首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
NCB-20 cells (neuroblastoma X fetal Chinese hamster brain hybrids) are equipped with a [3H]5-hydroxytryptamine [( 3H]5-HT) uptake system and [3H]imipramine recognition sites. Approximately 80% of the radioactivity taken up by cells incubated with [3H]5-HT was identified with 5-HT. [3H]5-HT uptake was temperature-dependent, partially sodium-dependent, saturable (Km = 7.3 +/- 0.6 microM; Vmax = 2.0 +/- 0.6 pmol/min/mg), and inhibited by clomipramine, imipramine, fluoxetine, and desipramine, but not by iprindole, mianserin, or opipramol. Lineweaver-Burk plots showed a competitive type of inhibition by imipramine and fluoxetine. [3H]5-HT uptake was not inhibited by nisoxetine or benztropine. [3H]Imipramine binding sites had a KD of 12 +/- 2 nM and a Bmax of 22 +/- 7 pmol/mg protein. The binding was sodium-sensitive although to a lesser extent than that found with brain membranes. Imipramine binding was displaced by tricyclic antidepressants with the following order of potency: clomipramine greater than imipramine greater than fluoxetine greater than desipramine much greater than iprindole = mianserin greater than opipramol. These results suggest that imipramine binding sites are present together with the 5-HT uptake sites in NCB-20 cells and that these sites interact functionally but are different biochemically.  相似文献   

2.
The binding of the 5-hydroxytryptamine (5-HT, serotonin) uptake inhibitor [3H]paroxetine to rat cortical homogenates has been characterized. The effect of tissue concentration was examined and, with 0.75 mg wet weight tissue/ml in a total volume of 1,600 microliter, the binding was optimized with an apparent dissociation constant (KD) of 0.03-0.05 nM. Competition experiments with 5-HT, citalopram, norzimeldine, and desipramine revealed a high (90%) proportion of displaceable binding that fitted a single-site binding model. Fluoxetine and imipramine revealed, in addition to a high-affinity (nanomolar) site, also a low-affinity (micromolar) site representing approximately 10% of the displaceable binding. The specificity of the [3H]paroxetine binding was emphasized by the fact that 5-HT was the only active neurotransmitter bound and that the serotonin S1 and S2 antagonist methysergide was without effect on the binding. Both 5-HT- and fluoxetine-sensitive [3H]paroxetine binding was completely abolished after protease treatment, suggesting that the binding site is of protein nature. Saturation studies with 5-HT (100 microM) sensitive [3H]paroxetine binding were also consistent with a single-site binding model, and the binding was competitively inhibited by 5-HT and imipramine. The number of binding sites (Bmax) for 5-HT-sensitive [3H]paroxetine and [3H]imipramine binding was the same, indicating that the radioligands bind to the same sites. Lesion experiments with p-chloroamphetamine resulted in a binding in frontal and parietal cortices becoming undetectable and a greater than 60% reduction in the striatum and hypothalamus, indicating a selective localization on 5-HT terminals. Together these findings suggest that [3H]paroxetine specifically and selectively labels the substrate recognition site for 5-HT uptake in rat brain.  相似文献   

