首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and AimsAn arbuscular mycorrhiza is a mutualistic symbiosis with plants as carbon providers for fungi. However, achlorophyllous arbuscular mycorrhizal species are known to obtain carbon from fungi, i.e. they are mycoheterotrophic. These species all have the Paris type of arbuscular mycorrhiza. Recently, two chlorophyllous Paris-type species proved to be partially mycoheterotrophic. In this study, we explore the frequency of this condition and its association with Paris-type arbuscular mycorrhiza.MethodsWe searched for evidence of mycoheterotrophy in all currently published 13C, 2H and 15N stable isotope abundance patterns suited for calculations of enrichment factors, i.e. isotopic differences between neighbouring Paris- and Arum-type species. We found suitable data for 135 plant species classified into the two arbuscular mycorrhizal morphotypes.Key ResultsAbout half of the chlorophyllous Paris-type species tested were significantly enriched in 13C and often also enriched in 2H and 15N, compared with co-occurring Arum-type species. Based on a two-source linear mixing model, the carbon gain from the fungal source ranged between 7 and 93 % with ferns > horsetails > seed plants. The seed plants represented 13 families, many without a previous record of mycoheterotrophy. The 13C-enriched chlorophyllous Paris-type species were exclusively herbaceous perennials, with a majority of them thriving on shady forest ground.ConclusionsSignificant carbon acquisition from fungi appears quite common and widespread among Paris-type species, this arbuscular mycorrhizal morphotype probably being a pre-condition for developing varying degrees of mycoheterotrophy.  相似文献   

2.

Background and Aims

Nutritional changes associated with the evolution of achlorophyllous, mycoheterotrophic plants have not previously been inferred with robust phylogenetic hypotheses. Variations in heterotrophy in accordance with the evolution of leaflessness were examined using a chlorophyllous–achlorophyllous species pair in Cymbidium (Orchidaceae), within a well studied phylogenetic background.

Methods

To estimate the level of mycoheterotrophy in chlorophyllous and achlorophyllous Cymbidium, natural 13C and 15N contents (a proxy for the level of heterotrophy) were measured in four Cymbidium species and co-existing autotrophic and mycoheterotrophic plants and ectomycorrhizal fungi from two Japanese sites.

Key Results

δ13C and δ15N values of the achlorophyllous C. macrorhizon and C. aberrans indicated that they are full mycoheterotrophs. δ13C and δ15N values of the chlorophyllous C. lancifolium and C. goeringii were intermediate between those of reference autotrophic and mycoheterotrophic plants; thus, they probably gain 30–50 % of their carbon resources from fungi. These data suggest that some chlorophyllous Cymbidium exhibit partial mycoheterotrophy (= mixotrophy).

Conclusions

It is demonstrated for the first time that mycoheterotrophy evolved after the establishment of mixotrophy rather than through direct shifts from autotrophy to mycoheterotrophy. This may be one of the principal patterns in the evolution of mycoheterotrophy. The results also suggest that the establishment of symbiosis with ectomycorrhizal fungi in the lineage leading to mixotrophic Cymbidium served as pre-adaptation to the evolution of the mycoheterotrophic species. Similar processes of nutritional innovations probably occurred in several independent orchid groups, allowing niche expansion and radiation in Orchidaceae, probably the largest plant family.  相似文献   

