首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the activation of the Na+/H+ exchanger which leads to the intracellular alkalinization in cultured bovine aortic endothelial cells stimulated by extracellular ATP. The alkalinization induced by ATP was largely dependent on extracellular Ca2+ and the rate of alkalinization was decreased by about 60% in the absence of extracellular Ca2+. ATP caused a rapid and transient increase and a subsequent sustained increase of the intracellular Ca2+ concentration ([Ca2+]i) in the Ca2+ buffer, while only the rapid and transient increase of [Ca2+]i was observed in the absence of extracellular Ca2+. The Ca2+-depleted cells prepared by incubation in Ca2+-free buffer containing 0.1 mM EGTA showed only a slight increase of [Ca2+]i with no alkalinization on stimulation by ATP. The alkalinization was inhibited by 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), an inhibitor of protein kinase C, but not by another isoquinoline analogue (HA 1004), which has a less inhibitory effect on the kinase. Phorbol 12-myristate 13-acetate also induced the alkalinization by the activation of the Na+/H+ exchanger. Neither dibutyryl cyclic AMP nor dibutyryl cyclic GMP affected the alkalinization induced by ATP. Treatment of the cells by pertussis and cholera toxins had no effect on the alkalinization. The results suggest that the increase in [Ca2+]i is essential for the ATP-induced activation of the Na+/H+ exchanger in cultured bovine aortic endothelial cells and a protein kinase C-dependent pathway is involved in the activation.  相似文献   

2.
Extracellular purines can act at purinoceptors to influence metabolic processes. Nucleotide-metabolizing ectoenzymes may modulate such purinergic effects, and their occurrence in a tissue may suggest the presence of purinoceptors. Thus, following the identification of ecto-nucleoside triphosphate pyrophosphatase in cultured human articular chondrocytes, we have studied whether these cells express P2-type purinoceptors. Release of prostaglandin E (PGE) was monitored, since articular chondrocytes synthesize and secrete PGE, and activation of P2-purinoceptors frequently results in enhanced prostaglandin production. Extracellular ATP and ADP stimulated PGE production, whereas AMP and adenosine had only limited effects. ATP concentrations as low as 5 microM were effective, and maximal responses were achieved at 50-100 microM ATP. GTP, UTP and ITP also elicited responses, but tended to be less effective than ATP at equivalent concentrations. Of the analogues of ATP that were tested, only adenosine 5'-(beta,gamma-methylene)triphosphate stimulated PGE production. The response to extracellular ATP was virtually abolished by indomethacin. Treatment of the cells with the P1-purinoceptor antagonist, 8-phenyltheophylline, or with pertussis toxin reduced both basal and ATP-stimulated PGE production, but did not substantially decrease the ratio of ATP-stimulated to basal PGE production. These results indicate the presence of P2-purinoceptors in cultured human articular chondrocytes, and suggest that extracellular ATP may have physiological and pathological effects in human articular cartilage.  相似文献   

3.
Endothelial cells participate in extracellular ATP release elicited by mechanosensors. To characterize the dynamic interactions between mechanical and chemical factors that modulate ATP secretion by the endothelium, we assessed and compared the mechanisms participating in the spontaneous (basal) and mechanically stimulated secretion using primary cultures of rat mesentery endothelial cells. ATP/metabolites were determined in the cell media prior to (basal) and after cell media displacement or a picospritzer buffer puff used as mechanical stimuli. Mechanical stimulation increased extracellular ATP that peaked within 1 min, and decayed to basal values in 10 min. Interruption of the vesicular transport route consistently blocked the spontaneous ATP secretion. Cells maintained in media lacking external Ca2+ elicited a spontaneous rise of extracellular ATP and adenosine, but failed to elicit a further extracellular ATP secretion following mechanical stimulation. 2-APB, a TRPV agonist, increased the spontaneous ATP secretion, but reduced the mechanical stimulation-induced nucleotide release. Pannexin1 or connexin blockers and gadolinium, a Piezo1 blocker, reduced the mechanically induced ATP release without altering spontaneous nucleotide levels. Moreover, thrombin or related agonists increased extracellular ATP secretion elicited by mechanical stimulation, without modifying spontaneous release. In sum, present results allow inferring that the spontaneous, extracellular nucleotide secretion is essentially mediated by ATP containing vesicles, while the mechanically induced secretion occurs essentially by connexin or pannexin1 hemichannel ATP transport, a finding fully supported by results from Panx1?/? rodents. Only the latter component is modulated by thrombin and related receptor agonists, highlighting a novel endothelium-smooth muscle signaling role of this anticoagulant.  相似文献   

