首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Macrophytes and phytoplankton are recognized as having roles in determining alternative stable states in shallow lakes and reservoirs, while the role of periphyton has been poorly investigated. Temporal and spatial variation of phytoplankton, epipelon and epiphyton was examined in a shallow reservoir with high abundance of aquatic macrophytes. The relationships between algae communities and abiotic factors, macrophyte coverage and zooplankton density were also analyzed. Monthly sampling was performed in three zones of the depth gradient of the reservoir. Two phases of algal dominance were found: a phytoplankton phase and epipelon phase. The phase of phytoplankton dominance was characterized by high macrophyte coverage. Rotifera was the dominant zooplankton group in all the zones. Flagellate algae were dominant in phytoplankton, epipelon and epiphyton. Macrophyte coverage was found to be a predictor for algal biomass. Changes in biomass and species composition were associated with macrophyte cover variation, mainly the Nymphaea. In addition to the abiotic factors, the macrophyte coverage was a determining factor for changes to the algal community, contributing to the alternation between dominance phases of phytoplankton and epipelon. The macrophyte–phytoplankton–periphyton relationship needs to be further known in shallow reservoirs, especially the role of epipelon as an alternate stable state.

  相似文献   

2.
3.
1. Analyses of zooplankton fatty acid (FA) composition in laboratory experiments and samples collected from lakes in New Zealand spanning a wide gradient of productivity were used to assess the extent to which FAs might infer their diet. We used the cladocerans, Daphnia and Ceriodaphnia, and the calanoid copepod, Boeckella, as test organisms, and monocultures of cryptophytes, chlorophytes and cyanobacteria as food. Based on reproductive success, cryptophytes were the highest food quality, chlorophytes were intermediate and cyanobacteria the poorest. 2. Several FA groups were highly correlated between zooplankton and their diets. They were monounsaturated fatty acids (MUFAs), and ω3 and ω6 polyunsaturated fatty acids (PUFAs) for cladocerans, and saturated fatty acids (SAFAs) and ω3 PUFAs for copepods. Several FAs varied significantly less in the zooplankton than in their monoculture diets, e.g. MUFAs in Daphnia, and ω3 and ω6 PUFAs in Ceriodaphnia, despite clear dietary dependency for these FAs. 3. Zooplankton collected from lakes in New Zealand had more eicosapentaenoic acid (EPA) (Daphnia), more highly unsaturated ω3 and ω6 FAs (C20, C22; Daphnia, Ceriodaphnia, Boeckella) and less ω3 C18 PUFAs (Daphnia, Ceriodaphnia, Boeckella) and ω6 C18 PUFAs (Daphnia, Ceriodaphnia) than measured in the same species reared on phytoplankton in the laboratory. 4. Analyses of FA composition of seston and freshwater zooplankton globally showed that, in general, zooplankton had a significantly higher proportion of arachidonic acid and EPA than seston, and copepods also had a higher percentage of docosahexaenoic acid than seston. 5. These results suggest that zooplankton selectively incorporate the most physiologically important FAs. This could be a consequence of preferential assimilation, selective feeding on more nutritious cells or locating and feeding within higher food quality food patches.  相似文献   

4.
1. The effect of ultraviolet (UV) radiation (280–400 nm) on fatty acid composition and elemental ratios of carbon (C), nitrogen (N) and phosphorus (P) of a unialgal culture of the chlorophyte Selenastrum capricornutum was investigated. Algae were cultured in the presence or absence of UV radiation and were subsequently fed to Daphnia magna to assess potential effects of UV on zooplankton fatty acid composition, growth and reproduction. 2. Algal growth rate was substantially reduced by UV radiation, probably because of a severe inhibition of photosynthetic efficiency (measured as optimal quantum yield). 3. Algae exposed to UV radiation had a significantly reduced content of 18 : 1 n‐9, while C18 polyunsaturated fatty acids (PUFAs) were higher under UV radiation. These observations point at an increased demand for and synthesis of PUFAs under UV stress. 4. The C : P and N : P ratios showed a remarkable decrease in UV‐exposed cells primarily owing to an increased uptake of P. The nutritional quality in terms of both fatty acid composition and stoichiometry was therefore higher in the UV treatment relative to the control. 5. Despite the UV‐induced changes in nutritional quality of S. capricornutum, no significant effects on D. magna growth or reproduction were detected. The fatty acid composition of Daphnia fed on UV irradiated algae showed a significantly lower content of 18 : 1 n‐9, but no changes in the essential PUFAs.  相似文献   