3.
Plant dependence on fungal carbon (mycoheterotrophy) evolved repeatedly. In orchids, it is connected with a mycorrhizal shift from rhizoctonia to ectomycorrhizal fungi and a high natural 13C and 15N abundance. Some green relatives of mycoheterotrophic species show identical trends, but most of these remain unstudied, blurring our understanding of evolution to mycoheterotrophy. We analysed mycorrhizal associations and 13C and 15N biomass content in two green species, Neottia ovata and N. cordata (tribe Neottieae), from a genus comprising green and nongreen (mycoheterotrophic) species. Our study covered 41 European sites, including different meadow and forest habitats and orchid developmental stages. Fungal ITS barcoding and electron microscopy showed that both Neottia species associated mainly with nonectomycorrhizal Sebacinales Clade B, a group of rhizoctonia symbionts of green orchids, regardless of the habitat or growth stage. Few additional rhizoctonias from Ceratobasidiaceae and Tulasnellaceae, and ectomycorrhizal fungi were detected. Isotope abundances did not detect carbon gain from the ectomycorrhizal fungi, suggesting a usual nutrition of rhizoctonia‐associated green orchids. Considering associations of related partially or fully mycoheterotrophic species such as Neottia camtschatea or N. nidus‐avis with ectomycorrhizal Sebacinales Clade A, we propose that the genus Neottia displays a mycorrhizal preference for Sebacinales and that the association with nonectomycorrhizal Sebacinales Clade B is likely ancestral. Such a change in preference for mycorrhizal associates differing in ecology within the same fungal taxon is rare among orchids. Moreover, the existence of rhizoctonia‐associated Neottia spp. challenges the shift to ectomycorrhizal fungi as an ancestral pre‐adaptation to mycoheterotrophy in the whole Neottieae.  相似文献   

4.
The majority of chlorophyllous orchids form mycorrhizal associations with so‐called rhizoctonia fungi, a phylogenetically heterogeneous assemblage of predominantly saprotrophic fungi in Ceratobasidiaceae, Tulasnellaceae, and Serendipitaceae. It is still a matter of debate whether adult orchids mainly associated with rhizoctonia species are partially mycoheterotrophic. Here, we investigated the nutritional modes of green and albino variants of Goodyera velutina, an orchid species considered to be mainly associated with Ceratobasidium spp., by measuring their 13C and 15N abundances, and by molecular barcoding of their mycorrhizal fungi. Molecular analysis revealed that both green and albino variants of G. velutina harbored a similar range of mycobionts, mainly saprotrophic Ceratobasidium spp., Tulasnella spp., and ectomycorrhizal Russula spp. In addition, stable isotope analysis revealed that albino variants were significantly enriched in 13C but not so greatly in 15N, suggesting that saprotrophic Ceratobasidium spp. and Tulasnella spp. are their main carbon source. However, in green variants, 13C levels were depleted and those of 15N were indistinguishable from the co‐occurring autotrophic plants. Therefore, we concluded that the albino G. velutina variants are fully mycoheterotrophic plants whose C derives mainly from saprotrophic rhizoctonia, while the green G. velutina variants are mainly autotrophic plants, at least at our study site, in spite of their additional associations with ectomycorrhizal fungi. This is the first report demonstrating that adult nonphotosynthetic albino variants can obtain their nutrition mainly from nonectomycorrhizal rhizoctonia.  相似文献   

5.
The Burmanniaceae contain several lineages of achlorophyllous mycoheterotrophic plants that associate with arbuscular mycorrhizal fungi (AMF). Here we investigate the isotopic profile of a green and potentially mycoheterotrophic plant in situ, Burmannia coelestis, and associated reference plants. We generated δ 13C and δ 15N stable isotope profiles for five populations of B. coelestis. Burmannia coelestis was significantly enriched in 13C relative to surrounding C3 reference plants and significantly depleted in 13C relative to C4 reference plants. No significant differences were detected in 15N enrichment between B. coelestis and reference plants. The isotopic profiles measured are suggestive of partial mycoheterotrophy in B. coelestis. Within the genus Burmannia transitions to full mycoheterotrophy have occurred numerous times, suggesting that some green Burmannia species are likely to be partially mycoheterotrophic but in many conditions this mode of nutrition may only be detectable using natural abundance stable isotopic methods, such as when associated with C4 mycorrhizal plants.  相似文献   

