首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
液质联用多反应监测法定量目标多肽或蛋白质   总被引:2,自引:0,他引:2  
为建立优化的血浆内源性多肽提取方法,并且构建目标多肽和蛋白质的质谱定量方 法,本研究考察了超滤法、有机溶剂沉淀法和固相萃取法对血浆内源性多肽的提取效果 ,并通过Tricine-SDS-PAGE对提取效果进行比较.通过液相色谱串联质谱多反应监测 (MRM)分析,建立了多肽标准品ESAT-6定量方法,并将ESAT-6定量建立的液相色谱和质谱条件应用于蛋白质的定量,对多肽和蛋白质MRM定量的标准曲线进行了考 察.Tricine-SDS-PAGE结果表明,乙腈沉淀法是最佳的血浆内源性多肽提取方法,低分子量的多肽可以得到很好的富集,且能有效地去除高分子蛋白质的污染.液相色谱串联 质谱MRM法检测血浆内提取的多肽,标准曲线的线性较好,相关系数为0.999.另外,采 用MRM法对胶内分离的蛋白质进行定量,标准曲线的线性相关系数为0.995.综上所述, 本研究构建了一种简单有效的血浆多肽提取方法,通过液质联用MRM法成功地实现了目标多肽和蛋白质定量测定.该定量方法可以推广应用于复杂样品中的多肽和蛋白质的定 量分析.  相似文献   

2.
In plants, 20 to 30% of photosynthetically fixed carbon is directed toward lignin and other phenylpropanoid compounds for which hydroxycinnamoyl-coenzyme A (CoA) esters are key intermediates. CoA thioesters, ubiquitous metabolites found in all living cells (often at trace levels), have traditionally been challenging to measure. Here we report a hydrophilic interaction liquid chromatography (HILIC) method, coupled with tandem mass spectrometry (MS/MS), that allows simultaneous sensitive quantification of previously undetectable hydroxycinnamoyl-CoA esters and an extended range of acyl-CoAs from plant tissues. This method provides rapid liquid chromatography (LC) analysis (10 min/sample) and the ability for qualitative assessment of acyl-CoAs by MS/MS precursor ion scanning.  相似文献   

3.
A liquid chromatography tandem mass spectrometry (LC-MS-MS) method for determination of the analgesic aminophenol ketobemidone in human plasma is presented. Two preparation methods for plasma samples containing ketobemidone were compared, liquid-liquid extraction (LLE) and solid-phase extraction (SPE). Both methods showed good precision (n=10), 1.7% and 2.9%, respectively (0.04 micro M) and 1.1% and 2.5%, respectively (0.14 micro M). The accuracy was 98% and 103%, respectively (0.04 micro M) and 105% and 99%, respectively (0.14 micro M). Ketobemidone could be quantified at 0.43 nM, with a relative standard deviation of 17.5% (n=19) using LLE and 18.6% (n=10) using SPE. This level was an order of magnitude lower than earlier reported quantification limits. Quantitative data from plasma samples analyzed with LC-MS-MS were in good agreement with those obtained by gas chromatography with chemical ionization mass spectrometry (GC-CI/MS). This indicates that LC-MS-MS is a good alternative method to GC-MS as it is more sensitive and time-consuming derivatization can be avoided.  相似文献   

4.
Two rapid methods for highly selective detection and quantification of the two major glycoalkaloids in potatoes, alpha-chaconine and alpha-solanine, were compared for robustness in high-throughput operations for over 1000 analytical runs using potato tuber samples from field trials. Glycoalkaloids were analyzed using liquid chromatography coupled to tandem mass spectrometry in multiple reaction monitoring mode. An electrospray interface was used in the detection of glycoalkaloids in positive ion mode. Classical reversed phase (RP) and hydrophilic interaction (HILIC) columns were investigated for chromatographic separation, ruggedness, recovery, precision, and accuracy. During the validation procedure both methods proved to be precise and accurate enough in relation to the high degree of endogenous biological variability found for field-grown potato tubers. However, the RP method was found to be more precise, more accurate, and, more importantly, more rugged than the HILIC method for maintaining the analytes' peak shape symmetry in high-throughput operation. When applied to the comparison of six classically bred potato cultivars to six genetically modified (GM) lines engineered to synthesize health beneficial inulins, the glycoalkaloid content in potato peels of all GM lines was found within the range of the six cultivars. We suggest complementing current unbiased metabolomic strategies by validating quantitative analytical methods for important target analytes such as the toxic glycoalkaloids in potato plants.  相似文献   