5.
6.
Littoral invertebrate communities (meio- and macrobenthos and zooplankton) were studied in seven types of macrophyte associations commonly encountered in Lake Ladoga: in reed (Phragmites) beds on sand, soft and hard bottoms, in associations with the prevalence of Potamogeton spp., Carex spp., and Equisetum fluviatile, and in diverse vegetation stands with e.g. Polygonum amphibium, Cicuta virosa, Typha latifolia and Eleocharis acicularis. Some of the studied habitats were affected by sewage pollution, others were in comparatively undisturbed areas. Statistically significant differences between invertebrate communities in the different macrophyte associations were found. In stepwise multiple linear regression analysis the following factors were identified as determinants of abundance of aquatic invertebrates in macrophyte associations: shoot density, plant dry weight biomass, periphyton biomass, periphyton chlorophyll a, periphyton primary production, and concentrations of Sr, Mg, Ca, P, Mn, Zn, Pb and Cu. Pollution was shown to have a minor effect on the composition of littoral invertebrate communities. It is not possible to determine one single principle factor responsible for the structure and density of invertebrates in macrophyte communities.  相似文献   

7.

Horizontal migrations of zooplankton between macrophyte patches and open areas were investigated in the sparsely vegetated littoral zone of the Sulejow Reservoir in June-July 2000 and 2001, using one-litre plastic traps. Large-bodied zooplankton: daphnids and copepods generally swam towards the open water at dusk and towards submerged macrophytes at dawn. Small-bodied zooplankton (Bosmina sp., Chydorus sp.) did not show any pattern of horizontal movement. At the time of the research the phytoplankton community was dominated by eatable diatoms (Cyclotella sp.), whose biomass reached 14 mg l−1. Thus, bottom-up forces (food scarcity) are not likely to be responsible for the observed zooplankton migrations. Analyses of fish stomach contents showed high contribution of large zooplankters to the food of juvenile roach (Rutilus rutilus) and perch (Perca fluviatilis) which densely inhabited the littoral zone of reservoir. High fish pressure in the littoral zone along with high density of the predatory cladoceran, Leptodora kindtii in the open water, suggest that top-down forces (predatory pressure) were responsible for the migration of large zooplankton. At dusk predatory pressure of fish fry exceeded that of L. kindtii, forcing endangered zooplankton to escape from macrophytes towards open water. The opposite situation occurred at dawn. The consequences of the relationships for both zooplankton and fish fry communities dynamics are discussed.

  相似文献   

8.
1. Nutrient and fish manipulations in mesocosms were carried out on food‐web interactions in a Mediterranean shallow lake in south‐east Spain. Nutrients controlled biomass of phytoplankton and periphyton, while zooplankton, regulated by planktivorous fish, influenced the relative percentages of the dominant phytoplankton species. 2. Phytoplankton species diversity decreased with increasing nutrient concentration and planktivorous fish density. Cyanobacteria grew well in both turbid and clear‐water states. 3. Planktivorous fish increased concentrations of soluble reactive phosphorus (SRP). Larger zooplankters (mostly Ceriodaphnia and copepods) were significantly reduced when fish were present, whereas rotifers increased, after fish removal of cyclopoid predators and other filter feeders (cladocerans, nauplii). The greatest biomass and diversity of zooplankton was found at intermediate nutrient levels, in mesocosms without fish and in the presence of macrophytes. 4. Water level decrease improved underwater light conditions and favoured macrophyte persistence. Submerged macrophytes (Chara spp.) outcompeted algae up to an experimental nutrient loading equivalent to added concentrations of 0.06 mg L?1 PO4‐P and 0.6 mg L?1 NO3‐N, above which an exponential increase in periphyton biomass and algal turbidity caused characean biomass to decline. 5. Declining water levels during summer favoured plant‐associated rotifer species and chroococcal cyanobacteria. High densities of chroococcal cyanobacteria were related to intermediate nutrient enrichment and the presence of small zooplankton taxa, while filamentous cyanobacteria were relatively more abundant in fishless mesocosms, in which Crustacea were more abundant, and favoured by dim underwater light. 6. Benthic macroinvertebrates increased significantly at intermediate nutrient levels but there was no relationship with planktivorous fish density. 7. The thresholds of nutrient loading and in‐lake P required to avoid a turbid state and maintain submerged macrophytes were lower than those reported from temperate shallow lakes. Mediterranean shallow lakes may remain turbid with little control of zooplankton on algal biomass, as observed in tropical and subtropical lakes. Nutrient loading control and macrophyte conservation appear to be especially important in these systems to maintain high water quality.  相似文献   

