首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Activation mechanism of Gi and Go by reactive oxygen species.   总被引:2,自引:0,他引:2  
Reactive oxygen species are proposed to work as intracellular mediators. One of their target proteins is the alpha subunit of heterotrimeric GTP-binding proteins (Galpha(i) and Galpha(o)), leading to activation. H(2)O(2) is one of the reactive oxygen species and activates purified Galpha(i2). However, the activation requires the presence of Fe(2+), suggesting that H(2)O(2) is converted to more reactive species such as c*OH. The analysis with mass spectrometry shows that seven cysteine residues (Cys(66), Cys(112), Cys(140), Cys(255), Cys(287), Cys(326), and Cys(352)) of Galpha(i2) are modified by the treatment with *OH. Among these cysteine residues, Cys(66), Cys(112), Cys(140), Cys(255), and Cys(352) are not involved in *OH-induced activation of Galpha(i2). Although the modification of Cys(287) but not Cys(326) is required for subunit dissociation, the modification of both Cys(287) and Cys(326) is necessary for the activation of Galpha(i2) as determined by pertussis toxin-catalyzed ADP-ribosylation, conformation-dependent change of trypsin digestion pattern or guanosine 5'-3-O-(thio)triphosphate binding. Wild type Galpha(i2) but not Cys(287)- or Cys(326)-substituted mutants are activated by UV light, singlet oxygen, superoxide anion, and nitric oxide, indicating that these oxidative stresses activate Galpha(i2) by the mechanism similar to *OH-induced activation. Because Cys(287) exists only in G(i) family, this study explains the selective activation of G(i)/G(o) by oxidative stresses.  相似文献   

2.
3.
Mutagenicity induced by tert-butyl hydroperoxide (BHP) or cumene hydroperoxide (CHP) in Salmonella typhimurium TA102 was effectively reduced by flavonols with 3',4'-hydroxyl groups such as fisetin, quercetin, rutin, isoquercitrin, hyperoxide, myricetin, myricitrin, robinetin, and to a lesser extent also by morin and kaempferol (ID50=0.25-1.05 micromol per plate). With the exception of isorhamnetin, rhamnetin, morin, and kaempferol, closely similar results were obtained with both peroxides. Hydrogenation of the double bond between carbons 2 and 3 (dihydroquercetin, dihydrorobinetin) as well as the additional elimination of the carbonyl function at carbon 4 (catechins) resulted in a loss of antimutagenicity with the notable exception of catechin itself. Again, all flavones and flavanones tested were inactive except luteolin, luteolin-7-glucoside, diosmetin, and naringenin. The typical radical scavenger butylated hydroxytoluene also showed strong antimutagenicity against CHP (ID50=5.4 micromol per plate) and BHP (ID50=11.4 micromol per plate). Other lipophilic scavengers such as alpha-tocopherol and N,N'-diphenyl-1,4-phenylenediamine exerted only moderate effects, the hydrophilic scavenger trolox was inactive. The metal chelating agent 1,10-phenanthroline strongly reduced mutagenicities induced by CHP and BHP (ID50=2.75 and 2.5 micromol per plate) at low concentrations but induced mutagenic activities at higher concentrations. The iron chelator deferoxamine mesylate, however, was less effective in both respects. The copper chelator neocuproine effectively inhibited mutagenicity induced by BHP (ID50=39.7 micromol per plate) and CHP (ID50=25.9 micrommol per plate), the iron chelator 2,2'-dipyridyl was less potent (ID50=6.25 mmol per plate against BHP, 0.42 mmol per plate against CHP). In the absence of BHP and CHP, yet not in the presence of these hydroperoxides, quercetin, rutin, catechin, epicatechin, and naringenin induced strong mutagenic activities in S. typhimurium TA102. Radical scavenging activities of flavonoids against peroxyl radicals generated from 2,2'-azo-bis(2-amidinopropane)dihydrochloride (AAPH) as measured in the haemolysis test, confirmed that in general flavonoids with di- or trihydroxy hydroxyl functions especially in positions 3', 4', 5' are effective radical scavengers. In this test system, however, luteolin was the most potent compound, followed by epicatechin and eriodictyol. Again, isorhamnetin was a potent inhibitor of lysis of red blood cells despite the presence of a 3'-OCH3 function. Radical scavenging activities of flavonoids against the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) in principle obeyed the rules outlined above. Flavanones, tamarixetin, and rhamnetin, however, were only weakly active against DPPH, while isorhamnetin was again a potent compound. From these results we conclude that in the Salmonella/reversion assay with strain TA102 antimutagenic activities of flavonoids against the peroxide mutagens CHP and BHP are mainly caused by radical scavenging effects.  相似文献   

