首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new metabolite which could be converted to aflatoxin (AF) B2 was detected during cofermentation analysis of two nonaflatoxigenic strains (SRRC 2043 and SRRC 163) of Aspergillus parasiticus. SRRC 2043, which accumulates the xanthone O-methylsterigmatocystin (OMST), a late precursor in the AFB1 pathway, was observed to accumulate another chemically related compound (HOMST; molecular weight, 356); SRRC 163 is blocked early in the pathway and accumulates averantin. During cofermentation of the two strains, levels of OMST and HOMST were observed to be greatly reduced in the culture, with simultaneous production of AFB1, AFB2, and AFG1. Intact cells of SRRC 163 were able to convert pure OMST or its precursor, sterigmatocystin, to AFB1 and AFG1 without AFB2 accumulation; the same cells converted isolated HOMST to AFB2 with no AFB1 or AFG1 production. The results indicate that AFB2 is produced from a separate branch in the AF biosynthetic pathway than are AFB1 and AFG1; AFB2 arises from HOMST, and AFB1 and AFG1 arise from sterigmatocystin and OMST.  相似文献   

2.
Cofermentation of Aspergillus parasiticus strains (SRRC 163 and SRRC 2043) blocked at different steps in the aflatoxin B1 (AFB1) biosynthetic pathway in a synthetic liquid medium or on seeds (cottonseed, corn kernels, and peanuts) resulted in production of AFB1. Strain SRRC 2043 accumulated O-methylsterigmatocystin (OMST), a late precursor in AFB1 biosynthesis, whereas SRRC 163 accumulated averantin, an early precursor in the pathway. Strain SRRC 2043 secreted large amounts of OMST in culture relative to the amounts of several other pathway intermediates secreted into media (by other AFB1 pathway-blocked strains). AFB1 production occurred even when colonies of SRRC 163 and SRRC 2043 strains (producing no detectable AFB1) were grown together on an agar medium while physically separated from each other by a filter membrane (0.22-micron pore size). In addition, when mycelia of strain SRRC 163 were added to culture filtrates (containing no mycelia but containing secreted OMST) of strain SRRC 2043, AFB1 production occurred. The results suggested a chemical (rather than genetic) mechanism of complementation for AFB1 production between AFB1 pathway-blocked strains, since no mycelial contact was required between these strains for AFB1 production. The mechanism for chemical complementation involves secretion of OMST by SRRC 2043 and subsequent absorption and conversion of OMST to AFB1 by mycelia of strain SRRC 163.  相似文献   

3.
Cofermentation of Aspergillus parasiticus strains (SRRC 163 and SRRC 2043) blocked at different steps in the aflatoxin B1 (AFB1) biosynthetic pathway in a synthetic liquid medium or on seeds (cottonseed, corn kernels, and peanuts) resulted in production of AFB1. Strain SRRC 2043 accumulated O-methylsterigmatocystin (OMST), a late precursor in AFB1 biosynthesis, whereas SRRC 163 accumulated averantin, an early precursor in the pathway. Strain SRRC 2043 secreted large amounts of OMST in culture relative to the amounts of several other pathway intermediates secreted into media (by other AFB1 pathway-blocked strains). AFB1 production occurred even when colonies of SRRC 163 and SRRC 2043 strains (producing no detectable AFB1) were grown together on an agar medium while physically separated from each other by a filter membrane (0.22-micron pore size). In addition, when mycelia of strain SRRC 163 were added to culture filtrates (containing no mycelia but containing secreted OMST) of strain SRRC 2043, AFB1 production occurred. The results suggested a chemical (rather than genetic) mechanism of complementation for AFB1 production between AFB1 pathway-blocked strains, since no mycelial contact was required between these strains for AFB1 production. The mechanism for chemical complementation involves secretion of OMST by SRRC 2043 and subsequent absorption and conversion of OMST to AFB1 by mycelia of strain SRRC 163.  相似文献   

4.
In aflatoxin biosynthesis, aflatoxins G(1) (AFG(1)) and B(1) (AFB(1)) are independently produced from a common precursor, O-methylsterigmatocystin (OMST). Recently, 11-hydroxy-O-methylsterigmatocystin (HOMST) was suggested to be a later precursor involved in the conversion of OMST to AFB(1), and conversion of HOMST to AFB(1) was catalyzed by OrdA enzyme. However, the involvement of HOMST in AFG(1) formation has not been determined. In this work, HOMST was prepared by incubating OrdA-expressing yeast with OMST. Feeding Aspergillus parasiticus with HOMST allowed production of AFG(1) as well as AFB(1). In cell-free systems, HOMST was converted to AFG(1) when the microsomal fraction, the cytosolic fraction from A. parasiticus, and yeast expressing A. parasiticus OrdA were added. These results demonstrated (1) HOMST is produced from OMST by OrdA, (2) HOMST is a precursor of AFG(1) as well as AFB(1), and (3) three enzymes, OrdA, CypA, and NadA, and possibly other unknown enzymes are involved in conversion of HOMST to AFG(1).  相似文献   

