geographically weighted linear regression at a range of spatial bandwidths to investigate scale effects. Results The parameters and the predictive strength of all models varied across space at all extents of analysis. Overall, climatic variables representing water availability were more highly correlated to pteridophyte richness gradients in Australia than those representing energy. Their variance in cells further increased the strength of the relationships in topographically heterogeneous regions. Relationships with water were strong across all extents of analysis, particularly in the tropical and subtropical parts of the continent. Water availability explained less of the variation in richness at higher latitudes. Main conclusions This study brings into question the ability of aspatial and single‐extent models, searching for a unified explanation of macro‐scaled patterns in gradients of diversity, to adequately represent reality. It showed that, across Australia, there is a positive relationship between pteridophyte species richness and water availability but the strength and nature of the relationship varies spatially with scale in a highly complex manner. The spatial variance, or actual complexity, in these relationships could not have been demonstrated had a traditional aspatial global regression approach been used. Regional scale variation in relationships may be at least as important as more general relationships for a true understanding of the distribution of broad‐scale diversity.  相似文献   

9.
中国大陆鸟类和兽类物种多样性的空间变异   总被引:1,自引:0,他引:1  
生物多样性科学的研究重心之一是大尺度生物多样性空间分布规律及其形成机制。中国是世界上物种特丰富国家之一,了解我国物种多样性在空间上的变异情况,对于进一步认识大尺度上的生物多样性有重要意义。我们收集了全国205个自然保护区的鸟类和兽类物种分布信息,以G-F指数作为物种多样性的测度指标,利用地统计学方法分析了大陆鸟类和兽类物种多样性的空间变异特征。G-F指数是一种基于香农-威纳指数的信息测度,测度了研究地区环境分化程度和实际利用这种生态环境分化的生物类群多样性, 是一种对共同起源,相似生境需求的物种类群多样性的标准化多样性测度。结果发现,在东部季风区、西北干旱区和青藏高寒区内我国大陆鸟类多样性变异大部分都是由随机因素所引起的。兽类多样性的分布,在东部季风区和西北干旱区内是由随机因素所产生的,而在青藏高寒区,兽类多样性的总变异中99.9%是由空间依赖性所引起的,主要表现在71,492~1,020,000m空间尺度上,其分布表现出了强空间相关性。据此,大尺度上的物种多样性空间分布具有特定的规律,在生物多样性的保护行动中应加以考虑。  相似文献   

10.
11.
The relationship between plant species richness and primary productivity has long been acentral topic in biodiversity research.In this paper,we examine the relationship between species richness and productivity in four typical grasslands of Northern China at different spatial scales.At the community scale,a positive correlation was found for six of seven communities.A unimodal pattern was found only for one community (Stipa glareosa community),while at a large scale (vegetation type or landscape/region),the relationship was also found significantly positive.Species richness ranged from 4 to 35 species,and community aboveground productiand aboveground productivity were found in alpine meadow,followed by meadow steppe,typical steppe and desert steppe.  相似文献   

12.
The relationship between plant species richness and primary productivity has long been a central topic in biodiversity research. In this paper, we examine the relationship between species richness and productivity in four typical grasslands of Northern China at different spatial scales. At the community scale, a positive correlation was found for six of seven communities. A unimodal pattern was found only for one community (Stipa glareosa community), while at a large scale (vegetation type or landscape/region), the relationship was also found significantly positive. Species richness ranged from 4 to 35 species, and community aboveground productivity from 13 to 368 g·m−2·a−1. The highest species richness and aboveground productivity were found in alpine meadow, followed by meadow steppe, typical steppe and desert steppe. Translated from Biodiversity Science, 2006, 14(1): 21–28 [译自: 生物多样性]  相似文献   

13.
14.
基于物种的大尺度生物多样性热点研究方法   总被引:2,自引:1,他引:2  
生物多样性热点是建立保护区、制定保护决策的依据,是生物保护研究的热点问题之一。基于物种的研究方法是大尺度陆地生物多样性热点的主要研究方法,但数据的缺乏限制了直接根据物种丰富度确定热点的方法,因此研究中经常采用其他方法间接的反映物种情况,介绍了4种主要的基于物种的替代方法:指示种、高级分类单元、环境模型和景观异质性,详细阐述了各种方法存在的利弊,并从数据的可获取性、操作的便捷性和对物种特征的反映3个方面对各种方法进行了评价。任何单一的方法都无法准确反映出生物多样性热点的真实分布。合适的研究方法是权衡研究目的、时间和资金的结果,建议选择优势互补的多种方法。  相似文献   

15.
Aim We analysed the interdependence of avian frugivore‐ and fruited plant‐species richness at the scale of major river basins across Europe, taking into account several environmental factors along different spatial gradients. Location Continental Europe and the British Isles. Methods We focused on wintering birds and autumn/winter fruiting plants, and used major river basins as geographical units and Structural Equation Modelling as the principal analytical tool. Results The statistical influence of disperser species richness on fleshy‐fruited plant species richness is roughly double that of the reverse. Broad‐scale variation in frugivore richness is more dependent on environmental factors than on fruited plant richness. However, the influence of disperser richness on plant richness is four times higher than the influence of environmental factors. Environmental influences on both birds and plants are greater than purely spatial influences. Main conclusions Our results are interpreted as indicating that biotic dispersal of fruits strongly affects broad‐scale geographical trends of fleshy‐fruited plant species richness, whereas richness of fruited plants moderately affects frugivore richness.  相似文献   