5.
Complex biological samples, such as urine, contain a very large number of endogenous metabolites reflecting the metabolic state of an organism. Metabolite patterns can provide a comprehensive signature of the physiological state of an organism as well as insights into specific biochemical processes. Although the metabolites excreted in urine are commonly highly polar, the samples are generally analyzed using reversed-phase liquid chromatography mass spectrometry (RP-LC/MS). In Part 1 of this work, a method for detecting highly polar metabolites by hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry (HILIC/ESI-MS) is described as a complement to RP-LC/ESI-MS. In addition, in an accompanying paper (Part 2), different multivariate approaches to extracting information from the resulting complex data are described to enable metabolic fingerprints to be obtained. The coverage of the method for the screening of as many metabolites as possible is highly improved by analyzing the urine samples using both a C(18) column and a ZIC-HILIC column. The latter was found to be a good alternative when analyzing highly polar compounds, e.g., hydroxyproline and creatinine, to columns typically used for reversed-phase liquid chromatography.  相似文献   

6.
The primary goal of metabolomic analysis is the unbiased relative quantification of every metabolite in a biological system. A number of different metabolite-profiling techniques must be combined to make this possible. Here we report the separation and analysis of highly polar compounds in a proof of concept study. Compounds were separated and analyzed using hydrophilic interaction liquid chromatography (HILIC) coupled to electrospray ionization (ESI) mass spectrometry. Two types of HILIC microbore columns (Polyhydroxyethyl A and TSK Gel Amide 80) were compared to normal phase silica HPLC columns. The best separations of standards mixtures and plant samples were achieved using the Amide 80 stationary phase. ESI enabled the detection of both positively and negatively charged metabolites, when coupled to a quadrupole ion trap mass spectrometer using continuous polarity switching. By stepwise mass spectrometric fragmentation of the most intense ions, unknown compounds could be identified and then included into a custom mass spectrometric library. This method was used to detect oligosaccharides, glycosides, amino sugars, amino acids, and sugar nucleotides in phloem exudates from petioles of fully expanded Cucurbita maxima leaves. Quantitative analysis was performed using external standards. The detection limit for stachyose was 0.5 ng per injection (Amide 80). The concentration of stachyose in investigated phloem samples was in the range of 1-7 mM depending on the plant.  相似文献   

7.
Glycosylation is a critical attribute for development and manufacturing of therapeutic monoclonal antibodies (mAbs) in the pharmaceutical industry. Conventional antibody glycan analysis is usually achieved by the 2-aminobenzamide (2-AB) hydrophilic interaction liquid chromatography (HILIC) method following the release of glycans. Although this method produces satisfactory results, it has limited use for screening a large number of samples because it requires expensive reagents and takes several hours or even days for the sample preparation. A simple and rapid glycan analysis method was not available. To overcome these constraints, we developed and compared 2 ultrafast methods for antibody glycan analysis (UMAG) that involve the rapid generation and purification of glycopeptides in either organic solvent or aqueous buffer followed by label-free quantification using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Both methods quickly yield N-glycan profiles of test antibodies similar to those obtained by the 2-AB HILIC-HPLC method. In addition, the UMAG method performed in aqueous buffer has a shorter assay time of less than 15 min, and enables high throughput analysis in 96-well PCR plates with minimal sample handling. This method, the fastest, and simplest as reported thus far, has been evaluated for glycoprofiling of mAbs expressed under various cell culture conditions, as well as for the evaluation of antibody culture clones and various production batches. Importantly the method sensitively captured changes in glycoprofiles detected by traditional 2-AB HILIC-HPLC or HILIC-UPLC. The simplicity, high speed, and low cost of this method may facilitate basic research and process development for novel mAbs and biosimilar products.  相似文献   

8.
A simple method for the direct quantification of dimethylsulfinopropionate (DMSP) using HPLC or UPLC coupled to UV and/or MS detection is introduced. The protocol is applied for the determination of DMSP from marine micro- and macroalgae. The method is based on the derivatisation of DMSP using 1-pyrenyldiazomethane followed by reversed phase HPLC or UPLC separation. The detection limit is 590 nM, corresponding to 1 ng DMSP per injection. Using a combination of UV and MS detection the calibration curves were linear in the range of 2.93 microM to 11.7 mM concentrations. We show that direct determination of DMSP is possible from macroalgal tissue and microalgal cultures if DMSP-lyase activity is suppressed during work-up.  相似文献   