4.
ATP or adenosine (1 mM) added to extracellular buffer abolished both chloroquine- and monensin-dependent accumulation of [125I]iodoinsulin in isolated rat adipocytes. The effects of ATP were not secondary to its conversion to adenosine and were mimicked by beta, gamma-methyleneadenosine 5'-triphosphate. ATP, but not adenosine, partially inhibited the binding of insulin to the cellular receptor. Neither ATP nor adenosine had any significant effect on both internalization of cell-bound insulin and externalization of the internalized hormone. The degradation of cell-bound insulin was reduced to a considerable extent by both 0.1 mM chloroquine and 5 mM ATP, to a lesser degree by 1 mM ATP, and not significantly by 1 or 5 mM adenosine. Physiologically, (a) 1 mM ATP had a strong, while 1 mM adenosine had a mild inhibitory effect on the insulin-stimulated glucose transport without affecting its basal activity, (b) both ATP and adenosine moderately stimulated basal as well as insulin-stimulated glycogen synthase, and (c) ATP, but not adenosine, transiently stimulated basal cAMP phosphodiesterase without affecting the insulin-stimulated enzyme. Phosphodiesterase in cells that had been exposed to ATP for 30 min was refractory to ATP added afresh, but not to insulin. These data suggest that (a) extracellular ATP may block the degradative pathway of insulin processing, (b) adenosine might render the ordinarily irreversible intracellular traffic of insulin reversible or modulate a pathway which is yet to be identified, (c) the previously reported effect of ATP on glycogen synthase may not involve phosphorylation, (d) ATP stimulates cAMP phosphodiesterase by a mechanism which is distinct from that of insulin, and (e) the degradative pathway of insulin processing may not be involved in the physiologic actions of the hormone on glycogen synthase and phosphodiesterase.  相似文献   

5.
Endothelial intracellular calcium ([Ca(2+)](i)) plays an important role in the function of the juxtaglomerular vasculature. The present studies aimed to identify the existence and molecular elements of an endothelial calcium wave in cultured glomerular endothelial cells (GENC). GENCs on glass coverslips were loaded with Fluo-4/Fura red, and ratiometric [Ca(2+)](i) imaging was performed using fluorescence confocal microscopy. Mechanical stimulation of a single GENC caused a nine-fold increase in [Ca(2+)](i), which propagated from cell to cell throughout the monolayer (7.9 +/- 0.3 microm/s) in a regenerative manner (without decrement of amplitude, kinetics, and speed) over distances >400 microm. Inhibition of voltage-dependent calcium channels with nifedipine had no effect on the above parameters, but the removal of extracellular calcium reduced Delta[Ca(2+)](i) by 50%. Importantly, the gap junction uncoupler alpha-glycyrrhetinic acid or knockdown of connexin 40 (Cx40) by transfecting GENCs with Cx40 short interfering RNA (siRNA) almost completely eliminated Delta[Ca(2+)](i) and the calcium wave. Breakdown of extracellular ATP using a scavenger cocktail (apyrase and hexokinase) or nonselective inhibition of purinergic P2 receptors with suramin, had similar blocking effects. Scraping cells off along a line eliminated physical contact between cells but did not effect calcium wave propagation. Using an ATP biosensor technique, we detected a significant elevation in extracellular ATP (Delta = 76 +/- 2 microM) during calcium wave propagation, which was abolished by Cx40 siRNA treatment (Delta = 6 +/- 1 microM). These studies suggest that connexin 40 hemichannels and extracellular ATP are key molecular elements of the glomerular endothelial calcium wave, which may serve important juxtaglomerular functions.  相似文献   

