首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 494 毫秒
1.
Arbitrariness in the genetic code is one of the main reasons for a linguistic approach to molecular biology: the genetic code is usually understood as an arbitrary relation between amino acids and nucleobases. However, from a semiotic point of view, arbitrariness should not be the only condition for definition of a code, consequently it is not completely correct to talk about “code” in this case. Yet we suppose that there exist a code in the process of protein synthesis, but on a higher level than the nucleic bases chains. Semiotically, a code should be always associated with a function and we propose to define the genetic code not only relationally (in basis of relation between nucleobases and amino acids) but also in terms of function (function of a protein as meaning of the code). Even if the functional definition of meaning in the genetic code has been discussed in the field of biosemiotics, its further implications have not been considered. In fact, if the function of a protein represents the meaning of the genetic code (the sign’s object), then it is crucial to reconsider the notion of its expression (the sign) as well. In our contribution, we will show that the actual model of the genetic code is not the only possible and we will propose a more appropriate model from a semiotic point of view.  相似文献   

2.
Species concepts formalize evolutionary and ecological processes, but often conflict with one another when considering the mechanisms that ultimately lead to species delimitation. Evolutionary biologists are, however, recognizing that the conceptualization of a species is separate and distinct from the delimitation of species. Indeed, if species are generally defined as separately evolving metapopulation lineages, then characteristics, such as reproductive isolation or monophyly, can be used as evidence of lineage separation and no longer conflict with the conceptualization of a species. However, little of this discussion has addressed the formalization of this evolutionary conceptual framework for macroalgal species. This may be due to the complexity and variation found in macroalgal life cycles. While macroalgal mating system variation and patterns of hybridization and introgression have been identified, complex algal life cycles generate unique eco-evolutionary consequences. Moreover, the discovery of frequent macroalgal cryptic speciation has not been accompanied by the study of the evolutionary ecology of those lineages, and, thus, an understanding of the mechanisms underlying such rampant speciation remain elusive. In this perspective, we aim to further the discussion and interest in species concepts and speciation processes in macroalgae. We propose a conceptual framework to enable phycological researchers and students alike to portray these processes in a manner consistent with dialogue at the forefront of evolutionary biology. We define a macroalgal species as an independently evolving metapopulation lineage, whereby we can test for reproductive isolation or the occupation of distinct adaptive zones, among other mechanisms, as secondary lines of supporting evidence.  相似文献   

3.
What is life?     
Background

Many traditional biological concepts continue to be debated by biologists, scientists and philosophers of science. The specific objective of this brief reflection is to offer an alternative vision to the definition of life taking as a starting point the traits common to all living beings.

Results and Conclusions

Thus, I define life as a process that takes place in highly organized organic structures and is characterized by being preprogrammed, interactive, adaptative and evolutionary. If life is the process, living beings are the system in which this process takes place. I also wonder whether viruses can be considered living things or not. Taking as a starting point my definition of life and, of course, on what others have thought about it, I am in favor of considering viruses as living beings. I base this conclusion on the fact that viruses satisfy all the vital characteristics common to all living things and on the role they have played in the evolution of species. Finally, I argue that if there were life elsewhere in the universe, it would be very similar to what we know on this planet because the laws of physics and the composition of matter are universal and because of the principle of the inexorability of life.