9.
Simple, sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods have been developed and validated for quantification of paraquat (PQ) in plasma and urine. Plasma and urine sample preparation were carried out by one-step protein precipitation using cold acetonitrile (-20 to -10 °C). After centrifugation, an aliquot of 10 μL of supernatant was injected into a Kinetex? hydrophilic interaction chromatography (HILIC) column with a KrudKatcher? Ultra in-line filter. The chromatographic separation was achieved using the mobile phase mixture of 250 mM ammonium formate (with 0.8% aqueous formic acid) in water and acetonitrile at a flow rate of 0.3 mL/min. Detection was performed using an API2000 triple quadrupole tandem mass spectrometer in multiple reaction monitoring (MRM) mode via an electrospray ionization (ESI) source. The calibration curve was linear over the concentration range of 10-5000 ng/mL, with an LLOQ of 10 ng/mL. The inter- and intra-day precision (% R.S.D.) were <8.5% and 6.4% for plasma and urine, respectively with the accuracies (%) within the range of 95.1-102.8%. PQ in plasma and urine samples was stable when stored at -70 °C for three freeze-thaw cycles. The methods were successfully applied to determine PQ concentration in rat and human samples.  相似文献   

10.
Large-scale manufacturing of therapeutic cells requires bioreactor technologies with online feedback control enabled by monitoring of secreted biomolecular critical quality attributes (CQAs). Electrospray ionization mass spectrometry (ESI-MS) is a highly sensitive label-free method to detect and identify biomolecules, but requires extensive sample preparation before analysis, making online application of ESI-MS challenging. We present a microfabricated, monolithically integrated device capable of continuous sample collection, treatment, and direct infusion for ESI-MS detection of biomolecules in high-salt solutions. The dynamic mass spectrometry probe (DMSP) uses a microfluidic mass exchanger to rapidly condition samples for online MS analysis by removing interfering salts, while concurrently introducing MS signal enhancers to the sample for sensitive biomolecular detection. Exploiting this active conditioning capability increases MS signal intensity and signal-to-noise ratio. As a result, sensitivity for low-concentration biomolecules is significantly improved, and multiple proteins can be detected from chemically complex samples. Thus, the DMSP has significant potential to serve as an enabling portion of a novel analytical tool for discovery and monitoring of CQAs relevant to therapeutic cell manufacturing.  相似文献   

11.
Enterolactone and enterodiol are phytoestrogens with structural similarity to endogenous estrogens. Because of their biological activities, they may affect the development of several diseases. To quantify enterodiol and enterolactone in plasma, we developed and validated a liquid chromatography-tandem mass spectrometry method with electrospray ionization using 13C3 labeled isotopes. The method consists of a simple enzymatic hydrolysis and ether extraction followed by a rapid LC separation (run-time of 11 min). Detection limits as low as 0.15 nM for enterodiol and 0.55 nM for enterolactone were achieved. The within-run R.S.D. ranges from 3 to 6% and the between-run R.S.D. ranges from 10 to 14% for both enterolignans. This method allows simple, rapid, and sensitive quantification, and is suitable for measuring large numbers of samples.  相似文献   

12.
A high throughput off-line microElution 96-well solid phase extraction (SPE) followed by liquid chromatography with tandem mass spectrometry (LC/MS/MS) quantification for the determination of N-acetyl retigabine in dog plasma has been developed and validated. The method involves the use of microElution 96-well SPE for the simultaneous extraction of N-acetyl retigabine and rapid removal of its N-glucuronide metabolite that has shown to be problematic due to its instability using other clean-up methods. The microElution SPE technology eliminates the need for post-extraction solvent evaporation and greatly reduces sample preparation time consequently improving assay efficiency.  相似文献   

13.
A simple, rapid and low cost sample preparation method was developed for quantification of docetaxel in mouse plasma by high-performance liquid chromatography/tandem mass spectrometry with paclitaxel as the internal standard. A small volume of plasma (40 microl) and one-step protein precipitation using methanol and acetonitrile (1:1 (v/v)) were used for sample preparation. The calibration curve for docetaxel in mouse plasma was linear over the range 25-2500 nM. The detection limit was 8 nM. The lower limit of quantitation is 25 nM. The intra- and inter-day precisions (CV) of analysis were 9.5 and 9.7% for the low quality control (LQC), 5.5 and 4.9% for the medium quality control (MQC) and 3.9 and 6.3% for the high quality control (HQC), respectively. The accuracy was 102.5% for LQC, 97.9% for MQC and 108.8% for HQC. This assay has now been applied to evaluation of mouse pharmacogenetics and other clinical pharmacology applications.  相似文献   