6.
Mycoheterotrophic species (i.e., achlorophyllous plants obtaining carbon from their mycorrhizal fungi) arose many times in evolution of the Neottieae, an orchid tribe growing in forests. Moreover, chlorophyllous Neottieae species show naturally occurring achlorophyllous individuals. We investigated the fungal associates of such a member of the Neottieae, Epipactis microphylla, to understand whether their mycorrhizal fungi predispose the Neottieae to mycoheterotrophy. Root symbionts were identified by sequencing the fungal ITS of 18 individuals from three orchid populations, including achlorophyllous and young, subterranean individuals. No rhizoctonias (the usual orchid symbionts) were recovered, but 78% of investigated root pieces were colonized by Tuber spp. Other Pezizales and some Basidiomycetes were also found. Using electron microscopy, we demonstrated for the first time that ascomycetes, especially truffles, form typical orchid mycorrhizae. All identified fungi (but one) belonged to taxa forming ectomycorrhizae on tree roots, and four of them were even shown to colonize surrounding trees. This is reminiscent of mycoheterotrophic orchid species that also associate with ectomycorrhizal fungi, although with higher specificity. Subterranean and achlorophyllous E. microphylla individuals thus likely rely on tree photosynthates, and a partial mycoheterotrophy in individuals plants can be predicted. We hypothesize that replacement of rhizoctonias by ectomycorrhizal symbionts in Neottieae entails a predisposition to achlorophylly.  相似文献   

7.
Some green orchids obtain carbon from their mycorrhizal fungi, as well as from photosynthesis. These partially mycoheterotrophic orchids sometimes produce fully achlorophyllous, leaf‐bearing (albino) variants. Comparing green and albino individuals of these orchids will help to uncover the molecular mechanisms associated with mycoheterotrophy. We compared green and albino Epipactis helleborine by molecular barcoding of mycorrhizal fungi, nutrient sources based on 15N and 13C abundances and gene expression in their mycorrhizae by RNA‐seq and cDNA de novo assembly. Molecular identification of mycorrhizal fungi showed that green and albino E. helleborine harboured similar mycobionts, mainly Wilcoxina. Stable isotope analyses indicated that albino E. helleborine plants were fully mycoheterotrophic, whereas green individuals were partially mycoheterotrophic. Gene expression analyses showed that genes involved in antioxidant metabolism were upregulated in the albino variants, which indicates that these plants experience greater oxidative stress than the green variants, possibly due to a more frequent lysis of intracellular pelotons. It was also found that some genes involved in the transport of some metabolites, including carbon sources from plant to fungus, are higher in albino than in green variants. This result may indicate a bidirectional carbon flow even in the mycoheterotrophic symbiosis. The genes related to mycorrhizal symbiosis in autotrophic orchids and arbuscular mycorrhizal plants were also upregulated in the albino variants, indicating the existence of common molecular mechanisms among the different mycorrhizal types.  相似文献   

8.
Background and Aims The green orchid Goodyera repens has been shown to transfer carbon to its mycorrhizal partner, and this flux may therefore be affected by light availability. This study aimed to test whether the C and N exchange between plant and fungus is dependent on light availability, and in addition addressed the question of whether flowering and/or fruiting individuals of G. repens compensate for changes in leaf chlorophyll concentration with changes in C and N flows from fungus to plant.Methods The natural abundances of stable isotopes of plant C and N were used to infer changes in fluxes between orchid and fungus across natural gradients of irradiance at five sites. Mycorrhizal fungi in the roots of G. repens were identified by molecular analyses. Chlorophyll concentrations in the leaves of the orchid and of reference plants were measured directly in the field.Key Results Leaf δ13C values of G. repens responded to changes in light availability in a similar manner to autotrophic reference plants, and different mycorrhizal fungal associations also did not affect the isotope abundance patterns of the orchid. Flowering/fruiting individuals had lower leaf total N and chlorophyll concentrations, which is most probably explained by N investments to form flowers, seeds and shoot.Conclusions The results indicate that mycorrhizal physiology is relatively fixed in G. repens, and changes in the amount and direction of C flow between plant and fungus were not observed to depend on light availability. The orchid may instead react to low-light sites through increased clonal growth. The orchid does not compensate for low leaf total N and chlorophyll concentrations by using a 13C- and 15N-enriched fungal source.  相似文献   