5.
Cell-free extracts of fungal mycelia of two aflatoxin non-producing isolates of Aspergillus parasiticus (SRRC 163 and SRRC 2043) were utilized for the study of enzyme activities involved in the latter stages of aflatoxin biosynthesis. The post-microsomal fractions (105,000 x g supernatant) of both SRRC 163 and SRRC 2043 were able to convert sterigmatocystin (ST) into O-methylsterigmatocystin (OMST); whereas the microsomal (105,000 x g pellet) preparation of only SRRC 163 was able to convert OMST into aflatoxin B1 (AFB1). S-Adenosylmethionine (SAM) was the primary substrate for the ST to OMST (methyltransferase) enzymatic conversion; [3H]OMST of specific activity 0.93 Ci/mmol was obtained in a reaction containing the [3H]SAM substrate (specific activity 1 Ci/mmol). After the terminal enzymatic conversion of OMST into AFB1, none of the radiolabel of the methyl group from OMST was found in AFB1. It is postulated that the methylation of ST may be required for subsequent enzymatic oxidation of OMST to aflatoxin B1.  相似文献   

6.
Aspergillus parasiticus produces the minor aflatoxins M(1) (AFM(1)), M(2) (AFM(2)), GM(1) (AFGM(1)), and GM(2) (AFGM(2)), as well as the major aflatoxins B(1) (AFB(1)), B(2) (AFB(2)), G(1) (AFG(1)), and G(2) (AFG(2)). Feeding of A. parasiticus with aspertoxin (12c-hydroxyOMST) caused AFM(1) and AFGM(1), and cell-free experiments using the microsomal fraction of A. parasiticus and aspertoxin caused production of AFM(1), indicating that aspertoxin is a precursor of AFM(1) and AFGM(1). Feeding of the same fungus with O-methylsterigmatocystin (OMST) caused AFM(1) and AFGM(1) together with AFB(1) and AFG(1); feeding with dihydroOMST (DHOMST) caused AFM(2) and AFGM(2) together with AFB(2) and AFG(2). Incubation of either the microsomal fraction or OrdA enzyme-expressing yeast with OMST caused production of aspertoxin together with AFM(1) and AFB(1). These results demonstrated that the OrdA enzyme catalyzes both 12c-hydroxylation reaction from OMST to aspertoxin and the successive reaction from aspertoxin to AFM(1). In contrast, feeding of the fungus with AFB(1) did not produce any AFM(1), demonstrating that M-/GM-aflatoxins are not produced from B-/G-aflatoxins. Furthermore, AFM(1) together with AFB(1) and AFG(1) was also produced from 11-hydroxyOMST (HOMST) in feeding experiment of A. parasiticus, whereas no aflatoxins were produced when used the ordA deletion mutant. These results demonstrated that OrdA enzyme can also catalyze 12c-hydroxylation of HOMST to produce 11-hydroxyaspertoxin, which serves as a precursor for the production of AFM(1) and AFGM(1). The same pathway may work for the production of AFM(2) and AFGM(2) from DHOMST and dihydroHOMST through the formation of dihydroaspertoxin and dihydro-11-hydroxyaspertoxin, respectively.  相似文献   

7.
An isolate of Aspergillus parasiticus CP461 (SRRC 2043) produced no detectable aflatoxins, but accumulated O-methylsterigmatocystin (OMST). When sterigmatocystin (ST) was fed to this isolate in a low-sugar medium, there was an increase in the accumulation of OMST, without aflatoxin synthesis. When radiolabeled [14C]OMST was fed to resting mycelia of a non-aflatoxin-, non-ST-, and non-OMST-producing mutant of A. parasiticus AVN-1 (SRRC 163), 14C-labeled aflatoxins B1 and G1 were produced; 10 nmol of OMST produced 7.8 nmol of B1 and 1.0 nmol of G1, while 10 nmol of ST produced 6.4 nmol of B1 and 0.6 nmol of G1. A time course study of aflatoxin synthesis in ST feeding experiments with AVN-1 revealed that OMST is synthesized by the mold during the onset of aflatoxin synthesis. The total amount of aflatoxins recovered from OMST feeding experiments was higher than from experiments in which ST was fed to the resting mycelia. These results suggest that OMST is a true metabolite in the aflatoxin biosynthetic pathway between sterigmatocystin and aflatoxins B1 and G1 and is not a shunt metabolite, as thought previously.  相似文献   