3.
The specific binding of [3H]imipramine to mouse brain membranes in an assay containing 120 mM NaCl and 5 mM KCl was similar in regional distribution and pharmacological specificity to that reported previously in rat and human brain. However, the absence of ions decreased the density of the specific binding of [3H]imipramine and did not affect the equilibrium dissociation constant. Sodium was the only cation, and halides were the only anions tested that enhanced the specific binding of [3H]imipramine. Chloride did not increase the density of binding in the absence of sodium. The ion-sensitive binding of [3H]imipramine was regionally dependent and was highly correlated with the uptake of 5-hydroxytryptamine (5-HT, serotonin) into synaptosomes from brain regions. 5-HT did not inhibit the binding of [3H]imipramine in the absence of ions. Antidepressants inhibited binding in the absence and presence of ions, but in the presence of ions inhibition curves were shifted to the left and the apparent complexity of inhibition was increased. Quantitative analysis of the inhibition of [3H]imipramine binding by antidepressants conducted in the presence of ions was consistent with two binding sites. Lesion of the serotonergic input to the cerebral cortex by 5,7-dihydroxytryptamine suggested that both the 5-HT-sensitive and ion-sensitive binding of [3H]imipramine were associated with serotonergic nerve terminals. [3H]Imipramine binding displaced by desipramine, but insensitive to 5-HT and ions, was not affected by the lesion. Thus, the binding of [3H]imipramine that is displaced by desipramine, the most common assay for [3H]imipramine binding, includes a component that is not associated with brain serotonergic nerve terminals and 5-HT uptake, and, in addition, a separable component that is highly correlated with serotonergic function. These data have important implications for studies of serotonergic neurons and for the interpretation of imipramine binding data.  相似文献   

4.
The binding of [3H]indalpine (4-[2-(3-indolyl)]ethyl piperidine) to slide-mounted sections of rat brain has been characterized. This 5-hydroxytryptamine (5-HT) uptake blocker binds to sections with high affinity (KD approximately 1 nM). The binding is saturable, and can be displaced by the addition of clomipramine (1 microM). Other drugs inhibiting the uptake of 5-HT also have the capacity to inhibit the binding of [3H]indalpine. A significant correlation (r = 0.86) was found between the capacity of these compounds to inhibit the uptake of 5-HT and their potencies as inhibitors of [3H]indalpine binding. Binding was Na+ - and Cl- -dependent and was inhibited competitively by 5-HT. Furthermore, electrolytic lesions of the dorsal raphe or medial forebrain bundle, which cause a degeneration of 5-HT cell bodies and fibers, respectively, resulted in a 30-40% reduction in the binding of [3H]indalpine. [3H]Indalpine binds to the 5-HT uptake recognition sites in a different manner from imipramine-like compounds.  相似文献   

5.
5-Methoxytryptoline potently inhibits [3H]imipramine binding to membranes from the cerebral cortex and platelets. Since 5-methoxytryptoline, which appears to occur endogenously with particularly high levels in the human pineal gland, also inhibits 5-hydroxytryptamine (5-HT, serotonin) uptake, it should be considered as a putative endogenous ligand modulating 5-HT transport. As the 5-HT transporter complex comprises the imipramine and the substrate recognition sites, which interact allosterically, it was essential to define the mechanism of inhibition of [3H]imipramine binding by 5-methoxytryptoline. Human platelets show an active and saturable uptake of 5-HT and tryptamine. The uptake of both substrates appears to be mediated by the same carrier and it is inhibited by 5-methoxytryptoline at submicromolar concentrations. 5-HT and tryptamine inhibit [3H]imipramine binding in human platelets with a Hill slope for inhibition close to unity and IC50 values of 3,265 and 3,475 nM, respectively. This inhibition is, however, not competitive because both 5-HT and tryptamine significantly decrease the rate of [3H]imipramine-receptor dissociation. Although 5-methoxytryptoline potently inhibits [3H]imipramine binding (IC50 = 44 nM) in human platelets with a Hill slope of unity, it does not affect the receptor-ligand dissociation rate of [3H]imipramine even at concentrations up to 100 microM. The present experiments show that 5-methoxytryptoline, in spite of its chemical similarity to the indoleamine transporter substrates, interacts with the imipramine receptor through a mechanism of competitive inhibition. This conclusion is supported by a selective effect of 5-methoxytryptoline on the Kd of [3H]imipramine binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effects of 5-hydroxytryptamine (5-HT) and 5-HT uptake inhibitors on the dissociation of [3H]paroxetine from rat brain membrane binding sites have been investigated. The dissociation induced by 5-HT (100 microM), paroxetine (0.15 microM), clomipramine (1 microM), citalopram (1 microM), imipramine (1 microM), or norzimeldine (1 microM) was consistent with first-order dissociation kinetics with half-life values of dissociation (t1/2) between 130 and 140 min. The dissociation induced by the combination of 5-HT (100 microM) with either citalopram (1 microM) or imipramine (1 microM) was not different from that initiated by either agent alone. These dissociation data, which are at variance with previous data on the 5-HT transporter labeled with [3H]imipramine, support a single-site model of the antidepressant binding/5-HT uptake site.  相似文献   