9.
? Premise of the study: Mycoheterotrophic plants, which completely depend upon mycorrhizal fungi for their nutrient supply, have unusual associations with fungal partners. The processes involved in shifts in fungal associations during cladogenesis of plant partners from autotrophy to mycoheterotrophy have not been demonstrated using a robust phylogenetic framework. ? Methods: Consequences of a mycorrhizal shift were examined in Cymbidium (Orchidaceae) using achlorophyllous and sister chlorophyllous species. Fungal associates of the two achlorophyllous mycoheterotrophs (C. macrorhizon and C. aberrans), their close relatives, the chlorophyllous mixotrophs (C. goeringii and C. lancifolium) and an outgroup, the chlorophyllous autotroph C. dayanum, were identified by internal transcribed spacers of the nuclear ribosomal DNA sequences. ? Key results: Molecular identification of mycorrhizal fungi revealed: (1) the outgroup autotroph is predominantly dependent on saprobic Tulasnellaceae, (2) the mixotrophs associate with the Tulasnellaceae and ectomycorrhizal groups including the Sebacinales, Russulaceae, Thelephoraceae and Clavulinaceae, and (3) the two mycoheterotrophs are mostly specialized with ectomycorrhizal Sebacinales. ? Conclusion: Fungal partners in Cymbidium have shifted from saprobic to ectomycorrhizal fungi via a phase of coexistence of both nutritional types of fungi. These three phases correspond to the evolution from autotrophy to mycoheterotrophy via mixotrophy in Cymbidium. We demonstrate that shifts in mycorrhizal fungi correlate with the evolution of nutritional modes in plants. Furthermore, gradual shifts in fungal partners through a phase of coexistence of different types of mycobionts may play a crucial role in the evolution of mycoheterotrophic plants.  相似文献   

10.
Plants that produce dust seeds can recruit fungi to meet their earliest requirements for carbon and other nutrients. This germination strategy, termed initial mycoheterotrophy, has been well investigated among the orchid family, but there are numerous other plant lineages that have independently evolved mycoheterotrophic germination strategies. One of these lineages is the tribe Pyroleae (Ericaceae). While the fungi associated with mature plants in Pyroleae have been fairly well documented, their mycobionts at the germination and seedling stages are largely unknown. Here, we use an in situ seed baiting experiment along with molecular fingerprinting techniques and phylogenetic tests to identify the fungi associated with seedlings of two Pyroleae species, Pyrola chlorantha and Orthilia secunda. Our results indicate that similar to adult plants, Pyroleae seedlings can associate with a suite of ectomycorrhizal fungi. Some seedlings harboured single mycobionts, while others may have been inhabited by multiple fungi. The dominant seedling mycobiont of both Pyroleae species was a fungus of unknown trophic status in the order Sebacinales. This taxon was also the only one shared among seedlings of both investigated Pyroleae species. We discuss these results juxtaposed to orchids and one additional Pyrola species in the context of ontogenetic shifts in fungal host specificity for mycoheterotrophic nutrition.  相似文献   

11.
We investigated the physiological ecology of the Asian non-photosynthetic orchid Gastrodia confusa. We revealed its mycorrhizal partners by using molecular identification and identified its ultimate nutritional source by analysing carbon and nitrogen natural stable isotope abundances. Molecular identification using internal transcribed spacer and large subunit nrDNA sequences showed that G. confusa associates with several species of litter- and wood-decomposer Mycena fungi. The carbon and nitrogen isotope signatures of G. confusa were analysed together with photosynthetic plant reference samples and samples of the ectomycorrhizal epiparasite Monotropa uniflora. We found that G. confusa was highly enriched in 13C but not greatly in 15N, while M. uniflora was highly enriched in both 13C and 15N. The 13C and 15N signatures of G. confusa were the closest to those of the fruit bodies of saprotrophic fungi. Our results demonstrate for the first time using molecular and mass-spectrometric approaches that myco-heterotrophic plants gain carbon through parasitism of wood or litter decaying fungi. Furthermore, we demonstrate that, several otherwise free-living non-mycorrhizal, Mycena can be mycorrhizal partners of orchids.  相似文献   