8.
Aflatoxins B1 (AFB1) and B2 (AFB2) are biologically active secondary metabolites of Aspergillus flavus and Aspergillus parasiticus. These toxins are synthesized by the fungi from pathway precursors: sterigmatocystin (ST)----O-methylsterigmatocystin (OMST)----AFB1; dihydrosterigmatocystin (DHST)----dihydro-O-methylsterigmatocystin (DHOMST)----AFB2. The late stages of AFB1 synthesis are carried out by two enzyme activities, a methyltransferase (MT) (ST----OMST), and an oxidoreductase (OR) (OMST----AFB1). Properties of the purified MT have been identified in a previous investigation [Bhatnagar et al. (1988) Prep. Biochem. 18, 321]. In the current study, the OR was partially purified (150-fold of specific activity) from fungal cell-free extracts and characterized with extended investigation of the late stages of AFB1 and AFB2 synthesis. Whole cells of an isolate of A. flavus (SRRC 141), which produce only AFB2, were able to produce AFB1 in ST and OMST feeding studies; the results suggested that the enzymes involved in AFB2 biosynthesis also carry out AFB1 synthesis. Substrate competition experiments carried out with the OR showed that an increasing concentration of either OMST or DHOMST in the presence of a fixed, nonsaturating concentration of either DHOMST or OMST, respectively, resulted in a decline in production of one aflatoxin (B1 or B2) with a corresponding increase in the synthesis of the other toxin (B2 or B1). OMST was a preferred substrate (Km, 1.2 microM) for the oxidoreductase as compared to DHOMST (Km, 13.4 microM). Similar, substrate competition experiments showed that ST (Km, 2.0 microM) was a preferred substrate over DHST (Km, 22.5 microM) for a homogeneous MT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Recent work on the aflatoxin biosynthetic pathway is reviewed, with special emphasis on the enzymes of the late stages of the pathway involving conversion of sterigmatocystin (ST) to aflatoxin B1 (AFB1) through an O-methylsterigmatocystin intermediate. Two enzyme activities were discovered in subcellular fractions of cell-free extracts of a mutant strain ofAspergillus parasiticus (SRRC 163): 1)A post-microsomal methyltransferase (MT) catalyzed conversion of ST to OMST, and 2) a microsomal-associated activity (oxido-reductase) converted OMST to AFB1. The 168 KDa, anionic MT was purified to homogeneity and characterized (two subunits, 110 KDa and 58 KDa). Preliminary evidence indicated the presence of a cationic isozyme of the MT in mycelial extracts. The oxido-reductase has been partially purified and characterized. Polyclonal antibodies were prepared to the anionic MT and the enzyme's amino acid composition determined. A cDNA library has been constructed from mRNA isolated fromAspergillus parasiticus mycelia during the onset of AFB1 biosynthesis for the purpose of identifying the genes responsible for aflatoxin biosynthesis.  相似文献   

10.
Two routes for the conversion of 5'-hydroxyaverantin (HAVN) to averufin (AVF) in the synthesis of aflatoxin have been proposed. One involves the dehydration of HAVN to the lactone averufanin (AVNN), which is then oxidized to AVF. Another requires dehydrogenation of HAVN to 5'-ketoaverantin, the open-chain form of AVF, which then cyclizes spontaneously to AVF. We isolated a gene, adhA, from the aflatoxin gene cluster of Aspergillus parasiticus SU-1. The deduced ADHA amino acid sequence contained two conserved motifs found in short-chain alcohol dehydrogenases-a glycine-rich loop (GXXXGXG) that is necessary for interaction with NAD(+)-NADP(+), and the motif YXXXK, which is found at the active site. A. parasiticus SU-1, which produces aflatoxins, has two copies of adhA (adhA1), whereas A. parasiticus SRRC 2043, a strain that accumulates O-methylsterigmatocystin (OMST), has only one copy. Disruption of adhA in SRRC 2043 resulted in a strain that accumulates predominantly HAVN. This result suggests that ADHA is involved in the dehydrogenation of HAVN to AVF. Those adhA disruptants that still made small amounts of OMST also accumulated other metabolites, including AVNN, after prolonged culture.  相似文献   