7.
The inhibition of [3H]5-hydroxytryptamine [( 3H]5-HT) binding in rat brain by 1-[2-(3-bromoacetamidophenyl)ethyl]-4-(3-trifluoromethylphenyl) piperazine (BrAcTFMPP) and that by spiperone were compared. Spiperone inhibition of [3H]5-HT binding in cortex was consistent with displacement from two sites with dissociation constants (KD) of 24 nM (5-HT-1A site) and 19 microM (5-HT-1B site) for spiperone. BrAcTFMPP also discriminated two subpopulations of [3H]5-HT binding sites with dissociation constants of 0.5 nM and 146 nM for the compound. The proportion of high-affinity sites for each compound represented about 35% of the specific [3H]5-HT binding. In the presence of 1 microM spiperone, a concentration that saturates the 5-HT-1A sites while having a minimal effect on 5-HT-1B sites, BrAcTFMPP displaced [3H]5-HT from a single site with a KD for BrAcTFMPP of 145 nM. The inhibition of [3H]5-HT binding by spiperone in the presence of 30 nM BrAcTFMPP was best fit by a single-site model with a KD of 21 microM for spiperone. In corpus striatum, 5-HT-1A sites, as defined with spiperone, represented 15% of the specific [3H]5-HT binding and 30 nM BrAcTFMPP also blocked about 15% of the binding. A significant difference between spiperone and BrAcTFMPP was their affinity for 5-HT-2 receptors. BrAcTFMPP (KD = 41 nM) had an 80-fold lower affinity for these sites than spiperone (KD = 0.5 nM). Thus, BrAcTFMPP and spiperone discriminate the same two subpopulations of [3H]5-HT binding sites and BrAcTFMPP displays a high affinity and a selectivity for 5-HT-1A sites versus both 5-HT-1B and 5-HT-2 sites.  相似文献   

8.
Abstract: The nature of [3H]imipramine binding to human platelets was investigated. Desipramine and 5-hydroxytryptamine (5-HT) displaced the same amount of binding and the binding was sensitive to protease treatment. The nature of pharmacological inhibition of [3H]imipramine binding was investigated in saturation experiments. Increases in K d without changes in B max were noted with the addition of 5-HT, desipramine, norzimeldine, or 5-methoxytryptoline. Reductions in B max without alterations in K D were obtained when citalopram or clomipramine was added. It is concluded that the [3H]imipramine binding site in human platelets is of protein nature and that this binding site contains the substrate recognition site for 5-HT uptake. In addition, [3H]imipramine and other 5-HT uptake inhibitors have bonds to other parts of the 5-HT uptake carrier or to the surrounding lipid membrane. This additional binding outside the substrate recognition site is not one single site but most likely represents sites that are specific for the chemical structure of each uptake inhibitor, respectively.  相似文献   