9.
The first few months of life is the most vulnerable period for fish and their optimal hatching time with zooplankton prey is favored by natural selection. Traditionally, however, prey abundance (i.e., zooplankton density) has been considered important, whereas prey nutritional composition has been largely neglected in natural settings. High‐quality zooplankton, rich in both essential amino acids (EAAs) and fatty acids (FAs), are required as starting prey to initiate development and fast juvenile growth. Prey quality is dependent on environmental conditions, and, for example, eutrophication and browning are two major factors defining primary producer community structures that will directly determine the nutritional quality of the basal food sources (algae, bacteria, terrestrial matter) for zooplankton. We experimentally tested how eutrophication and browning affect the growth and survival of juvenile rainbow trout (Oncorhynchus mykiss) by changing the quality of basal resources. We fed the fish on herbivorous zooplankton (Daphnia) grown with foods of different nutritional quality (algae, bacteria, terrestrial matter), and used GC‐MS, stable isotope labeling as well as bulk and compound‐specific stable isotope analyses for detecting the effects of different diets on the nutritional status of fish. The content of EAAs and omega‐3 (ω‐3) polyunsaturated FAs (PUFAs) in basal foods and zooplankton decreased in both eutrophication and browning treatments. The decrease in ω‐3 PUFA and especially docosahexaenoic acid (DHA) was reflected to fish juveniles, but they were able to compensate for low availability of EAAs in their food. Therefore, the reduced growth and survival of the juvenile fish was linked to the low availability of DHA. Fish showed very low ability to convert alpha‐linolenic acid (ALA) to DHA. We conclude that eutrophication and browning decrease the availability of the originally phytoplankton‐derived DHA for zooplankton and juvenile fish, suggesting bottom‐up regulation of food web quality.  相似文献   

10.
1. The distribution of zooplankton in shallow lakes is negatively related to macrophyte density. However, the abundance of their food along density gradients of macrophytes is unknown. A common but untested assumption is that food quantity and quality for pelagic zooplankton is poor in the littoral zone owing to the deleterious influence of macrophytes on phytoplankton. 2. We tested this assumption with a combination of a field survey and laboratory experiments. We collected seston samples from the littoral and pelagic zones of four shallow temperate lakes and related food quantity (phytoplankton biovolume) and quality to macrophyte abundance (per cent volume infested). Seston food quality was assessed in three ways: N/C and P/C ratios, polyunsaturated fatty acid content and phytoplankton community composition. In the laboratory, we measured the growth and reproduction of Daphnia pulicaria on diets consisting of seston from the littoral and pelagic zones in one lake. 3. In our four study lakes, food quantity was not significantly influenced by macrophyte abundance, and food quality was generally high. Laboratory experiments showed increased juvenile growth, but no significant change in D. pulicaria reproduction, when feeding on littoral resources compared to pelagic resources. 4. Our results suggest that there is no nutritional cost to pelagic zooplankton inhabiting the littoral zone. Therefore, it is likely that other factors (e.g. predation, abiotic factors) are involved in determining zooplankton habitat use.  相似文献   

11.
Change in the abundance of benthic macroinvertebrates and the stable isotope composition (C, N) of benthic invertebrates and zooplankton in Lake Vaeng, Denmark, was investigated over an 18-year period following biomanipulation (removal of cyprinids). During the first nine years after biomanipulation, the lake was clear and submerged macrophytes were abundant; after this period, a shift occurred to low plant abundance and high turbidity. Two years after the biomanipulation, total density of benthic macroinvertebrates reached a maximum of 17042 (±2335 SE) individuals m−2 and the density was overall higher when the lake was in a clear state. Redundancy analysis (RDA) suggested macrophyte abundance and total nitrogen (TN) concentration were the dominant structuring forces on the benthic macroinvertebrate assemblage. Stable isotope analysis revealed that δ13C of macroinvertebrates and zooplankton was markedly higher in years with high submerged macrophyte abundance than in years without macrophytes, most likely reflecting elevated δ13C of phytoplankton and periphyton mediated by a macrophyte-induced lowering of lake water CO2 concentrations. We conclude that the strong relationship between macrophyte coverage and δ13C of macroinvertebrates and cladocerans may be useful in paleoecological studies of past changes in the dynamics of shallow lakes, as change in macrophyte abundance may be tracked by the δ13C of invertebrate remains in the sediment.  相似文献   