11.
The relevance of oxidative stress in the production of aflatoxin and its precursors was examined in different mutants of Aspergillus parasiticus, which produce aflatoxin or its precursor intermediates, and compared with results obtained from a non-toxigenic strain. In comparison to the non-toxigenic strain (SRRC 255), an aflatoxin producing strain (NRRL 2999) or mutants that accumulate aflatoxin precursors such as norsolorinic acid (by SRRC 162) or versicolorin (by NRRL 6196) or O-methyl sterigmatocystin (by SRRC 2043) had greater oxygen requirements and higher contents of reactive oxygen species. These changes were in the graded order of NRRL 2999 > SRRC 2043 > NRRL 6196 > SRRC 162 > SRRC 255, indicating incremental accumulation of reactive oxygen species, being least in the non-toxigenic strain and increasing progressively during the ternary steps of aflatoxin formation. Oxidative stress in these strains was evident by increased activities of xanthine oxidase and free radical scavenging enzymes (superoxide dismutase and glutathione peroxidase) as compared to the non-toxigenic strain (SRRC 255). Culturing the toxigenic strain in presence of 0.1–10 μM H2O2 in the medium resulted in enhanced aflatoxin production, which could be related to dose-dependent increase in [14C]-acetate incorporation into aflatoxin B1 and increased acetyl CoA carboxylase activity. The combined results suggest that formation of secondary metabolites such as aflatoxin and its precursors by A. parasiticus may occur as a compensatory response to reactive oxygen species accumulation.  相似文献   

12.
The origin of aflatoxin G1 was studied using mutant strains of Aspergillus parasiticus blocked early in the pathway and by tracing 14C-labelled aflatoxin B1 (AFB1) in wild-type A. flavus and A. parasiticus strains. Sterigmatocystin (ST) was a precursor of AFB1, AFG1 and AFG2 in the four mutants examined. The identity of AFG1 was confirmed by mass spectrometry. No evidence for conversion of AFB1 to AFG1 was found. A rigorously controlled study of conversions of radioactivity based on preparative thin-layer chromatography of aflatoxins demonstrated that low levels of aflatoxin interconversions previously reported in the literature might actually be artifacts.  相似文献   

13.
Two routes for the conversion of 5′-hydroxyaverantin (HAVN) to averufin (AVF) in the synthesis of aflatoxin have been proposed. One involves the dehydration of HAVN to the lactone averufanin (AVNN), which is then oxidized to AVF. Another requires dehydrogenation of HAVN to 5′-ketoaverantin, the open-chain form of AVF, which then cyclizes spontaneously to AVF. We isolated a gene, adhA, from the aflatoxin gene cluster of Aspergillus parasiticus SU-1. The deduced ADHA amino acid sequence contained two conserved motifs found in short-chain alcohol dehydrogenases—a glycine-rich loop (GXXXGXG) that is necessary for interaction with NAD+-NADP+, and the motif YXXXK, which is found at the active site. A. parasiticus SU-1, which produces aflatoxins, has two copies of adhA (adhA1), whereas A. parasiticus SRRC 2043, a strain that accumulates O-methylsterigmatocystin (OMST), has only one copy. Disruption of adhA in SRRC 2043 resulted in a strain that accumulates predominantly HAVN. This result suggests that ADHA is involved in the dehydrogenation of HAVN to AVF. Those adhA disruptants that still made small amounts of OMST also accumulated other metabolites, including AVNN, after prolonged culture.  相似文献   