6.
Xu G  Ye X  Qin L  Xu Y  Li Y  Li R  Wang P 《Biosensors & bioelectronics》2005,20(9):1757-1763
Cell-based biosensors incorporate cells as sensing elements that convert changes in immediate environment to signals for processing. This paper reports an investigation on light-addressable potentiometric sensor (LAPS) to be used as a possible cell-base biosensor that will enable us to monitor extracellular action potential of single living cell under stimulant. In order to modify chip surface and immobilize cells, we coat a layer of poly-L-ornithine and laminin on surface of LAPS chip on which rat cortical cells are grown well. When 10 microg/ml acetylcholine solution is administrated, the light pointer is focused on a single neuronal cell and the extracellular action potential of the targeted cell is recorded with cell-based biosensor based on LAPS. The results demonstrate that this kind of biosensor has potential to monitor electrophysiology of living cell non-invasive for a long term, and to evaluate drugs primarily.  相似文献   

7.
Modulation of Neuronal Signal Transduction Systems by Extracellular ATP   总被引:4,自引:4,他引:4  
The secretion of ATP by stimulated nerves is well documented. Following repetitive stimulation, extracellular ATP at the synapse can accumulate to levels estimated to be well over 100 microM. The present study examined the effects of extracellular ATP in the concentration range of 0.1-1.0 mM on second-messenger-generating systems in cultured neural cells of the clones NG108-15 and N1E-115. Cells in a medium mimicking the physiological extracellular environment were used to measure 45Ca2+ uptake, changes in free intracellular Ca2+ levels by the probes aequorin and Quin-2, de novo generation of cyclic GMP and cyclic AMP from intracellular GTP and ATP pools prelabeled with [3H]guanosine and [3H]adenine, respectively, and phosphoinositide metabolism in cells preloaded with [3H]inositol and assayed in the presence of LiCl. Extracellular ATP induced a concentration-dependent increase of 45Ca2+ uptake by intact cells, which was additive with the uptake induced by K+ depolarization. The increased uptake involved elevation of intracellular free Ca2+ ions, evidenced by measuring aequorin and Quin-2 signals. At the same concentration range (0.1-1.0 mM), extracellular ATP induced an increase in [3H]cyclic GMP formation, and a decrease in prostaglandin E1-stimulated [3H]cyclic AMP generation. In addition, extracellular ATP (1 mM) caused a large (15-fold) increase in [3H]inositol phosphates accumulation, and this effect was blocked by including La3+ ions in the assay medium. In parallel experiments, we found in NG108-15 cells surface protein phosphorylation activity that had an apparent Km for extracellular ATP at the same concentration required to produce half-maximal effects on Ca2+ uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Adenosine triphosphate (ATP), which plays a crucial role in both developing and mature cochleae, is released from greater epithelial ridge (GER) supporting cells of the rat cochlea, but the organelles in which ATP is stored have not yet been identified. Thus, we studied the organelles involved in ATP storage and suggest that lysosomes provide this function. GER supporting cells of newborn rats were isolated, purified, and cultured, and labeled vesicles within the supporting cells were identified via confocal microscopy and transmission electron microscopy (TEM). ATP release from GER supporting cells after glycyl-L -phenylalanine-β-naphthylamide (GPN) treatment was measured. The specifically labeled organelles observed by confocal microscopy and TEM were lysosomes, and GPN treatment enhanced ATP luminescence in the extracellular fluid of the supporting cells. The release of ATP from supporting cells was affected by changes in intra- and extracellular Ca2+ concentrations. In addition, changes in the intracellular Ca2+ caused by inhibiting the phospholipase signaling pathway affected the release of ATP from supporting cells. We demonstrated that ATP is stored in the lysosomes of GER supporting cells within newborn rat cochleae and that ATP release from GER supporting cells may be Ca2+-dependent.  相似文献   