12.
1. It is often assumed that lakes highly influenced by terrestrial organic matter (TOM) have low zooplankton food quality because of elemental and/or biochemical deficiencies of the major particulate organic carbon pools. We used the biochemical [polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA) – 20:5ω3] and elemental (C : P ratio) composition of particulate matter (PM) as qualitative measures of potential zooplankton food in two categories of lakes of similar primary productivity, but with contrasting TOM influence (clear water versus humic lakes). 2. C : P ratios (atomic ratio) in PM were similar between lake categories and were above 400. The concentration (μg L−1) and relative content (μg mg C−1) of EPA, as well as the particulate organic carbon concentration, were higher in the humic lakes than in the clear‐water lakes. 3. Our results show high fatty acid quality of PM in the humic lakes. The differences in the biochemical quality of the potential zooplankton food between lake categories can be attributed to the differences in their phytoplankton communities. 4. High biochemical quality of the food can result in high efficiency of energy transfer in the food chain and stimulate production at higher trophic levels, assuming that zooplankton are able to ingest and digest the resource available.  相似文献   

13.
Ecosystem development in different types of littoral enclosures   总被引:2,自引:2,他引:0  
Vermaat  J. E.  Hootsmans  M. J. M.  van Dijk  G. M. 《Hydrobiologia》1990,200(1):391-398
Macrophyte growth was studied in two enclosure types (gauze and polythene) in a homogeneousPotamogeton pectinatus bed in Lake Veluwe (The Netherlands). The gauze was expected to allow for sufficient exchange with the lake to maintain similar seston densities, the polythene was expected to exclude fish activity and most water exchange. Polythene enclosures held higher totalP. pectinatus biomass (ash-free dry weight, AFDW) than the lake, gauze enclosures were intermediate. The enclosures had a higher abundance of other macrophyte species (Chara sp.,Potamogeton pusillus) than the lake. Seston ash content was not but seston AFDW, periphyton ash content and AFDW were lower in polythene than in gauze enclosures. The difference in plant biomass between gauze and polythene may be attributed to a difference in periphyton density and in seston AFDW due to zooplankton grazing (Rotatoria andDaphnia densities were higher in polythene enclosures). Since seston and periphyton AFDW and ash content were similar in lake and gauze enclosures, the intermediate macrophyte biomass in the gauze enclosures may be explained by reduced wave action and mechanical stress. Alternatively, phytoplankton inhibition by allelopathic excretions from the macrophytes may have caused the high macrophyte biomass in the polythene, and an absence of sediment-disturbing fish the intermediate biomass in the gauze enclosures. Creation of sheltered areas may favour macrophyte growth through both mechanisms and we conclude that this can be an important tool in littoral biomanipulation.  相似文献   

14.
1. Thermally assisted hydrolysis and methylation of cellular lipids, by means of Curie‐point pyrolysis of intact whole cells in the presence of a quaternary ammonium hydroxide reagent, provided analytical access (pyrolysis‐gas chromatography; Py‐GC) to the very small amounts of algal carbon delivered by fluorescence‐activated cell sorting. Based on differences in pigment composition, population‐specific in situ fatty acid profiles could be obtained of the major taxa present in the phytoplankton of Lake Loosdrecht (The Netherlands). 2. By combining Py‐GC and compound‐specific isotope‐ratio mass spectrometry (Py‐GC‐IRMS) the in situ carbon isotopic signatures could be established of the fatty acid profiles retrieved by flow cytometry. Colonial phytoplankton not amenable to cell sorting and zooplankton specimens were also isotopically characterised with this technique by subjecting handpicked samples to pyrolytic methylation. In this way proxies could be obtained in great detail for isotopic end‐members delineating important carbon sources and sinks in the pelagic food web of Lake Loosdrecht. 3. These analyses suggested a significant isotopic heterogeneity among major representatives of the phytoplankton in Lake Loosdrecht. This heterogeneity was also reflected in the isotopic composition of the zooplankton, implying the occurrence of preferential grazing. A differential labelling of the phytoplankton using 13C‐CO2 in a laboratory confinement, and subsequent monitoring of label transfer to the zooplankton, corroborated selective feeding in some rotifer species. The large‐bodied rotifer Asplanchna, previously thought to be predaceous, apparently mainly fed on algae rather than small rotifers, whereas Euchlanis dilatata actively selected filamentous cyanobacteria. Flow cytometric cell sorting in concert with Py‐GC‐IRMS offers new possibilities in carbon isotope‐based food web studies.  相似文献   