  相似文献   

4.
Biosemiotics is the synthesis of biology and semiotics, and its main purpose is to show that semiosis is a fundamental component of life, i.e., that signs and meaning exist in all living systems. This idea started circulating in the 1960s and was proposed independently from enquires taking place at both ends of the Scala Naturae. At the molecular end it was expressed by Howard Pattee’s analysis of the genetic code, whereas at the human end it took the form of Thomas Sebeok’s investigation into the biological roots of culture. Other proposals appeared in the years that followed and gave origin to different theoretical frameworks, or different schools, of biosemiotics. They are: (1) the physical biosemiotics of Howard Pattee and its extension in Darwinian biosemiotics by Howard Pattee and by Terrence Deacon, (2) the zoosemiotics proposed by Thomas Sebeok and its extension in sign biosemiotics developed by Thomas Sebeok and by Jesper Hoffmeyer, (3) the code biosemiotics of Marcello Barbieri and (4) the hermeneutic biosemiotics of Anton Marko?. The differences that exist between the schools are a consequence of their different models of semiosis, but that is only the tip of the iceberg. In reality they go much deeper and concern the very nature of the new discipline. Is biosemiotics only a new way of looking at the known facts of biology or does it predict new facts? Does biosemiotics consist of testable hypotheses? Does it add anything to the history of life and to our understanding of evolution? These are the major issues of the young discipline, and the purpose of the present paper is to illustrate them by describing the origin and the historical development of its main schools.  相似文献   

5.
6.
A general understanding of biological invasions will provide insights into fundamental ecological and evolutionary problems and contribute to more efficient and effective prediction, prevention and control of invasions. We review recent papers that have proposed conceptual frameworks for invasion biology. These papers offer important advances and signal a maturation of the field, but a broad synthesis is still lacking. Conceptual frameworks for invasion do not require invocation of unique concepts, but rather should reflect the unifying principles of ecology and evolutionary biology. A conceptual framework should incorporate multicausality, include interactions between causal factors and account for lags between various stages. We emphasize the centrality of demography in invasions, and distinguish between explaining three of the most important characteristics by which we recognize invasions: rapid local population increase, monocultures or community dominance, and range expansion. As a contribution towards developing a conceptual synthesis of invasions based on these criteria, we outline a framework that explicitly incorporates consideration of the fundamental ecological and evolutionary processes involved. The development of a more inclusive and mechanistic conceptual framework for invasion should facilitate quantitative and testable evaluation of causal factors, and can potentially lead to a better understanding of the biology of invasions.  相似文献   

7.
Recent successes of systems biology clarified that biological functionality is multilevel. We point out that this fact makes it necessary to revise popular views about macromolecular functions and distinguish between local, physico-chemical and global, biological functions. Our analysis shows that physico-chemical functions are merely tools of biological functionality. This result sheds new light on the origin of cellular life, indicating that in evolutionary history, assignment of biological functions to cellular ingredients plays a crucial role. In this wider picture, even if aggregation of chance mutations of replicator molecules and spontaneously self-assembled proteins led to the formation of a system identical with a living cell in all physical respects but devoid of biological functions, it would remain an inanimate physical system, a pseudo-cell or a zombie-cell but not a viable cell. In the origin of life scenarios, a fundamental circularity arises, since if cells are the minimal units of life, it is apparent that assignments of cellular functions require the presence of cells and vice versa. Resolution of this dilemma requires distinguishing between physico-chemical and biological symbols as well as between physico-chemical and biological information. Our analysis of the concepts of symbol, rule and code suggests that they all rely implicitly on biological laws or principles. We show that the problem is how to establish physico-chemically arbitrary rules assigning biological functions without the presence of living organisms. We propose a solution to that problem with the help of a generalized action principle and biological harnessing of quantum uncertainties. By our proposal, biology is an autonomous science having its own fundamental principle. The biological principle ought not to be regarded as an emergent phenomenon. It can guide chemical evolution towards the biological one, progressively assigning greater complexity and functionality to macromolecules and systems of macromolecules at all levels of organization. This solution explains some perplexing facts and posits a new context for thinking about the problems of the origin of life and mind.  相似文献   

8.
Life is a complex phenomenon that not only requires individual self-producing and self-sustaining systems but also a historical-collective organization of those individual systems, which brings about characteristic evolutionary dynamics. On these lines, we propose to define universally living beings as autonomous systems with open-ended evolution capacities, and we claim that all such systems must have a semi-permeable active boundary (membrane), an energy transduction apparatus (set of energy currencies) and, at least, two types of functionally interdependent macromolecular components (catalysts and records). The latter is required to articulate a 'phenotype-genotype' decoupling that leads to a scenario where the global network of autonomous systems allows for an open-ended increase in the complexity of the individual agents. Thus, the basic-individual organization of biological systems depends critically on being instructed by patterns (informational records) whose generation and reliable transmission cannot be explained but take into account the complete historical network of relationships among those systems. We conclude that a proper definition of life should consider both levels, individual and collective: living systems cannot be fully constituted without being part of the evolutionary process of a whole ecosystem. Finally, we also discuss a few practical implications of the definition for different programs of research.  相似文献   