14.
Biosynthetic relationship among aflatoxins B1, B2, G1, and G2.   总被引:1,自引:8,他引:1       下载免费PDF全文
K Yabe  Y Ando    T Hamasaki 《Applied microbiology》1988,54(8):2101-2106
Aspergillus parasiticus NIAH-26, a UV-irradiated mutant of A. parasiticus SYS-4 (NRRL 2999), produces neither aflatoxins nor precursors. When sterigmatocystin (ST) or O-methylsterigmatocystin was fed to this mutant in YES medium, aflatoxins B1 (AFB1) and G1 (AFG1) were produced. When dihydrosterigmatocystin (DHST) or dihydro-O-methylsterigmatocystin was fed to this mold, aflatoxins B2 (AFB2) and G2 (AFG2) were produced. The reactions from ST to AFB1 and DHST to AFB2 were also observed in the cell-free system and were catalyzed stepwise by the methyltransferase and oxidoreductase enzymes. In the feeding experiments of strain NIAH-26, the convertibility from ST to AFB1-AFG1 was found to be remarkably suppressed by the coexistence of DHST in the medium, and the convertibility from DHST to AFB2-AFG2 was also suppressed by the presence of ST. When some other mutants which endogenously produce a small amount of aflatoxins (mainly AFB1 and AFG1) were cultured with DHST, the amounts of AFB1 and AFG1 produced were significantly decreased, whereas AFB2 and AFG2 were newly produced. In similar feeding experiments in which 27 kinds of mutants including these mutants were used, most of the mutants which were able to convert exogenous ST to AFB1-AFG1 were also found to convert exogenous DHST to AFB2-AFG2. These results suggest that the same enzymes may be involved in the both biosynthetic pathways from ST to AFB1-AFG1 and DHST to AFB2-AFG2. The reactions described herein were not observed when the molds had been cultured in the YEP medium.  相似文献   

15.
The essential oil of German chamomile showed specific inhibition toward aflatoxin G(1) (AFG(1)) production, and (E)- and (Z)-spiroethers were isolated as the active compounds from the oil. The (E)- and (Z)-spiroethers inhibited AFG(1) production of Aspergillus parasiticus with inhibitory concentration 50% (IC(50)) values of 2.8 and 20.8 microM, respectively, without inhibiting fungal growth. Results of an O-methylsterigmatocystin (OMST) conversion study indicated that the spiroethers specifically inhibited the OMST to AFG(1) pathway. A cytochrome P450 monooxygenase, CYPA, is known as an essential enzyme for this pathway. Because CYPA has homology with TRI4, a key enzyme catalyzing early steps in the biosynthesis of trichothecenes, the inhibitory actions of the two spiroethers against TRI4 reactions and 3-acetyldeoxynivalenol (3-ADON) production were tested. (E)- and (Z)-spiroethers inhibited the enzymatic activity of TRI4 dose-dependently and interfered with 3-ADON production by Fusarium graminearum, with IC(50) values of 27.1 and 103 microM, respectively. Our results suggest that the spiroethers inhibited AFG(1) and 3-ADON production by inhibiting CYPA and TRI4, respectively.  相似文献   

16.
An Aspergillus parasiticus gene, designated apa-2, was identified as a regulatory gene associated with aflatoxin biosynthesis. The apa-2 gene was cloned on the basis of overproduction of pathway intermediates following transformation of fungal strains with cosmid DNA containing the aflatoxin biosynthetic genes nor-1 and ver-1. Transformation of an O-methylsterigmatocystin-accumulating strain, A. parasiticus SRRC 2043, with a 5.5-kb HindIII-XbaI DNA fragment containing apa-2 resulted in overproduction of all aflatoxin pathway intermediates analyzed. Specific enzyme activities associated with the conversion of norsolorinic acid and sterigmatocystin were increased approximately twofold. The apa-2 gene was found to complement an A. flavus afl-2 mutant strain for aflatoxin production, suggesting that apa-2 is functionally homologous to afl-2. Comparison of the A. parasiticus apa-2 gene DNA sequence with that of the A. flavus afl-2 gene (G. A. Payne, G. J. Nystorm, D. Bhatnagar, T. E. Cleveland, and C. P. Woloshuk, Appl. Environ. Microbiol. 59:156-162, 1993) showed that they shared > 95% DNA homology. Physical mapping of cosmid subclones placed apa-2 approximately 8 kb from ver-1.  相似文献   

17.
Aspergillus parasiticus NIAH-26, a UV-irradiated mutant of A. parasiticus SYS-4 (NRRL 2999), produces neither aflatoxins nor precursors. When sterigmatocystin (ST) or O-methylsterigmatocystin was fed to this mutant in YES medium, aflatoxins B1 (AFB1) and G1 (AFG1) were produced. When dihydrosterigmatocystin (DHST) or dihydro-O-methylsterigmatocystin was fed to this mold, aflatoxins B2 (AFB2) and G2 (AFG2) were produced. The reactions from ST to AFB1 and DHST to AFB2 were also observed in the cell-free system and were catalyzed stepwise by the methyltransferase and oxidoreductase enzymes. In the feeding experiments of strain NIAH-26, the convertibility from ST to AFB1-AFG1 was found to be remarkably suppressed by the coexistence of DHST in the medium, and the convertibility from DHST to AFB2-AFG2 was also suppressed by the presence of ST. When some other mutants which endogenously produce a small amount of aflatoxins (mainly AFB1 and AFG1) were cultured with DHST, the amounts of AFB1 and AFG1 produced were significantly decreased, whereas AFB2 and AFG2 were newly produced. In similar feeding experiments in which 27 kinds of mutants including these mutants were used, most of the mutants which were able to convert exogenous ST to AFB1-AFG1 were also found to convert exogenous DHST to AFB2-AFG2. These results suggest that the same enzymes may be involved in the both biosynthetic pathways from ST to AFB1-AFG1 and DHST to AFB2-AFG2. The reactions described herein were not observed when the molds had been cultured in the YEP medium.  相似文献   