15.
1. Subarctic ponds are seasonal aquatic habitats subject to short summers but often have surprisingly numerous planktonic consumers relative to phytoplankton productivity. Because subarctic ponds have low pelagic productivity but a high biomass of benthic algae, we hypothesised that benthic mats provide a complementary and important food source for the zooplankton. To test this, we used a combination of fatty acid and stable isotope analyses to evaluate the nutritional content of benthic and pelagic food and their contributions to the diets of crustacean zooplankton in 10 Finnish subarctic ponds. 2. Benthic mats and seston differed significantly in total lipids, with seston (62.5 μg mg?1) having approximately eight times higher total lipid concentrations than benthic mats (7.0 μg mg?1). Moreover, the two potential food sources differed in their lipid quality, with benthic organic matter completely lacking some nutritionally important polyunsaturated fatty acids (PUFA), most notably docosahexaenoic acid and arachidonic acid. 3. Zooplankton had higher PUFA concentrations (27–67 μg mg?1) than either of the food sources (mean benthic mats: 1.2 μg mg?1; mean seston: 9.9 μg mg?1), indicating that zooplankton metabolically regulate their accumulation of PUFA. In addition, when each pond was evaluated independently, the zooplankton was consistently more 13C‐depleted (δ13C ?20 to ?33‰) than seston (?23 to ?29‰) or benthic (?15 to ?27‰) food sources. In three ponds, a subset of the zooplankton (Eudiaptomus graciloides, Bosmina sp., Daphnia sp. and Branchinecta paludosa) showed evidence of feeding on both benthic and planktonic resources, whereas in most (seven out of 10) ponds the zooplankton appeared to feed primarily on plankton. 4. Our results indicate that pelagic primary production was consistently the principal food resource of most metazoans. While benthic mats were highly productive, they did not appear to be a major food source for zooplankton. The pond zooplankton, faced by strong seasonal food limitation, acquires particular dietary elements selectively.  相似文献   

16.
17.
The stoichiometry of trophic interactions has mainly been studied in simple consumer–prey systems, whereas natural systems often harbour complex food webs with abundant indirect effects. We manipulated the complexity of trophic interactions by using simple laboratory food webs and complex field food webs in enclosures in Lake Erken. In the simple food web, one producer assemblage (periphyton) and its consumers (benthic snails) were amended by perch, which was externally fed by fish food. In the complex food web, two producer assemblages (periphyton and phytoplankton), their consumers (benthic invertebrates and zooplankton) and perch feeding on zooplankton were included. In the simple food web perch affected the stoichiometry of periphyton and increased periphyton biomass and the concentration of dissolved inorganic nitrogen. Grazers reduced periphyton biomass but increased its nutrient content. In the complex food web, in contrast to the simple food web, perch affected periphyton biomass negatively but increased phytoplankton abundance. Perch had no influence on benthic invertebrate density, zooplankton biomass or periphyton stoichiometry. Benthic grazers reduced periphyton biomass and nutrient content. The difference between the simple and the complex food web was presumably due to the increase of pelagic cyanobacteria ( Gloeotrichia sp.) with fish presence in the complex food web, thus fish had indirect negative effects on periphyton biomass through nutrient competition and shading by cyanobacteria. We conclude that the higher food web complexity through the presence of pelagic primary producers (in this case Gloeotrichia sp.) influences the direction and strength of trophic and stoichiometric interactions.  相似文献   