9.
A cluster of similar trends emerging in separate fields of science and philosophy points to new opportunities to apply biosemiotic ideas as tools for conceptual integration in theoretical biology. I characterize these developments as the outcome of a “relational turn” in these disciplines. They signal a shift of attention away from objects and things and towards relational structures and processes. Increasingly sophisticated research technologies of molecular biology have generated an enormous quantity of experimental data, sparking a need for relational approaches that could help to find recurrent patterns in the mass of data. Earlier conceptions of relational biology and cybernetics, once deemed too abstract and speculative, are now resurrected and applied by means of new computational and simulation tools. I think this receptivity should be extended to incorporate nets of semiotic relations as heuristic guides for discerning global patterns of interactions in living systems. In this article I review aspects of systems biology and new directions in evolutionary theory, focusing on the role of circular and downward causation in relational structures and dynamical networks. I also indicate promising avenues of integration of some ideas of biosemiotics with those emerging from these new currents in biology. Relational developments in biology bear a telling similarity to a parallel relational turn presently manifest in the philosophy of science, rooted in the philosophy of physics and mathematics and in different varieties of structural and informational realism. The recognition of the relational nature of reality within these disciplines entails a tacit repudiation of nominalistic biases in science that have hindered the reception of semitiotic conceptions in biology. In previous investigations I explored connections between two kinds of relational structures: the networks of self-referential circular loops that appear pervasively in living systems, and the triadic relational structures that Peircean semiotics places at the basis of all semiotic transactions. Current relational views in the sciences seem oblivious to the difference between dyadic and triadic relations. Incorporating this essential distinction from biosemiotics into other fields could be a first step in seizing the opportunities opened by the relational turn for a renewal of biology and of natural philosophy in general, across disciplinary boundaries.  相似文献   

10.
The origin of translation is critical for understanding the evolution of life, including the origins of life. The canonical genetic code is one of the most dominant aspects of life on this planet, while the origin of heredity is one of the key evolutionary transitions in living world. Why the translation apparatus evolved is one of the enduring mysteries of molecular biology. Assuming the hypothesis, that during the emergence of life evolution had to first involve autocatalytic systems which only subsequently acquired the capacity of genetic heredity, we propose and discuss possible mechanisms, basic aspects of the emergence and subsequent molecular evolution of translation and ribosomes, as well as enzymes as we know them today. It is possible, in this sense, to view the ribosome as a digital-to-analogue information converter. The proposed mechanism is based on the abilities and tendencies of short RNA and polypeptides to fold and to catalyse biochemical reactions. The proposed mechanism is in concordance with the hypothesis of a possible chemical co-evolution of RNA and proteins in the origin of the genetic code or even more generally at the early evolution of life on Earth. The possible abundance and availability of monomers at prebiotic conditions are considered in the mechanism. The hypothesis that early polypeptides were folding on the RNA scaffold is also considered and mutualism in molecular evolutionary development of RNA and peptides is favoured.  相似文献   