12.
? Premise of the study: In addition to autotrophic and fully mycoheterotrophic representatives, the orchid family comprises species that at maturity obtain C and N partially from fungal sources. These partial mycoheterotrophs are often associated with fungi that simultaneously form ectomycorrhizas with trees. This study investigates mycorrhizal nutrition for orchids from the southwestern Australian biodiversity hotspot. ? Methods: The mycorrhizal fungi of 35 green and one achlorophyllous orchid species were analyzed using molecular methods. Nutritional mode was identified for 27 species by C and N isotope abundance analysis in comparison to non-orchids from the same habitat. As a complementary approach, (13)CO(2) pulse labeling was applied to a subset of six orchid species to measure photosynthetic capacity. ? Key results: Almost all orchids associated with rhizoctonia-forming fungi. Due to much higher than expected variation within the co-occurring nonorchid reference plants, the stable isotope approach proved challenging for assigning most orchids to a specialized nutritional mode; therefore, these orchids were classified as autotrophic at maturity. The (13)CO(2) pulse labeling confirmed full autotrophy for six selected species. Nonetheless, at least three orchid species (Gastrodia lacista, Prasophyllum elatum, Corybas recurvus) were identified as nutritionally distinctive from autotrophic orchids and reference plants. ? Conclusions: Despite the orchid-rich flora in southwestern Australia, partial mycoheterotrophy among these orchids is less common than in other parts of the world, most likely because most associate with saprotrophic fungi rather than ectomycorrhizal fungi.  相似文献   

13.
We compared the nutritional modes and habitats of orchids (e.g., autotrophic, partially or fully mycoheterotrophic) of the Mediterranean region and adjacent islands of Macaronesia. We hypothesized that ecological factors (e.g., relative light availability, surrounding vegetation) determine the nutritional modes of orchids and thus impose restrictions upon orchid distribution. Covering habitats from dark forests to open sites, orchid samples of 35 species from 14 genera were collected from 20 locations in the Mediterranean and Macaronesia to test for mycoheterotrophy. Mycorrhizal fungi were identified via molecular analyses, and stable isotope analyses were applied to test whether organic nutrients are gained from the fungal associates. Our results show that orchids with partial or full mycoheterotrophy among the investigated species are found exclusively in Neottieae thriving in light-limited forests. Neottioid orchids are missing in Macaronesia, possibly because mycoheterotrophy is constrained by the lack of suitable ectomycorrhizal fungi. Furthermore, most adult orchids of open habitats in the Mediterranean and Macaronesia show weak or no N gains from fungi and no C gain through mycoheterotrophy. Instead isotope signatures of some of these species indicate net plant-to-fungus C transfer.  相似文献   

14.
While it is established that increasing atmospheric inorganic nitrogen (N) deposition reduces ectomycorrhizal fungal biomass and shifts the relative abundances of fungal species, little is known about effects of organic N deposition. The effects of organic and inorganic N deposition on ectomycorrhizal fungi may differ because responses to inorganic N deposition may reflect C-limitation. To compare the effects of organic and inorganic N additions on ectomycorrhizal fungi, and to assess whether host species may influence the response of ectomycorrhizal fungi to N additions, we conducted an N addition experiment at a field site in the New Jersey pine barrens. Seedlings of two host species, Quercus velutina (black oak) and Pinus rigida (pitch pine), were planted at the base of randomly-selected mature pitch pine trees. Nitrogen was added as glutamic acid, ammonium, or nitrate at a rate equivalent to 227.5 kg ha−1 y−1 for eight weeks, to achieve a total application of 35 kg ha−1 during the 10-week study period. Organic and inorganic N additions differed in their effects on total ectomycorrhizal root tip abundance across hosts, and these effects differed for individual morphotypes between oak and pine seedlings. Mycorrhizal root tip abundance across hosts was 90 % higher on seedlings receiving organic N compared to seedlings in the control treatment, while abundances were similar among seedlings receiving the inorganic N treatments and seedlings in the control. On oak, 33–83 % of the most-common morphotypes exhibited increased root tip abundances in response to the three forms of N, relative to the control. On pine, 33–66 % of the most-common morphotypes exhibited decreased root tip abundance in response to inorganic N, while responses to organic N were mixed. Plant chemistry and regression analyses suggested that, on oak seedlings, mycorrhizal colonization increased in response to N limitation. In contrast, pine root and shoot N and C contents did not vary in response to any form of N added, and mycorrhizal root tip abundance was not associated with seedling N or C status, indicating that pine received sufficient N. These results suggest that in situ organic and inorganic N additions differentially affect ectomycorrhizal root tip abundance and that ectomycorrhizal fungal responses to N addition may be mediated by host tree species.  相似文献   