18.
A five step scheme has been developed for the purification of a methyltransferase (MT) from mycelia of 3-day old Aspergillus parasiticus (SRRC 163), which catalyzes one step in the aflatoxin biosynthetic pathway. The S-adenosylmethionine (SAM) requiring MT activity is essential for the conversion of sterigmatocystin (ST) to O-methylsterigmatocystin (OMST) prior to being converted to aflatoxin B1. The purification of the MT was carried out from cell-free extracts by CDR (Cell Debris Remover, a cellulosic weak anion exchanger, Whatman) treatment, QMA ACELL, Hydroxylapatite-Ultrogel, PBE 94 chromatofocusing and FractoGel TSK HW-50F filtration chromatography. The purified enzyme was only about 0.1% of the total extractable proteins. The pI of the protein was about 5.0 as judged by chromatofocusing. Results of gel filtration chromatography indicated the approximate molecular mass of the native protein to be 160-KDa. SDS-polyacrylamide gel electrophoresis revealed two protein subunit bands of molecular masses approximately 110-KDa and 58-KDa. The molar extinction coefficient of the enzyme at 280 nm was estimated to be 7.87 X 10(4) M-1 cm-1 in 50 mM potassium phosphate buffer (pH 7.5). The reaction catalyzed by the MT was optimum at pH 7.5 and between 25-35 degrees C. The Km of the enzyme for ST and SAM was determined to be 1.8 microM and 42 microM, respectively with an estimated turnover number of the enzyme for ST of 2.2 X 10(-2) per sec.  相似文献   

19.
A comparison between [14C]aflatoxin B1 (AFB1) and [14C]aflatoxin G1 (AFG1) binding to rat liver and kidney cellular macromolecules has shown AFG1-DNA and-ribosomal RNA binding to be lower in both organs. For both mycotoxins more was bound to nucleic acids than to protein. Two hours after intraperitoneal injection (60 microgram/100 g) of [14C] AFB1, 40 ng, 151 ng/mg. Loss of radioactivity bound to liver DNA for both [14C]AFB1 and protein respectively and for [14C]AFG1 the respective figures were 10, 7 and 1 ng/mg. Loss of liver bound radioactivity to DNA for both [14C]AFG1 and [14C]AFG1 appeared to be biphasic indicating that an enzymic DNA repair process may be operating. In vitro binding studies also showed less AFG1 was bound to exogenous DNA after microsomal activation than AFB1. This difference was not a result of differences in the chemical reactivity of the "ultimate" electrophilic species, the respective expoxides, since chemical activation studies using 3-chloroperbenzoic acid showed similar amounts of AFG1 and AFB1 to be converted to the epoxides and to bind to DNA. Studies on the distribution coefficients of the two mycotoxins showed AFB1 to be more lipophilic than AFG1 and this may be an important factor in determining the weaker carcinogenicity of the latter compound. Characterisation of the major AFG1-DNA adduct formed in vitro, in vivo and after peracid oxidation showed it to have the structure trans-9,10-dihydro-9-(7-guanyl)-10-hydroxy-aflatoxin G1. This adduct is similar to that obtained from AFB1 by activation in vivo, in vitro and after peracid oxidation.  相似文献   

20.

Background  

The biosynthesis of aflatoxin (AF) involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST) and O -methylsterigmatocystin (OMST), the respective penultimate and ultimate precursors of AF. Although these precursors are chemically and structurally very similar, their accumulation differs at the species level for Aspergilli. Notable examples are A. nidulans that synthesizes only ST, A. flavus that makes predominantly AF, and A. parasiticus that generally produces either AF or OMST. Whether these differences are important in the evolutionary/ecological processes of species adaptation and diversification is unknown. Equally unknown are the specific genomic mechanisms responsible for ordering and clustering of genes in the AF pathway of Aspergillus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号