9.
10.
The feasibility of buffer exchange in biosensor chip mass spectrometry, along with the construction of base sensor chips and use of alternative chip chemistries, is demonstrated in this work. Beta-2-microglobulin (beta2m) was used as an analyte and captured in the first flow cell (FC1) on the sensor chip surface by an immobilized anti-beta2m antibody. Low pH buffer was then used to elute the captured analyte from the flow cell and route it to a second flow cell (FC2) downstream that served as a cation exchanger that retains the analyte. Following additional washes in FC1, the analyte present in FC2 was either eluted with a higher pH buffer (to demonstrate the possibility of elution into a downstream trypsin flow cell), or it was subjected to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry analysis to verify its presence in FC2. In a separate experiment, a gold-sputtered glass slide (base chip) was activated through a formation of 11-mercaptoundecanoic acid self-assembled monolayer and via reaction with 1,1"-carbonyldiimidazole. The activated chip was placed manually into the biosensor and two surfaces (flow cells) were derivatized with antibodies to beta2m and cystatin C (cysC). To evaluate the chip performance, diluted human urine aliquot was injected over the flow cells. Following the surface plasmon resonance analysis, the chip was MALDI-TOF MS analyzed, yielding signals from beta2m and cysC from their respective flow cells. Artifacts arising from the surface chemistries were not observed in the analysis.  相似文献   

11.
A choline (CHO) biosensor based on the determination of H(2)O(2) generated at the electrode surface by the enzyme choline oxidase (CHOx) was developed. The biosensor consisted of CHOx retained onto a horseradish peroxidase (HRP) immobilized solid carbon paste electrode (sCPE). The HRPsCPE contained the molecule phenothiazine as redox mediator and CHOx was physically retained on the electrode surface using a dialysis membrane. Several parameters have been studied such as, mediator amount, influence of applied potential, etc. The CHO measurements were performed in 0.1 M phosphate buffer, pH 7.4. Amperometric detection of CHO was realized at an applied potential of 0.0 mV vs Ag/AgCl. The response is linear over the concentration range 5.0x10(-7)-7.0x10(-5) M, with a detection limit of 1.0x10(-7) M. This biosensor was used to detect choline released from phosphatidylcholine (PC) by phospholipase D (PLD) in isolated rat salivary gland cells stimulated by a purinergic agonist (ATP).  相似文献   

12.
Dental pulp cells release adenosine triphosphate (ATP) in response to intrapulpal pressure and the amount released depends on the magnitude of the pressure. ATP regulates the differentiation of stem cells into adipocytes and osteoblasts. However, it is unknown whether extracellular ATP influences the stemness and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHEDs). Therefore, this study investigated the effects of extracellular ATP at a low (0.1 μM) and high (10 μM) concentration on the stemness and osteogenic differentiation of SHEDs. Cells were cultured in either growth medium or osteogenic medium with or without 0.1–10 μM ATP. In growth medium, both concentrations of ATP increased the mRNA expression of pluripotent and osteogenic markers. In contrast, in osteogenic medium, 0.1 μM ATP enhanced in vitro mineralization, whereas 10 μM ATP inhibited this process. In addition, 10 μM ATP stimulated the mRNA expression and activity of ectonucleotide pyrophosphatase/phosphodiesterase (ENPP), an enzyme that regulates the phosphate/pyrophosphate ratio. Thus, depending on the growth condition and its concentration, ATP stimulated stemness and in vitro mineralization or inhibited mineralization. In growth medium, both ATP concentrations stimulated pluripotent and osteogenic marker gene expression. However, in osteogenic medium, a biphasic effect was found on in vitro mineralization; the low concentration stimulated, whereas the high concentration inhibited, mineralization. We propose that ATP released due to mechanical stress modulates the stemness and differentiation of SHEDs. J. Cell. Biochem. 119: 488–498, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

13.
The aim of the present study was to investigate the relationship between agonist-induced changes in intracellular free Ca2+ ([Ca2+]i) and the refilling of intracellular Ca2+ stores in Fura 2-loaded thyroid FRTL-5 cells. Stimulating the cells with ATP induced a dose-dependent increase in ([Ca2+]i). The ATP-induced increase in [Ca2+]i was dependent on both release of sequestered intracellular Ca2+ as well as influx of extracellular Ca2+. Addition of Ni2+ prior to ATP blunted the component of the ATP-induced increase in [Ca2+]i dependent on influx of Ca2+. In cells stimulated with ATP in a Ca(2+)-free buffer, readdition of Ca2+ induced a rapid increase in [Ca2+]i; this increase was inhibited by Ni2+. In addition, the ATP-induced influx of 45Ca2+ was blocked by Ni2+. Stimulating the cells with noradrenaline (NA) also induced release of sequestered Ca2+ and an influx of extracellular Ca2+. When cells were stimulated first with NA, a subsequent addition of ATP induced a blunted increase in [Ca2+]i. If the action of NA was terminated by addition of prazosin, and ATP was then added, the increase in [Ca2+]i was restored to control levels. Addition of Ni2+ prior to prazosin inhibited the restoration of the ATP response. In the presence of extracellular Mn2+, ATP stimulated quenching of Fura 2 fluorescence. The quenching was probably due to influx of Mn2+, as it was blocked by Ni2+. The results thus suggested that stimulating release of sequestered Ca2+ in FRTL-5 cells was followed by influx of extracellular Ca2+ and rapid refilling of intracellular Ca2+ stores.  相似文献   