4.
The mechanism of the activation of prostaglandin endoperoxide synthetase by hemeproteins was investigated using the enzyme purified from bovine seminal vesicle microsomes. At pH 8, the maximal enzyme activities with methemoglobin (2 microM), indoleamine 2,3-dioxygenase (2 microM), and metmyoglobin (2 microM) were 70%, 42%, and 15% of that with 1 microM hematin. Apomyoglobin and apohemoglobin inhibited the enzyme activities caused by hemoproteins as well as that caused by hematin. The inhibition was removed by the addition of excess hematin. The dissociation of heme from hemoproteins was demonstrated by trapping the free heme with human albumin or to a DE-52 column. The dissociation of heme from methemoglobin was facilitated by increasing concentrations of arachidonic acid. The amount of heme dissociated from hemoproteins (methemoglobin, metmyoglobin, and indoleamine 2,3-dioxygenase) in the presence of arachidonic acid correlated with their stimulatory effects on the prostaglandin endoperoxide synthetase activity. Horseradish peroxidase and beef liver catalase, the hemes of which were not dissociated in the presence of arachidonic acid, were ineffective in activating prostaglandin endoperoxide synthetase. Spectrophotometric titration of prostaglandin endoperoxide synthetase with hematin demonstrated that the enzyme bound hematin at the ratio of 1 mol/mol with an association constant of 0.6 x 10(8) M-1. From these results, we conclude that hemoproteins themselves are ineffective in activating prostaglandin endoperoxide synthetase and free hematin dissociated from the hemoproteins by the interaction of arachidonic acid is the activating factor for the enzyme.  相似文献   

5.
6.
7.
8.
9.
10.
A radical species of monochlorodimedone has been characterized by its high reactivity with molecular O2. Horseradish peroxidase greatly accelerated O2 uptake by acidic solutions of this substrate; the enzymatic reaction required exogenous H2O2 only with freshly prepared substrate solutions, and the total substrate oxidized was equal to the sum of H2O2 added and O2 consumed. However, with excess Br- and horseradish peroxidase, or high Br- or Cl- and chloroperoxidase, a 1:1 stoichiometry between H2O2 and substrate was observed. In the absence of halide, the stoichiometry of the chloroperoxidase-catalyzed oxidation of monochlorodimedone changed to two molecules of the organic donor per H2O2. Moreover, in the absence of halide, at substrate:H2O2 ratios greater than 2.0, chloroperoxidase catalyzed significant O2 uptake; this enzyme-dependent autoxidation of monochlorodimedone also occurred in the presence of Cl- or Br-, when H2O2 was limiting. These data, and recent evidence from this laboratory for free hypohalous acid as the first product of chloroperoxidase-catalyzed halide oxidation [B. W. Griffin (1983) Biochem. Biophys. Res. Commun. 116, 873-879], strongly support a mixed enzymatic/nonenzymatic radical chain process as the mechanism for halogenation of monochlorodimedone by chloroperoxidase. Both horseradish peroxidase and chloroperoxidase can catalyze either bromination or oxidation of this substrate, depending on the experimental conditions. Implications of these results for the mechanism of HOCl formation catalyzed by chloroperoxidase are considered.  相似文献   

11.
The effects of sesamol, a phenolic compound responsible for the high resistance of sesame oil to oxidative deterioration as compared with other vegetable oils, have been investigated after mutagen treatment in various strains of Salmonella typhimurium. Sesamol was shown to exhibit strong antimutagenic effects in the Ames tester strains TA100 and TA102. The TA102 strain has been shown to be highly sensitive to reactive oxygen species. Mutagenicity was induced by the generation of oxygen radicals by tert-butylhydroperoxide (t-BOOH) or hydrogen peroxide (H(2)O(2)); therefore, the antimutagenic property of sesamol was attributed to its antioxidant properties. The superoxide and hydroxyl radical scavenging capabilities have further been elucidated using in vitro test systems. It was further shown to have a desmutagenic effect on t-BOOH-induced mutagenesis in TA102 strain. Sesamol also inhibited the mutagenicity of sodium azide (Na-azide) in TA100 tester strain while it had no effect on nitroquinoline-N-oxide (NQNO)-induced mutagenesis in TA98 strain of Salmonella typhimurium. Since active oxygen species are involved in multiple stage processes of carcinogenicity, this compound may also exhibit anticarcinogenic properties.  相似文献   