9.
1-[2-(4-Aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (PAPP) inhibits [3H]5-hydroxytryptamine (5-HT, serotonin) binding to 5-HT1A and 5-HT1B sites in rat brain with apparent equilibrium dissociation constants (KD) of 2.9 and 328 nM, respectively. [3H]PAPP was synthesized, its binding to central serotonin receptors was examined, and its potential usefulness as a 5-HT1A receptor radioligand was evaluated. With either 10 microM 5-HT or 1 microM 8-hydroxy-2-(di-n-propylamino)tetralin to define nonspecific binding, [3H]PAPP bound to a single class of sites in rat cortical membranes with a KD of 1.6 nM and a maximal binding density (Bmax) of 162 fmol/mg of protein. d-Lysergic acid diethylamide and 5-HT, two nonselective inhibitors of [3H]5-HT binding, displaced 1 nM [3H]PAPP with a potency that matched their affinity for 5-HT1 receptors. Spiperone and 8-hydroxy-2-(di-n-propylamino)tetralin, two compounds that discriminate [3H]5-HT binding to 5-HT1A and 5-HT1B sites, inhibited [3H]PAPP binding in accordance with their much higher affinities for the 5-HT1A receptor subtype. Furthermore, the ability of N-(m-trifluoromethylphenyl)piperazine and ketanserin to inhibit [3H]PAPP binding reflected their low affinities for the 5-HT1A receptor. Several nonserotonergic compounds were also found to be relatively poor displacers of [3H]PAPP binding. The regional distribution of serotonin-sensitive [3H]PAPP sites correlated with the densities of 5-HT1A receptors in the cortex, hippocampus, corpus striatum, and cerebellum of the rat. These results indicate that [3H]PAPP binds selectively and with high affinity to 5-HT1A receptor sites in rat brain.  相似文献   

10.
Although [3H]imipramine is a selective radioligand for the 5-hydroxytryptamine (5-HT) transporter in human platelets, its affinity for binding to the 5-HT transporter complex at 0 degrees C (0.6 nM) is significantly higher than its potency for inhibition of [3H]5-HT uptake at the physiological temperature of 37 degrees C (Ki = 29 nM). As this apparent discrepancy could be related to the assay temperature, we studied the thermodynamics of drug interaction with the 5-HT transporter at assay temperatures between 0 degrees C and 37 degrees C, using as radioligands [3H]imipramine (0 degrees C and 20 degrees C) and [3H]paroxetine (20 degrees C and 37 degrees C), a newly available probe for the 5-HT transporter. At 20 degrees C, Ki values of 14 tricyclic and nontricyclic drugs for inhibition of [3H]imipramine and [3H]paroxetine binding to human platelet membranes were highly significantly correlated (r = 0.98, p less than 0.001), validating the use of these two radioligands to study the 5-HT transporter over a temperature range larger than was previously possible with [3H]imipramine alone. The affinity of imipramine for the 5-HT transporter is progressively enhanced with decreasing incubation temperature, thus favoring the selectivity of [3H]imipramine for the 5-HT transporter at 0 degrees C. At 37 degrees C, the Ki of imipramine for inhibition of [3H]paroxetine binding is 32 nM, and equals its Ki value for inhibition of 5-HT uptake into human platelets. With the exception of chlorimipramine, other tricyclic 5-HT uptake inhibitors showed a temperature sensitivity in their interaction with the 5-HT transporter similar to that of imipramine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
P Ribeiro  R A Webb 《Life sciences》1987,40(8):755-768
[3H]5-HT exhibited specific binding in membrane preparations of Hymenolepis diminuta. The specific binding was saturable, reversible and temperature dependent. A non-linear Scatchard plot was obtained in a concentration range of 11 nM - 1000 nM [3H]5-HT, which could be resolved into sites having apparent dissociation constants (KD) of 0.10 microM and 6.25 microM for the high-affinity and low-affinity components, respectively. The latter could be selectively eliminated by binding [3H]5-HT to H. diminuta membranes in the presence of 10(-3) M nitroimipramine. Drug displacement studies, using 0.20 microM and 2.0 microM [3H]5-HT, revealed that while low-affinity [3H]5-HT binding was displaced by unlabelled 5-HT and inhibitors of 5-HT uptake, high affinity [3H]5-HT binding was affected only by tryptamine derivatives and, to a lesser extent, methysergide. In addition, high-affinity binding was stimulated by MgCl2 while low-affinity binding showed sodium-dependency. The data implicate the low-affinity site as a putative 5-HT transporter and the high-affinity site as a putative 5-HT 1 receptor. Exposure of H. diminuta membranes to 5-HT resulted in a 3-4 fold stimulation of cAMP levels. The EC 50 for the 5-HT-induced activation of adenylate cyclase (0.76 microM) was of the same order of magnitude as the apparent KD for high-affinity binding. Furthermore, the order of drug potency for the elevation of cAMP levels by 5-HT agonists and reversal by 5-HT antagonists was identical to the order of drug potency for the inhibition of high-affinity binding, suggesting linkage of the putative 5-HT 1 receptor to adenylate cyclase in H. diminuta.  相似文献   