11.
During the last two decades evolutionary developmental biology has become a major research programme whose findings put into question some concepts lying at the core of the 'Synthetic Theory'. However, some authors are waiting for a 'revolution' in biology, one in which the existing genetic determinism will give way to a new conceptual understanding of the complexity of living organisms. This 'revolution' should necessarily pass through the elaboration of an appropriate theoretical framework integrating the non-linear dynamics of development as its fundamental basis. This objective implies a drastic shift in the way causality is generally understood as well as a purge of numerous convenient but misleading metaphors such as genetic or developmental programmes. Although most authors do not take these metaphors too literally, some persist in employing such 'instructionist' notions in a more literal perspective, and, in doing so, deny some concepts at the core of evolutionary developmental biology. We critically review two recent studies suggesting that shell coiling has re-evolved in a family of limpets (Calyptraeidae, Gastropoda). We stress that this putative re-evolution of snail shell coiling results only from an arbitrary scoring procedure leading us to consider shell coiling as a binary discrete character. We show that the way in which these authors connect this case study to evolutionary theories stems from the unwarranted premise of a linear mapping of genes onto phenotypes where particulate inheritance of morphological characters seems implicitly assumed. We illustrate how the persisting unclear role of genes in morphogenesis allows the maintenance of the adaptationist programme.  相似文献   

12.
Evolutionary adaptation has been suggested as the hallmark of life that best accounts for life’s creativity. However, current evolutionary approaches still fail to give an adequate account of it, even if they are able to explain both the origin of novelties and the proliferation of certain traits in a population. Although modern-synthesis Darwinism is today usually appraised as too narrow a position to cope with all the complexities of developmental and structural biology—not to say biosemiotic phenomena—, Darwinism need not be if we separate metaphor from reality in natural selection in order to show the axiological complexity of this concept. This can shed light on the relationship between biosemiotics and biological evolution.  相似文献   

13.
H. H. Pattee 《Biosemiotics》2009,2(3):291-302
Umerez’s analysis made me aware of the fundamental differences in the culture of physics and molecular biology and the culture of semiotics from which the new field of biosemiotics arose. These cultures also view histories differently. Considering the evolutionary span and the many hierarchical levels of organization that their models must cover, models at different levels will require different observables and different meanings for common words, like symbol, interpretation, and language. These models as well as their histories should be viewed as complementary rather than competitive. The relation of genetic language and human language is the central issue. They are separated by 4 billion years and require entirely different models. Nevertheless, these languages have in common a unique unlimited expressive power that allows open-ended evolution and creative thought. Understanding the nature of this expressive power and how it arises remains a basic unsolved problem of biosemiotics.  相似文献   

14.
The principles that govern the emergence of life from non-life remain a subject of intense debate. The evolutionary paradigm built up over the last 50 years, that argues that the evolutionary driving force is the Second Law of Thermodynamics, continues to be promoted by some, while severely criticized by others. If the thermodynamic drive toward ever-increasing entropy is not what drives the evolutionary process, then what does? In this paper, we analyse this long-standing question by building on Eigen's "replication first" model for life's emergence, and propose an alternative theoretical framework for understanding life's evolutionary driving force. Its essence is that life is a kinetic phenomenon that derives from the kinetic consequences of autocatalysis operating on specific biopolymeric systems, and this is demonstrably true at all stages of life's evolution--from primal to advanced life forms. Life's unique characteristics--its complexity, energy-gathering metabolic systems, teleonomic character, as well as its abundance and diversity, derive directly from the proposition that from a chemical perspective the replication reaction is an extreme expression of kinetic control, one in which thermodynamic requirements have evolved to play a supporting, rather than a directing, role. The analysis leads us to propose a new sub-division within chemistry--replicative chemistry. A striking consequence of this kinetic approach is that Darwin's principle of natural selection: that living things replicate, and therefore evolve, may be phrased more generally: that certain replicating things can evolve, and may therefore become living. This more general formulation appears to provide a simple conceptual link between animate and inanimate matter.  相似文献   

15.
16.
The purpose of this paper is to describe some parallels and theoretical affinities between biosemiotics and biolinguistics. In particular, this paper examines the importance of Uexküll's Umwelt and Peircean abduction as foundational concepts for Sebeok's biosemiotics and Chomsky's biolinguistic program. Other affinities touched upon in this paper include references to concepts articulated by Immanuel Kant, Konrad Lorenz, Marcel Florkin, François Jacob, C.H. Waddington, D'Arcy Thomson and Ernst Haeckel. While both programs share theoretical influences and historiographical parallels in their mid-century origins continuing throughout the late twentieth century, recent articulations of biosemiotics and biolinguistics privilege different intellectual styles and methods of inquiry that define their future objectives as intellectual movements. The goal of this paper is to show that, in spite of the different scholarly agendas of biosemiotics and biolinguistics, both movements share a theoretical and philosophical core in Peirce and Uexküll.  相似文献   