16.
外来物种入侵严重威胁着乡土植物多样性并削弱了生态系统服务功能。本文基于滇西北怒江河谷植被调查的样方数据, 从群落水平研究了乡土和入侵植物多样性的空间分布格局, 以及地形、气候、人类干扰等因子对两种格局的影响。本研究共记录到外来入侵植物26种, 隶属于13科21属; 乡土植物1,145种, 分属于158科628属。沿着怒江河谷, 入侵植物物种丰富度随纬度与海拔的增加而减少; 乡土物种丰富度则随纬度增加而增加, 并在海拔梯度上呈单峰格局。运用广义线性模型分析公路边缘效应(反映生境干扰)、气候、地形和土壤等环境因素对物种丰富度分布格局的影响。等级方差分离的结果显示, 公路两侧的生境干扰对入侵种和乡土种的丰富度格局均具有首要影响。在自然环境因子中, 降水量是入侵植物丰富度的主要限制因子, 而乡土物种丰富度则主要受到地形因子尤其是坡向的影响。结构方程模型的分析结果也表明, 乡土植物和入侵植物丰富度之间的负相关关系反映了二者对环境响应的差异。本文结果支持物种入侵的资源可利用性限制假说, 并强调了人类活动对生物多样性的负面影响; 乡土植物或已较好地适应了干旱河谷气候, 但并没有显示出对外来物种入侵的抵抗作用。  相似文献   

17.
18.
This study describes the pattern of invertebrate species richness in a river reach with large differences in habitat complexity at two, hierarchically nested, spatial scales. The aim was to determine whether the mass effect was likely to be increasing invertebrate species richness in epilithic microhabitats in this river. The mass effect is the process by which the species richness of a patch is increased when it acts as a ‘sink’ for species generated by ‘source’ patches. Microhabitat patch types in Mountain River, Tasmania, were distinguished on the basis of physical structure and orientation on the river bed. They were nested within two types of riffle with contrasting structural complexity: bedrock and boulder-cobble riffles. It was hypothesized that microhabitats with high species richness would act as source patches, contributing species to other microhabitats (sinks) and thereby increasing their species richness. Microhabitat sampling was carried out in four consecutive seasons and rarefaction was used to estimate riffle-scale species richness. Analysis of variance ( ANOVA ) was used to compare the identical microhabitats present in the contrasting riffle types, to detect evidence of the mass effect in either riffle type. The more structurally complex boulder-cobble riffles had higher species richness than did bedrock riffles. Amongst the microhabitats, the spaces beneath the cobbles had the most species. Microhabitats accounted for a higher percentage of the variation in species richness than did differences between riffles of the same type. No evidence was found for the operation of the mass effect in either riffle type. The majority of species found only in boulder-cobble riffles were unique to the beneath-cobble microhabitat and appeared to be unable to colonize other microhabitats, even as transients. In Mountain River, small-scale habitat characteristics appeared to be more important than larger-scale effects in determining microhabitat species richness.  相似文献   

19.
One hypothesis for the latitudinal gradient in species richness observed in most animal taxa is that the richness of a region is determined by its geographic area. However, the relationship between geographic area and species richness across regions is generally weak. It has been suggested that this is because species from the tropics spill out of this region of high richness, artificially inflating the richness of other regions. This generates the interesting prediction that the area and richness of extra-tropical regions should be more strongly correlated if tropical species are excluded. We test this prediction using the avifauna of the New World. We find that there is indeed a relationship between the land area and species richness of a region once tropical species are excluded. This relationship is independent of the latitude and productivity of regions. Both latitude and productivity can explain variance in richness unexplained by land area. There is no relationship between land area and species richness if tropical species are not excluded from the analysis, suggesting that tropical species do indeed mask the relationship between richness and area. We conclude that our results generally support the geographic area hypothesis, although tests of its other predictions and on other land masses are required.  相似文献   

20.
The idea that the number of species within an area is limited by a specific capacity of that area to host species is old yet controversial. Here, we show that the concept of carrying capacity for species richness can be as useful as the analogous concept in population biology. Many lines of empirical evidence indicate the existence of limits of species richness, at least at large spatial and phylogenetic scales. However, available evidence does not support the idea of diversity limits based on limited niche space; instead, carrying capacity should be understood as a stable equilibrium of biodiversity dynamics driven by diversity‐dependent processes of extinction, speciation and/or colonization. We argue that such stable equilibria exist even if not all resources are used and if increasing species richness increases the ability of a community to use resources. Evaluating the various theoretical approaches to modelling diversity dynamics, we conclude that a fruitful approach for macroecology and biodiversity science is to develop theory that assumes that the key mechanism leading to stable diversity equilibria is the negative diversity dependence of per‐species extinction rates, driven by the fact that population sizes of species must decrease with an increasing number of species owing to limited energy availability. The recently proposed equilibrium theory of biodiversity dynamics is an example of such a theory, which predicts that equilibrium species richness (i.e., carrying capacity) is determined by the interplay of the total amount of available resources, the ability of communities to use those resources, environmental stability that affects extinction rates, and the factors that affect speciation and colonization rates. We argue that the diversity equilibria resulting from these biodiversity dynamics are first‐order drivers of large‐scale biodiversity patterns, such as the latitudinal diversity gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号