18.
  1. Functional traits are measurable characteristics of an organism that have an impact on its fitness. Variation in functional traits between and among species has been suggested to represent the basis for competition and selection, thus allowing for evolution in natural populations.
  2. In freshwater ecosystems, the availability of essential polyunsaturated fatty acids (PUFAs), in particular ω3‐ and ω6‐PUFAs, determines the food quality of phytoplankton for the herbivorous zooplankton Daphnia, an unselective filter feeder. The content of such essential PUFAs in the phytoplankton is thus a functional phytoplankton trait affecting the trophic transfer efficiency and dynamics at the pelagic plant–herbivore interface.
  3. In turn, the susceptibility of consumers to become limited by the availability of essential PUFAs is a fitness‐determining trait of Daphnia genotypes, and variability of this herbivore trait may thus affect the daphnids’ intrapopulation competition. To estimate the intrapopulation variation in susceptibility, we isolated clonal lines of Daphnia longispina from a natural population and compared the strength of their limitation by dietary PUFA availability via standardised laboratory growth assays. We used a liposome supplementation technique to enrich a PUFA‐poor green alga with essential ω3‐ and ω6‐PUFAs and determined juvenile somatic growth rate of different D. longispina genotypes as a fitness proxy.
  4. As expected, D. longispina genotypes that coexisted in a natural population differed markedly in their specific patterns of susceptibility to dietary PUFA availability. On average, the D. longispina population was more strongly susceptible to limitations in the availability of the ω6‐PUFA arachidonic acid (20:4ω6) than to limitations in the availability of ω3‐PUFAs α‐linolenic acid (18:3ω3) and eicosapentaenoic acid (20:5ω3).
  5. The ability to cope with PUFA limitation is thus a crucial trait that can probably affect intraspecific competition and Daphnia population structure. Therefore, we suggest that such intrapopulation variation in susceptibility to absence of dietary PUFAs might be one of the driving forces of natural selection and local adaptation among freshwater zooplankton.
  相似文献   

19.
1. Numerous studies have quantified the relative contribution of terrestrial‐ and phytoplankton‐derived carbon sources to zooplankton secondary production in lakes. However, few investigated the pathways along which allochthonous and autochthonous carbon (C) was actually conveyed to consumers. 2. We suggest that the combined use of fatty acid and stable isotope biomarkers could solve this issue. We conducted a field study on two oligotrophic lakes, in which primary production increased significantly between 2002 and 2004. We used modelling to estimate the contribution of terrestrial‐ and phytoplankton‐derived C to particulate organic C (POC) and zooplankton production from their δ13C values in 2002 and 2004. 3. According to the isotope model, phytoplankton‐derived C accounted for a major part of the POC pool in both lakes and supported more Daphnia sp. production in 2004 than in 2002. Fatty acid data revealed that increased contribution of algal‐C to Daphnia production, although common between both lakes, was achieved through C pathways that were different. In one lake, Daphnia grazed more intensively on phytoplankton, whereas in the other there was greater grazing on bacteria. In the latter case, the increased primary production resulted in greater release of algal‐derived dissolved organic C (DOC), which may have supported extra bacterial and eventually Daphnia, production. 4. This is the first study illustrating that the combination of fatty acid and stable isotope biomarkers could further our understanding of the factors controlling the relative magnitude of food webs pathways conveying organic matter to zooplankton.  相似文献   

20.
Summary In the laboratory and field, we examined how periphyton (food of snails) and predatory crayfish influenced snail distribution in Trout Lake, a permanent, northern Wisconsin lake. Laboratory experiments (with no crayfish) tested the importance of periphyton biomass in determining snail preference among rocks, and among rock, sand, and macrophyte substrates. Among rocks with four different amounts of periphyton, periphyton biomass and the number of Lymnaea emarginata, Physa spp., and Amnicola spp. were positively related. A similar, but non-significant, trend occurred for Helisoma anceps. A field experiment at a site in Trout Lake where predation risk was low confirmed the preference by snails for periphyton covered rocks; more snails colonized rocks with periphyton than rocks without. When given a choice of rock, sand, and macrophytes in the laboratory, L. emarginata preferred high periphyton biomass and rock. Laboratory and field results contrasted with the distribution of snails in Trout Lake; no snails occurred in areas with abundant periphyton-covered rocks, but snails were abundant nearby on scattered rocks with little periphyton. However, where snails were absent, crayfish were abundant (14.5 crayfish-trap–1-day–1), and where snails were abundant, crayfish were rare (3.2 crayfish-trap–1-day–1), suggesting that crayfish predation reduced snails. The hypothesis that the negative association between snail and periphyton biomass resulted from snail grazing was supported by the results of a field snail enclosure-exclosure experiment (1 m2 cages; n=3). All experiments and observations therefore suggest that: 1) crayfish predation is more important than a preference for high periphyton biomass in determining snail distribution in Trout Lake; 2) periphyton biomass is negtively related to snail grazing; and 3) crayfish had a positive indirect effect on periphyton by preying on grazing snails.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号