14.
We have recently found a novel 40-kDa heat-shock protein (hsp 40) in mammalian and avian cells and reported that the N-terminal amino acid sequence of mammalian hsp 40 has homology with the bacterial DnaJ heat-shock protein. Also, hsp 40 has been shown to be translocated from the cytoplasm into the nuclei/nucleoli by heat shock and colocalized with hsc 70 (p73) in the nucleoli of exactly the same cells. We here investigated the effect of ATP on the release of hsp 70 (both constitutive p73 and inducible p72) and hsp 40 from the nuclei/nucleoli of heat-shocked HeLa cells which were permeabilized with Nonidet-P40 using immunoflourescence and immunoblotting. Hsp 70 in the nucleoli was released by the addition of ATP but not by ADP, GTP, nonhydrolyzable ATP, nor high salt buffer. In contrast, hsp 40 was not released from the nucleoli with any of these treatments or any combination of these treatments. Thus, hsp 40 might dissociate spontaneously from the nucleoli after hsp 70 has been released in an ATP-dependent manner. Using cell fractionation methods, we showed that while the majority of hsp 40 is localized in the cytoplasm, a small portion of it is located in the microsome fraction in non-heat-shocked control cells and in cells which recovered from heat shock.  相似文献   

15.
Inter- and extracellular-mediated changes in intracellular Ca2+ concentration ([Ca2+]i) can ensure coordinated tissue function in the lung. Cultured rat alveolar epithelial cells (AECs) have been shown to respond to secretagogues with increases in [Ca2+]i and have been shown to be gap junctionally coupled. However, communication of [Ca2+]i changes in AECs is not well defined. Monolayers of AECs were mechanically perturbed and monitored for [Ca2+]i changes. Perturbation of AECs was administered by a glass probe to either mechanically stimulate or mechanically wound individual cells. Both approaches induced a change in [Ca2+]i in the stimulated cell that was propagated to neighboring cells (Ca2+ waves). A connexin mimetic peptide shown to uncouple gap junctions eliminated Ca2+ waves in mechanically stimulated cells but had no effect on mechanically wounded cells. In contrast, apyrase, an enzyme that effectively removes ATP from the extracellular milieu, had no effect on mechanically stimulated cells but severely restricted mechanically wounded Ca2+ wave propagation. We conclude that AECs have the ability to communicate coordinated Ca2+ changes using both gap junctions and extracellular ATP.  相似文献   