17.
If the problem of the origin of life is conceptualized as a process of emergence of biochemistry from proto-biochemistry, which in turn emerged from the organic chemistry and geochemistry of primitive earth, then the resources of the new sciences of complex systems dynamics can provide a more robust conceptual framework within which to explore the possible pathways of chemical complexification leading to living systems and biosemiosis. In such a view the emergence of life, and concomitantly of natural selection and biosemiosis, is the result of deep natural laws (the outlines of which we are only beginning to perceive) and reflects a degree of holism in those systems that led to life. Further, such an approach may lead to the development of a more general theory of biology and of natural organization, one informed by semiotic concepts.  相似文献   

18.
Communication is an important feature of the living world that mainstream biology fails to adequately deal with. Applying two main disciplines can be contemplated to fill in this gap: semiotics and information theory. Semiotics is a philosophical discipline mainly concerned with meaning; applying it to life already originated in biosemiotics. Information theory is a mathematical discipline coming from engineering which has literal communication as purpose. Biosemiotics and information theory are thus concerned with distinct and complementary possible meanings of the word ‘communication’. Since literal communication needs to be secured so as to enable semantics being communicated, information theory is a necessary prerequisite to biosemiotics. Moreover, heredity is a purely literal communication process of capital importance fully relevant to literal communication, hence to information theory. A short introduction to discrete information theory is proposed, which is centred on the concept of redundancy and its use in order to make sequences resilient to errors. Information theory has been an extremely active and fruitful domain of researches and the motor of the tremendous progress of communication engineering in the last decades. Its possible connections with semantics and linguistics are briefly considered. Its applications to biology are suggested especially as regards error-correcting codes which are mandatory for securing the conservation of genomes. Biology needs information theory so biologists and communication engineers should closely collaborate.  相似文献   

19.
Quantum biology is emerging as a new field at the intersection between fundamental physics and biology, promising novel insights into the nature and origin of biological order. We discuss several elements of QBCL (quantum biology at cellular level) – a research program designed to extend the reach of quantum concepts to higher than molecular levels of biological organization. We propose a new general way to address the issue of environmentally induced decoherence and macroscopic superpositions in biological systems, emphasizing the ‘basis-dependent’ nature of these concepts. We introduce the notion of ‘formal superposition’ and distinguish it from that of Schroedinger's cat (i.e., a superposition of macroscopically distinct states). Whereas the latter notion presents a genuine foundational problem, the former one contradicts neither common sense nor observation, and may be used to describe cellular ‘decision-making’ and adaptation. We stress that the interpretation of the notion of ‘formal superposition’ should involve non-classical correlations between molecular events in a cell. Further, we describe how better understanding of the physics of Life can shed new light on the mechanism driving evolutionary adaptation (viz., ‘Basis-Dependent Selection’, BDS). Experimental tests of BDS and the potential role of synthetic biology in closing the ‘evolvability mechanism’ loophole are also discussed.  相似文献   

20.
We propose the existence of a relationship of stereochemical complementarity between gene sequences that code for interacting components: nucleic acid-nucleic acid, protein-protein and protein-nucleic acid. Such a relationship would impose evolutionary constraints on the DNA sequences themselves, thus retaining these sequences and governing the direction of the evolutionary process. Therefore, we propose that prebiotic, template-directed autocatalytic synthesis of mutally cognate peptides and polynucleotides resulted in their amplification and evolutionary conservation in contemporary prokaryotic and eukaryotic organisms as a genetic regulatory apparatus. If this proposal is correct, then the relationships between the sequences in DNA coding for these interactions constitute a life code of which the genetic code is only one aspect of the many related interactions encoded in DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号