14.
A rapid method for the quantification of amiodarone and desethylamiodarone in animal plasma using high-performance liquid chromatography combined with UV detection (HPLC-UV) is presented. The sample preparation includes a simple deproteinisation step with acetonitrile. In addition, a sensitive method for the quantification of amiodarone and desethylamiodarone in horse plasma and urine using high-performance liquid chromatography combined with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) is described. The sample preparation includes a solid-phase extraction (SPE) with a SCX column. Tamoxifen is used as an internal standard for both chromatographic methods. Chromatographic separation is achieved on an ODS Hypersil column using isocratic elution with 0.01% diethylamine and acetonitrile as mobile phase for the HPLC-UV method and with 0.1% formic acid and acetonitrile as mobile phase for the LC-MS/MS method. For the HPLC-UV method, good linearity was observed in the range 0-5 microg ml(-1), and in the range 0-1 microg ml(-1) for the LC-MS/MS method. The limit of quantification (LOQ) was set at 50 and 5 ng ml(-1) for the HPLC-UV method and the LC-MS/MS method, respectively. For the UV method, the limit of detection (LOD) was 15 and 10 ng ml(-1) for amiodarone and desethylamiodarone, respectively. The LODs of the LC-MS/MS method in plasma were much lower, i.e. 0.10 and 0.04 ng ml(-1) for amiodarone and desethylamiodarone, respectively. The LODs obtained for the urine samples were 0.16 and 0.09 ng ml(-1) for amiodarone and desethylamiodarone, respectively. The methods were shown to be of use in horses. The rapid HPLC-UV method was used for therapeutic drug monitoring after amiodarone treatment, while the LC-MS/MS method showed its applicability for single dose pharmacokinetic studies.  相似文献   

15.
A direct liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method for measurement of urinary Delta(9)-tetrahydrocannabinol carboxylic acid (THCA) was developed. The method involved dilution of the urine sample with water containing (2)H(9)-deuterated analogue as internal standard, hydrolysis with ammonia, reversed phase chromatography using a Waters ultra-performance liquid chromatography (UPLC) equipment with gradient elution, negative electrospray ionization, and monitoring of two product ions in selected reaction monitoring mode. The measuring range was 2-1000 ng/mL for THCA, and the intra- and inter-assay imprecision, expressed as the coefficient of variation, was below 5%. Influence from urine matrix on ionization efficiency was noted in infusion experiments, but was compensated for by the internal standard. Comparison with established gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry methods in authentic patient samples demonstrated accuracy in both qualitative and quantitative results. A small difference in mean ratios (~15%) may be explained by the use of different hydrolysis procedures between methods. In conclusion, the high efficiency LC-MS/MS method was capable of accurately identify and quantify THCA in urine with a capacity of 14 samples per hour.  相似文献   

16.
Erythrocytes may affect several physiological processes because they are scavengers, vehicles, and (as recently highlighted) a producer of nitric oxide (NO). NO bioavailability is linked to arginine, its metabolic products ornithine and citrulline, and methylarginines. Here we describe a liquid chromatography–tandem mass spectrometry method for the simultaneous quantification of analytes involved in the Arg/NO metabolic pathway in erythrocytes. Calibration functions were linear, and the interday coefficients of variation were less than 10%. Limit of quantification values make this method suitable for low concentration samples. The method presented here allows easy sample preparation and provides a valuable tool for the evaluation of the Arg/NO metabolic pathway in erythrocytes.  相似文献   

17.
Hydrophilic interaction chromatography (HILIC) is an effective technique for retaining and separating polar compounds. This approach offers several advantages for bioanalytical liquid chromatography/mass spectrometry, considering that a majority of active pharmaceutical ingredients are polar amines. HILIC employs high concentrations of relatively polar organic mobile phase components (i.e. acetonitrile), providing enhanced desolvation and electrospray ionization efficiency, as well as allowing direct injection of many protein precipitation, liquid/liquid, and solid phase extracts. A set of 30 probe compounds was evaluated to demonstrate a relationship between a compound's HILIC capacity factor (k'), and pH dependent distribution coefficient (D), using three sets of generic isocratic conditions. Plots of logk' versus logD(pH3.0) produced correlation coefficients of 0.751, 0.696, and 0.689 at acetonitrile mobile phase concentrations of 85%, 90%, and 95% (v/v), respectively. For bioanalytical applications a k'>2 is typically targeted to ensure adequate retention of a given analyte relative to extracted matrix components. Using k'> or =2 as a measure of HILIC applicability, the linear relationships for each of the three acetonitrile levels predicted whether or not HILIC was able to meet this criterion for at least 90% of the compounds tested. Overall, the relationship between k' and logD can serve as a valuable tool for identifying the applicability of HILIC and a starting point for the chromatographic conditions, prior to the initiation of any laboratory activities. Additionally, this relationship can assist with the selection of appropriate chemical analog internal standards.  相似文献   