16.
We recently reported that extracellular ATP was mitogenic for Swiss 3T3, 3T6, and A431 cells (Huang et al.: Proc. Natl. Acad. Sci. USA, 86:7904-7908, 1989). Here we examined the possible involvement of activation of the protein kinase C (PKC) signal transduction pathway in the mechanism of action of extracellular ATP. A potent synergistic stimulation of DNA synthesis in quiescent cultures of 3T3 and 3T6 cells was observed when ATP was presented in combination with growth factors that activate PKC, such as bombesin, vasopressin, or tumor-promoting phorbol esters. This finding suggests that ATP and these mitogens do not act through a common mechanism. In contrast, ATP was unable to show synergism with phorbol esters in A431 cells. We discovered striking differences when we examined the kinetics of formation of diacylglycerol (DAG) stimulated by ATP among these cell lines. Thus, ATP stimulated a sustained biphasic increase of DAG in A431 cells, but only a rapid transient increase of DAG formation was observed in 3T3 and 3T6 cells. The breakdown of phosphatidylcholine was stimulated by ATP in A431 cells; however, a significantly reduced effect was displayed in 3T6 cells. Furthermore, we found that the diacylglycerol-kinase inhibitor, 1-monooleoylglycerol, greatly potentiated ATP-stimulated DNA synthesis in A431 cells. Finally, down-regulation of PKC by long-term exposure to phorbol dibutyrate (PDBu) prevented stimulation of DNA synthesis induced by bombesin, vasopressin, or phorbol esters in 3T3 or 3T6 cells, while it had no such effect on ATP-stimulated mitogenesis in the presence of insulin or epidermal growth factor. On the other hand, PDBu-mediated down-regulation of PKC partially inhibited [3H [thymidine incorporation stimulated by ATP in A431 cells. Taken together, we conclude that a protein kinase C-dependent pathway is partially involved in ATP-stimulated DNA synthesis in A431 cells, but a protein kinase C-independent pathway exists in 3T3 and 3T6 cells. Pertussis toxin (PTX) inhibited the sustained phase of DAG formation and the breakdown of phosphatidylcholine stimulated by ATP in A431 cells. This suggests involvement of a PTX-sensitive G protein.  相似文献   

17.
Annulus cells release ATP in response to vibratory loading in vitro   总被引:4,自引:0,他引:4  
Mechanical forces regulate the developmental path and phenotype of a variety of tissues and cultured cells. Vibratory loading as a mechanical stimulus occurs in connective tissues due to energy returned from ground reaction forces, as well as a mechanical input from use of motorized tools and vehicles. Structures in the spine may be particularly at risk when exposed to destructive vibratory stimuli. Cells from many tissues respond to mechanical stimuli, such as fluid flow, by increasing intracellular calcium concentration ([Ca(2+)](ic)) and releasing adenosine 5'-triphosphate (ATP), extracellularly, as a mediator to activate signaling pathways. Therefore, we examined whether ATP is released from rabbit (rAN) and human (hAN) intervertebral disc annulus cells in response to vibratory loading. ATP release from annulus cells by vibratory stimulation as well as in control cells was quantitated using a firefly luciferin-luciferase assay. Cultured hAN and rAN cells had a basal level of extracellular ATP ([ATP](ec)) in the range of 1-1.5 nM. Vibratory loading of hAN cells stimulated ATP release, reaching a net maximum [ATP] within 10 min of continuous vibration, and shortly thereafter, [ATP] declined and returned to below baseline level. [ATP] in the supernatant fluid of hAN cells was significantly reduced compared to the control level when the cells received vibration for longer than 15 min. In rAN cells, [ATP] was increased in response to vibratory loading, attaining a level significantly greater than that of the control after 30 min of continuous vibration. Results of the current study show that resting annulus cells secrete ATP and maintain a basal [ATP](ec). Annulus cells may use this nucleotide as a signaling messenger in an autocrine/paracrine fashion in response to vibratory loading. Rapid degradation of ATP to ADP may alternatively modulate cellular responses. It is hypothesized that exposure to repetitive, complex vibration regimens may activate signaling pathways that regulate matrix destruction in the disc. As in tendon cells, ATP may block subsequent responses to load and modulate the vibration response. Rabbit annulus cells were used as a readily obtainable source of cells in development of an animal model for testing effects of vibration on the disc. Human cells obtained from discarded surgical specimens were used to correlate responses of animal to human cells.  相似文献   

18.
Interstitial cystitis (IC) is an idiopathic hypersensory condition of the bladder associated with increased urinary ATP and increased stretch-activated ATP release by bladder urothelial cells (BUCs), suggesting augmented purinergic signaling in the bladder. To test this theory further, monolayers of cultured BUCs derived from bladder biopsies obtained from patients with IC and control patients were stimulated with 10-30 microM ATP with subsequent measurement of extracellular ATP levels using the luciferin-luciferase assay. Stimulation with 30 microM ATP resulted in IC supernatant containing several-fold more ATP than control BUCs initially, followed by a slower decrease in ATP levels. This difference in ATP levels was not completely due to activity of cellular ecto-ATPase, because blockade with ARL67156 did not normalize the difference. Exposure to hypotonic solutions resulted in similar extracellular ATP concentrations in IC and control BUCs, but there was a slower decrease in ATP levels in IC supernatants. Treatment of IC BUCs with 10-40 microM suramin, a nonspecific P2 receptor antagonist, significantly attenuated the IC BUC response to extracellular ATP, restoring IC BUCs to a control phenotype. Pretreatment of IC BUCs with 20 ng/ml of heparin-binding EGF-like growth factor (HB-EGF), which previously has been shown to be decreased in IC urine specimens, also restored IC BUCs to a control phenotype with respect to response to ATP stimulation. In conclusion, IC BUCs have augmented extracellular ATP signaling that could be blocked by suramin and HB-EGF. These findings suggest the possible development of future novel therapeutic techniques.  相似文献   