12.
Brain astroglial cells, whether from a bulk isolated preparation or in culture, have been shown to take up serotonin actively. [3H]imipramine has been proposed as a specific label for serotonin uptake sites in brain. We therefore studied the binding of [3H]imipramine to C6 astroglial cells in culture to determine if some of the binding of this radioligand in brain homogenates is actually to serotonin transporting sites on glia. [3H]Imipramine binds saturably (Bmax = 202 fmol/mg protein) and with high affinity (KD = 1.72 nM) to C6 cells. This binding is competitively inhibited by other tricyclic antidepressants. The C6 cells actively transport [3H]serotonin with a Km of 2 microM and a Vmax of 1080 fmol/10(6) cells/min. However, the pharmacological profile for inhibition of serotonin uptake does not correlate with the pharmacological profile for inhibition of [3H]imipramine binding. These results suggest that the binding of [3H]imipramine to astroglial cells is not related to their capacity for active uptake of serotonin. Further, in brain homogenates, some of the binding of [3H]imipramine may not be to neuronal uptake sites but rather may be to sites on astroglial cells.  相似文献   

13.
The present study characterizes a serotonin (5-HT) binding site on human platelet membranes, using [3H]8-OH-DPAT as the radioligand. [3H]8-OH-DPAT binds specifically and saturably to a site on human platelet membranes with an average KD of 43 nM and Bmax of 1078 fmol/mg protein. Determinations of IC50 values for various serotonergic characterizing agents in platelets for displacement of [3H]8-OH-DPAT were performed. For example, 8-OH-DPAT 5HT1A had an IC50 of 117 nM; TFMPP 5HT1B (2.3 microM0 and PAPP 1A + 5HT2 (9 microM); ipsapirone 5HT1A (21.1 microM) and buspirone 5HT1A (greater than 100 microM); ketanserin 5HT2 (greater than 100 microM); 5-HT uptake inhibitors: paroxetine (13 nM); chlorimipramine (73 nM) and fluoxetine (653 nM). The pharmacological inhibitory profile of the platelet 8-OH-DPAT site is not consistent with profiles reported for brain. 8-OH-DPAT does not inhibit [3H]imipramine binding, however, it does inhibit [3H]5-HT uptake in human platelets near 5-HT's Km value (IC50 = 2-4 microM). These results suggest that the human platelet site labeled by [3H]8-OH-DPAT is pharmacologically different from the neuronal site and probably is a component of the 5-HT transporter.  相似文献   

14.
5-Hydroxytryptamine (5-HT) showed a biphasic effect on the dissociation rate of [3H]imipramine from human platelet membranes: At low concentrations (EC50, approximately 2.5 microM), 5-HT stimulated the rate, as expected for mutually exclusive binding of 5-HT and imipramine; at higher concentrations (EC50, approximately 40 microM), 5-HT reduced this stimulated rate, a result consistent with 5-HT binding at a site that is physically distinct from both the imipramine binding site and the 5-HT transport recognition site of the 5-HT carrier. This modulatory effect could be mimicked by tryptamine, was saturable and independent of Na+ concentration, and could also be demonstrated for detergent-solubilized carriers. Monophasic association kinetics for [3H]imipramine binding were found. Heat stability experiments showed biphasic thermal inactivation curves. These results are consistent with [3H]imipramine binding to two classes of binding sites at the 5-HT carrier on human platelet membranes, with affinities three- to fivefold different. 5-HT can convert the lower-affinity state into the higher-affinity state.  相似文献   