15.
Cremastra appendiculata var. variabilis is a self‐compatible, insect‐pollinated, terrestrial orchid that is a typical member of the warm‐temperate vegetation in the Korean Peninsula. Here we examine levels and partitioning of allozyme diversity (22 loci) in 12 populations of this orchid to gain insight into its genetic structure and post‐glacial colonization history in Korea. It harboured considerably higher levels of genetic variation within populations (%P = 48.1, A = 1.70 and He = 0.217) and lower degree of differentiation among populations (FST = 0.068) than those typical of allozyme‐based studies in other terrestrial orchid species. These patterns suggest that extant populations were derived from multiple source populations (i.e. from multiple glacial refugia), although further studies are needed to confirm this scenario. In addition to population history, traits such as high potential of seed dispersal, a mixed mating system and its occurrence in large and continuous populations would have contributed to the current levels and distribution of genetic diversity in Korean populations of C. appendiculata var. variabilis. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 721–732.  相似文献   

16.
Epipogium aphyllum is a rare Eurasian achlorophyllous forest orchid known to associate with fungi that form ectomycorrhizas, while closely related orchids of warm humid climates depend on wood- or litter-decomposer fungi. We conducted (13) C and (15) N stable isotope natural abundance analyses to identify the organic nutrient source of E. aphyllum from Central Norway. These data for orchid shoot tissues, in comparison to accompanying autotrophic plants, document C and N flow from ectomycorrhizal fungi to the orchid. DNA data from fungal pelotons in the orchid root cortex confirm the presence of Inocybe and Hebeloma, which are both fungi that form ectomycorrhizas. The enrichment factors for (13) C and (15) N of E. aphyllum are used to calculate a new overall average enrichment factor for mycoheterotrophic plants living in association with ectomycorrhizal fungi (ε(13) C ± 1 SD of 7.2 ± 1.6 ‰ and ε(15) N ± 1 SD of 12.8 ± 3.9 ‰). These can be used to estimate the fungal contribution to organic nutrient uptake by partially mycoheterotrophic plants where fully mycoheterotrophic plants are lacking. N concentrations in orchid tissue were unusually high and significantly higher than in accompanying autotrophic leaf samples. This may be caused by N gain of E. aphyllum from obligate ectomycorrhizal fungi. We show that E. aphyllum is an epiparasitic mycoheterotrophic orchid that depends on ectomycorrhizal Inocybe and Hebeloma to obtain C and N through a tripartite system linking mycoheterotrophic plants through fungi with forest trees.  相似文献   

17.
《Mycoscience》2020,61(5):219-225
Improved understanding of mycorrhizal diversity in mycoheterotrophic (MH) plants is a key element of studies that investigate their evolution. MH plants are completely dependent on their mycorrhizal fungi for carbon. Mycorrhizal fungi of the MH genus Yoania (Orchidaceae), which is distributed in East Asia, have yet to be identified. We identified the mycobionts of three Japanese Yoania species, Y. amagiensis, Y. flava, and Y. japonica, by sequencing the internal transcribed spacer regions of nuclear ribosomal DNA. The sequences obtained were assigned to five operational taxonomic units (OTUs), among which four belonged to the genus Physisporinus (Meripilaceae, Polyporales) and one to Thelephoraceae. Yoania flava and Y. japonica were specifically associated with a single OTU of Physisporinus, while Y. amagiensis was associated with four Physisporinus OTUs. A phylogenetic analysis showed that fungal sequences from species of two other MH orchid genera, Cyrtosia and Galeola, also belonged to Physisporinus and were closely related to the Yoania mycobionts. This is the first study to report that (i) wood-rotting Physisporinus fungi form mycorrhizae with plant species, and (ii) have an important role in orchid mycoheterotrophy.  相似文献   