18.
AIM: In forensic toxicology it is important to have specific and sensitive analysis for quantification of illicit drugs in biological matrices. This paper describes a quantitative method for determination of cocaine and its major metabolites (ecgonine methyl ester, benzoylecgonine, norcocaine and ethylene cocaine) in whole blood and urine by liquid chromatography coupled with tandem mass spectrometry LC/MS/MS. METHOD: The sample pre-treatment (0.20 g) consisted of acid precipitation, followed by centrifugation and solid phase extraction of supernatant using mixed mode sorbent columns (SPEC MP1 Ansys Diag. Inc.). Chromatographic separation was performed at 30 degrees C on a reverse phase Zorbax C18 column with a gradient system consisting of formic acid, water and acetonitrile. The analysis was performed by positive electrospray ionisation with a triple quadropole mass spectrometer operating in multiple reaction monitoring (MRM) mode. Two MRM transitions of each analyte were established and identification criteria were set up based on the retention time and the ion ratio. The quantification was performed using deuterated internal analytes of cocaine, benzoylecgonine and ecgonine methyl ester. The calibration curves of extracted standards were linear over a working range of 0.001-2.00 mg/kg whole blood for all analytes. The limit of quantification was 0.008 mg/kg; the interday precision (measured by relative standard deviation-%RSD) was less than 10% and the accuracy (BIAS) less than 12% for all analytes in whole blood. Urine samples were estimated semi-quantitatively at a cut-off level of 0.15 mg/kg with an interday precision of 15%. CONCLUSION: A liquid chromatography mass spectrometric (LC/MS/MS) method has been developed for confirmation and quantification of cocaine and its metabolites (ecgonine methyl ester, benzoylecgonine, norcocaine and ethylene cocaine) in whole blood and semi-quantitative in urine. The method is specific and sensitive and offers thereby an excellent alternative to other methods such as GC-MS that involves derivatisation.  相似文献   

19.
Direct plasma injection technology coupled with a LC-MS/MS assay provides fast and straightforward method development and greatly reduces the time for the tedious sample preparation procedures. In this work, a simple and sensitive bioanalytical method based on direct plasma injection using a single column high-performance liquid chromatography (HPLC) and tandem mass spectrometry (MS/MS) was developed for direct cocktail analysis of double-pooled mouse plasma samples for the quantitative determination of small molecules. The overall goal was to improve the throughput of the rapid pharmacokinetic (PK) screening process for early drug discovery candidates. Each pooled plasma sample was diluted with working solution containing internal standard and then directly injected into a polymer-coated mixed-function column for sample clean-up, enrichment and chromatographic separation. The apparent on-column recovery of six drug candidates in mouse plasma samples was greater than 90%. The single HPLC column was linked to either an atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI) source as a part of MS/MS system. The total run cycle time using single column direct injection methods can be achieved within 4 min per sample. The analytical results obtained by the described direct injection methods were comparable with those obtained by semi-automated protein precipitation methods within +/- 15%. The advantages and challenges of using direct single column LC-MS/MS methods with two ionization sources in combination of sample pooling technique are discussed.  相似文献   

20.
Plasma free metanephrine and normetanephrine are the best biomarkers for diagnosing pheochromocytoma. In the past few years, liquid chromatography-tandem mass spectrometry has become the preferred technology to measure plasma metanephrine and normetanephrine because of its high sensitivity and specificity, as well as fast and simple sample preparation. In this study, we report a liquid chromatography-tandem mass spectrometry method for measuring plasma metanephrine and normetanephrine. A solid phase extraction method using ion-pairing reagent and C18 stationary phase was used for sample preparation. We tested a porous graphitic carbon column and a HILIC column for chromatographic separation, and the former one showed better resolution with no interference from plasma matrix. This method was linear from 7.2-486.8 pg/mL for metanephrine and 18.0-989.1 pg/mL for normetanephrine with an accuracy of 92.2-111.8% and 92.1-115.0%, respectively. Inter-assay and intra-assay CV for metanephrine and normetanephrine at two different concentration levels ranged from 2.0% to 10.9%. In conclusion, this liquid chromatography-tandem mass spectrometry method using ion-pairing solid phase extraction and porous graphitic column was simple and efficient for measuring plasma metanephrines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号