15.
The nature of interaction between the site labeled by [3H]imipramine (IMI) and the 5-hydroxytryptamine (5-HT, serotonin) transporter in human platelets was examined. The sulfhydryl characterizing agent N-ethylmaleimide (NEM) differentially affected [3H]5-HT uptake and [3H]IMI binding in human platelet preparations. Concentrations of NEM that completely abolished [3H]5-HT uptake only minimally reduced [3H]IMI binding. Examining the effect of IMI on the kinetics of human platelet [3H]5-HT uptake revealed significant reductions in maximal velocity (Vmax) without altering affinity (Km). IC50 values for selected uptake blockers on [3H]IMI binding and [3H]5-HT uptake were determined. IC50 values of these compounds for uptake and binding revealed that agents such as IMI, chlorpromazine, amitriptyline, and nisoxetine were preferential inhibitors of [3H]IMI binding whereas fluoxetine, CL 216, 303, pyrilamine, and bicifadine were preferential [3H]5-HT uptake blockers. 5-HT was a weak displacer of [3H]IMI binding (IC25 = 3.0 microM) and exhibited a rather low Hill coefficient (nH app = 0.46). Results reported herein support the notion of an allosteric interaction between the [3H]IMI binding site and the 5-HT transporter complex in human platelets.  相似文献   

16.
Abstract: High-affinity binding sites (apparent K D= 1.5 nM) for [3H]desipramine have been demonstrated and characterized in membranes prepared from rat brain. The binding of [3H]desipramine was found to be saturable, reversible, heat-sensitive, sodium-dependent, and regionally distributed among various regions of the brain. High concentrations of [3H]desipramine binding sites were found in the septum, cerebral cortex, and hypothalamus, whereas lower concentrations were found in the medulla, cerebellum, and corpus striatum. A very good correlation ( r = 0.81, P < 0.001) was observed between the potencies of a series of drugs in inhibiting high-affinity [3H]desipramine binding and their capacity to block norepinephrine uptake into synaptosomes. In 6-hydroxydopamine-lesioned rats there was a marked decrease in [3H]norepinephrine uptake and [3H]desipramine binding with no significant alterations in either [3H]serotonin uptake or [3H]imipramine binding. These results suggest that the high-affinity binding of [3HJdesipramine to rat brain membranes is pharmacologically and biochemically distinct from the high-affinity binding of [3H]imipramine, and that there is a close relationship between the high-affinity binding site for [3H]desipramine and the uptake site for norepinephrine.  相似文献   

17.
Abstract: The serotonin (5-HT) uptake system of goldfish retina was evaluated by the binding of [3H]paroxetine to membrane preparations and the uptake of [3H]5-HT into isolated cells from goldfish retina. The order of potency of inhibitors of [3H]paroxetine binding was imipramine > 5-methoxy- N,N -dimethyltryptamine > desipramine > fluoxetine > citalopram > 5-HT. The saturation experiments indicated a high-affinity binding site, and positive cooperativity with Hill coefficient higher than unity. The association reached equilibrium at about one hour of incubation and was efficiently displaced by imipramine. The equilibrium dissociation constants calculated by the antilog of the log concentration of ligand giving 50% of occupation, and by the ratio of dissociation/association constants, were similar: 5.84 and 2.34 n M , respectively. The binding was not significantly reduced by decreasing the temperature of incubation and was sodium dependent. The lesion with 5,7-dihydroxytryptamine reduced the binding to 60%. The uptake of [3H]5-HT into isolated cells also showed positive cooperativity. The order of potency of inhibitors was similar to the one obtained for the binding of [3H]paroxetine. Darkness increased the uptake of 5-HT. The allosteric regulation of the 5-HT transporter and the modulation by light could be related to the physiological role of the monoamine, as a neurotransmitter and as a precursor of melatonin synthesis in the retina.  相似文献   