18.
? Premise of the study: An estimated 10% of plant species have evolved to steal C from their symbiotic fungal partners (mycoheterotrophy), and while physiological evidence for full and partial mycoheterotrophy is well developed in the Orchidaceae and Ericaceae, it is lacking for the majority of other mycoheterotrophic taxa. The family Gentianaceae not only contains several lineages of achlorophyllous mycoheterotrophs, but also contains species that are putative partially mycoheterotrophic. The North American genera Bartonia and Obolaria (Gentianaceae) are green but have leaves reduced to scales or foliose bracts and so have ambiguous mycoheterotrophic status. ? Methods: We investigated the natural abundance (13)C and (15)N profiles of both genera along with total N and chlorophyll content and investigated mycorrhizal infection using light microscopy. ? Key results: The shoots of B. virginica were significantly more enriched in (15)N than the surrounding vegetation but not in (13)C. In contrast, the shoots of O. virginica are not enriched in (15)N compared to the surrounding vegetation but were significantly enriched in (13)C. Total N concentrations were significantly higher than the surrounding vegetation in B. virginica, while the collaroid roots of both species were infected by arbuscular mycorrhizal fungi. ? Conclusions: This microscopic evidence coupled with the natural abundance stable isotope profiles strongly suggests that both species are partially mycoheterotrophic. However, differences in the root-shoot stable isotopic patterns relative to surrounding vegetation between B. virginica and O. virginica are suggestive of the utilization of different physiological pathways or extent of commitment to mycoheterotrophic C gain.  相似文献   

19.
Recent developments in the study of orchid mycorrhiza   总被引:21,自引:0,他引:21  
Rasmussen  Hanne N. 《Plant and Soil》2002,244(1-2):149-163
Orchids are mycoheterotrophic during their seedling stage and in many species the dependency on fungi as a carbohydrate source is prolonged into adulthood. The mycobionts in orchid mycorrhiza belong in at least 5 major taxonomic groups of basidiomycetes. Traditional records have mainly focused on saprotrophic mycobionts but the participation of both ectomycorrhizal and parasitic fungi in orchid mycorrhiza has been corroborated. There is an increasing evidence of specific relationships between orchids and fungi, though usually not on a species-to-species level. Physiological compatibility demonstrated under artificial conditions, as in vitro, may be much broader, however. Recent development of field sowing techniques has improved the possibilities of evaluating orchid-fungal relations in an ecological context. Although the general nutrient flow in orchid mycorrhiza is well known, some questions remain regarding breakdown processes of fungi within orchid tissues, especially the ptyophagic syndrome that has recently been illustrated at the ultrastructural level for the first time.  相似文献   

20.
Partially mycoheterotrophic (mixotrophic) plants gain carbon from both photosynthesis and their mycorrhizal fungi. This is considered an ancestral state in the evolution of full mycoheterotrophy, but little is known about this nutrition, and especially about the physiological balance between photosynthesis and fungal C gain. To investigate possible compensation between photosynthesis and mycoheterotrophy in the Mediterranean mixotrophic orchid Limodorum abortivum, fungal colonization was experimentally reduced in situ by fungicide treatment. We measured photosynthetic pigments of leaves, stems, and ovaries, as well as the stable C isotope compositions (a proxy for photosynthetic C gain) of seeds and the sizes of ovaries and seeds. We demonstrate that (1) in natural conditions, photosynthetic pigments are most concentrated in ovaries; (2) pigments and photosynthetic C increase in ovaries when fungal C supply is impaired, buffering C limitations and allowing the same development of ovaries and seeds as in natural conditions; and (3) responses to light of pigment and 13C contents in ovaries shift from null responses in natural conditions to responses typical of autotrophic plants in treated L. abortivum, demonstrating photoadaptation and enhanced use of light in the latter. L. abortivum thus preferentially feeds on fungi in natural conditions, but employs compensatory photosynthesis to buffer fungal C limitations and allow seed development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号