19.
An electrochemical biosensor, using a disposable electrochemical printed chip aggregation by the bisbenzimide dye (Hoechst 33258), was used for detecting the expression of β-actin and RAGE genes. Using linear sweep voltammetry, the expression of these two genes in HeLa and HepG2 cell lines was determined based on anodic peak current, and the results were compared with conventional agarose gel electrophoresis. Total cellular RNA was reverse transcribed to complementary DNA, and amplification by PCR was carried out. Subsequently, the PCR products were subjected to detection by either electrophoresis or electrochemical biosensor. Precision of the electrochemical biosensor technique was acceptable (β-actin: CV = 1.875% for 10(4) copies and 4.684% for 10(9) copies; RAGE: CV = 2.253% for 10(9) copies, and 3.743% for 10 copies). In the electrochemical biosensor technique, the PCR products were measured in the same run with various concentrations of standards, and copy numbers of β-actin gene were interpolated from a standard curve. Copy numbers of the β-actin gene were then compared between the two techniques. At the 95% confidence limit, the two methods had no significant differences and were significantly correlated (y = -40383.0623 + 1.0233x; P > 0.10). The electrochemical biosensor method was more sensitive than the conventional electrophoresis method because it could detect as low as 10 copies of the RAGE gene. The conventional electrophoresis method detected the RAGE gene at concentrations of at least 10(4) copies, and the linearity for semi-quantitative measurement was in the range of 10(6)-10(9) copies. When the electrochemical biosensor was applied to detect the RAGE gene expression in both cell types, we found that HeLa cells expressed the RAGE gene about 2-fold higher than in HepG2 cells (relative value of 0.000905 vs 0.0004670). Therefore, this study suggests the potential modification of the electrochemical biosensor with the use of bisbenzimide dye (Hoechst 33258) for detecting gene expression.  相似文献   

20.
We have recently reported that extracellular ATP induces a transient rise in cytosolic free Ca2+ [( Ca2+]i) in individual human epidermoid carcinoma A431 cells (Gonzalez et al: Journal of Cellular Physiology 135:269-276, 1988). We have now studied nucleotide specificity and desensitization for several early responses. Extracellular ATP (5-100 microM) caused the rapid formation of inositol trisphosphate and later its metabolites, inositol bisphosphate and inositol monophosphate. ATP also induced the efflux of 45Ca2+ from pre-loaded cells. In addition, an increase in the rate of influx of 45Ca2+ stimulated by extracellular ATP was detected. Based on measurements of 45Ca2+ efflux and influx, desensitization studies, and chlortetracycline fluorimetry, we conclude that ATP mobilizes Ca2+ from internal stores and also stimulates entry across the plasma membrane. These effects were also displayed by UTP and to a lesser extent by ITP, while other nucleoside triphosphates as well as ADP, AMP, and adenosine, were inactive. Furthermore, desensitization of the response to ATP and UTP was seen after prolonged exposure to either nucleotide. This was specific for the nucleotide receptor since a response to bradykinin was not affected by the ATP pretreatment, although pretreatment with phorbol ester inhibited responses to both the nucleotides and bradykinin. Quantitative data on rate of recovery from the desensitized state and the response of desensitized cells to greatly elevated levels of ATP are presented. Extracellular ATP stimulated another early change previously reported for epidermal growth factor, namely, the phosphorylation of an 81-kDa cytoskeletal protein. The stimulation of these events involves an ATP receptor whose properties differ from other ATP receptors that have been described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号