18.
Total 5-HT binding sites and 5-HT1A receptor density was measured in brain regions of rats treated with imipramine (5 mg/kg body wt), desipramine (10 mg/kg body wt) and clomipramine (10 mg/kg body wt), for 40 days, using [3H]5-HT and [3H]8-OH-DPAT, respectively. It was observed that chronic exposure to tricyclic antidepressants (TCAs) results in significant downregulation of total [3H]5-HT binding sites in cortex (42–76%) and hippocampus (35–67%). The 5-HT1A receptor density was, however, decreased significantly (32–60%) only in cortex with all the three drugs. Interestingly, in hippocampus imipramine treatment increased the 5-HT1A receptor density (14%). The affinity of [3H]8-OH-DPAT was increased only with imipramine treatment both in cortex and hippocampus. The affinity of [3H]5-HT to 5-HT binding sites in cortex was increased with imipramine treatment and decreased with desipramine and clomipramine treatment. 5-HT sensitive adenylyl cyclase (AC) activity was significantly increased in cortex with imipramine (72%) and clomipramine (17%) treatment, whereas in hippocampus only imipramine treatment significantly increased AC activity (50%). In conclusion, chronic treatment with TCAs results in downregulation of cortical 5-HT1A receptors along with concomitant increase in 5-HT stimulated AC activity suggesting the involvement of cortical 5-HT1A receptors in the mechanism of action of TCAs.  相似文献   

19.
Citalopram, a selective serotonin (5-HT) uptake inhibitor with antidepressant properties, was found to bind with high affinity to the 5-HT transporter from human neuronal and platelet membranes. At 20 degrees C, KD was about 1.5 nM in both tissues. [3H]Citalopram bound to rat neuronal membranes with higher affinity than to human neuronal and platelet membranes; at 20 degrees C KD was about 0.7 nM. The Bmax value for the binding of [3H]citalopram to platelet membranes was close to that found using the 5-HT uptake inhibitors [3H]imipramine and [3H]paroxetine, suggesting that all three 5-HT uptake inhibitors bind to the 5-HT transporter. The dissociation rate of [3H]citalopram increased twofold with each 4-5 degree C increase in temperature in both human and rat membranes, although at any given temperature, the dissociation rate was about four times faster in the human neuronal and platelet membranes than in rat neuronal membranes.  相似文献   

20.
The effects of learned helplessness on the 5-hydroxytryptamine (5-HT) uptake site were studied in rats using [3H]paroxetine binding. This ligand was chosen because it was demonstrated to label directly the 5-HT uptake site whereas the [3H]imipramine binding site has been demonstrated to be heterogeneous in nature. Moreover, [3H]imipramine appears to bind to a presynaptic recognition site different from the uptake site. Exposure to uncontrollable shock training and testing resulted in an overall increase in [3H]paroxetine binding in all the groups studied [nonhelpless (NLH), learned helpless (LH), spontaneously helpless (SPLH)] as compared to naive controls (NC). However, the increase in [3H]paroxetine binding was significantly higher in the LH and SPLH groups. The maximum number of [3H]paroxetine binding sites in the rat hippocampus was increased significantly in learned helpless rats (LH and SPLH) at day 4 and day 30 after the shock escape test as compared to NC and NLH rats. By contrast, in the rat hypothalamus the maximum number of [3H]paroxetine binding sites was reduced significantly in the LH rats as compared to naive controls and NLH rats during the same time course. There was no change in [3H]paroxetine binding sites in any other brain regions examined in LH, NLH, and NC rats. The results suggest that a hippocampal hypothalamic connection might play a role in the serotonergic mediation of learned helpless behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号