12.
Albuminuria is not only an important marker of chronic kidney disease but also a crucial contributor to tubulointerstitial inflammation (TIF). In this study, we determined whether activation of the Nlrp3 inflammasome is involved in albuminuria induced-TIF and the underlying mechanisms of inflammasome activation by mitochondrial reactive oxygen species (mROS). We established an albumin-overload induced rat nephropathy model characterised by albuminuria, renal infiltration of inflammatory cells, tubular dilation and atrophy. The renal expression levels of the Nlrp3 inflammasome, IL-1β and IL-18 were significantly increased in this animal model. In vitro, albumin time- and dose-dependently increased the expression levels of the Nlrp3 inflammasome, IL-1β and IL18. Moreover, the silencing of the Nlrp3 gene or the use of the caspase-1 inhibitor Z-VAD-fmk significantly attenuated the albumin-induced increase in IL-1β and IL-18 expression in HK2 cells. In addition, mROS generation was elevated by albumin stimulation, whereas the ROS scavenger N-acetyl-l-cysteine (NAC) inhibited Nlrp3 expression and the release of IL-1β and IL-18. In kidney biopsy specimens obtained from patients with IgA nephropathy, Nlrp3 expression was localised to the proximal tubular epithelial cells, and this result is closely correlated with the extent of proteinuria and TIF. In summary, this study demonstrates that albuminuria may serve as an endogenous danger-associated molecular pattern (DAMP) that stimulates TIF via the mROS-mediated activation of the cytoplasmic Nlrp3 inflammasome.  相似文献   

13.
Polar solvent extracts of tobacco snuff under acidic conditions were mutagenic in Salmonella typhimurium. Using the Griess reagent test, nitrite ranging from approximately 1.8 to 5.4 mg/g of snuff was found in the polar fraction of extracts. After acid treatment, nitroso compounds in the amount corresponding to the nitrite concentration were detected. The mutagenic potency of the acid-treated extracts was consistent with the content of nitroso compounds generated. Formation of nitroso compounds and the mutagenic activity under acidic conditions was inhibited by ascorbic acid. The results indicate that a nitrosation process was involved in snuff extracts during acid treatment. Studies related to the source of nitrite in tobacco snuff demonstrated that snuff contained bacteria which were able to reduce nitrate to nitrite and that the amount of nitrite in snuff extracts could be further increased by incubation of the extracts with the bacteria. Since snuff contains a considerable amount of nitrate, it seems that reduction of nitrate in snuff to nitrite by bacteria, and nitrosation of certain constituents in snuff by nitrite under acidic conditions to form mutagenic nitroso compounds are possible mechanisms responsible for the acid-mediated mutagenicity of snuff extracts.  相似文献   

14.
C Ferradini 《Biochimie》1986,68(6):779-785
Oxygen free radicals are often formed during photosensitization processes. Kinetic and thermodynamical characteristics are briefly described for OH and O2-. radicals.  相似文献   

15.
16.
17.
The mutagenicity of 4 azo dyes (FD&C Yellow No. 5, FD&C Yellow No. 6, FD&C Red No. 40 and amaranth) that are widely used to color food has been evaluated. 4 different methods were used: (1) the standard Ames plate-incorporation assay performed directly on the dyes in the absence of S9 and in the presence of rat- or hamster-liver S9; (2) application of the standard plate assay to ether extracts of aqueous solutions of the dyes; (3) a variant of the standard assay, using hamster liver S9, preincubation, flavin mononucleotide (FMN) and other modifications designed to facilitate azo reduction; and (4) reduction of the dyes with sodium dithionite, followed by ether extraction and the standard plate assay. Assays that include chemical reduction (methods 3 and 4) were included because azo compounds ingested orally are reduced in the intestine with the release of free aromatic amines. No mutagenic activity was seen for any of the azo dyes tested by using the standard Ames plate assay (method 1). Ether extracts of some samples of FD&C Yellow No. 6, FD&C Red No. 40 and amaranth were active (method 2), but only at high doses, generally 250 mg-equivalents or more per plate. These results indicate the presence of low levels of ether-extractable mutagenic impurities. The FMN preincubation assay (method 3) gave negative results for all dye samples tested. Most batches of FD&C Red No. 40 tested had mutagenic activity that was detectable when the ether extract of less than 1 mg of dithionite-reduced dye was plated in the presence of S9 (method 4). This finding implies that an impurity in these samples of FD&C Red No. 40 can be reduced to yield an ether-extractable mutagen. Dithionite-reduced samples of FD&C Yellow No. 6 and amaranth showed ether-extractable mutagenic activity only at much higher doses than those at which activity was seen with most dithionite-reduced samples of FD&C Red No. 40 (method 4). FD&C Yellow No. 5 showed no mutagenic activity with this method. Mutagenic activity was not detected when FD&C Red No. 40 was tested by using the azo reduction preincubation assay with FMN (method 3).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
19.
20.
Urocanase from Pseudomonas putida becomes inactive in growing and resting cells and, as shown previously, is activated by the direct absorption of ultraviolet light. In this study, we describe the activation of urocanase by energy transfer from triplet indole-3-aldehyde, generated in the peroxidase-catalyzed aerobic oxidation of indole-3-acetic acid. The activation was time-, temperature-, and pH-dependent. The involvement of reactive oxygen intermediates was excluded by the lack of effect of appropriate quenchers and traps. Triplet quenchers, in contrast, reduced the level of activation. Photoexcited rose bengal, a triplet species of a different nature and origin, was also effective in promoting activation. These results demonstrate a potential mechanism of urocanase regulation not dependent on an environmental source of light, but rather brought about by an enzymically generated excited species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号