首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two separate objectives were considered in this study. We examined (1) internal conductance to CO2 (gi) and photosynthetic limitations in sun and shade leaves of 60-year-old Fagus sylvatica, and (2) whether free-air ozone fumigation affects gi and photosynthetic limitations. gi and photosynthetic limitations were estimated in situ from simultaneous measurements of gas exchange and chlorophyll fluorescence on attached sun and shade leaves of F. sylvatica. Trees were exposed to ambient air (1× O3) and air with twice the ambient ozone concentration (2× O3) in a free-air ozone canopy fumigation system in southern Germany (Kranzberg Forest). gi varied between 0.12 and 0.24 mol m−2 s−1 and decreased CO2 concentrations from intercellular spaces (Ci) to chloroplastic (Cc) by approximately 55 μmol mol−1. The maximum rate of carboxylation (Vcmax) was 22–39% lower when calculated on a Ci basis compared with a Cc basis. gi was approximately twice as large in sun leaves compared to shade leaves. Relationships among net photosynthesis, stomatal conductance and gi were very similar in sun and shade leaves. This proportional scaling meant that neither Ci nor Cc varied between sun and shade leaves. Rates of net photosynthesis and stomatal conductance were about 25% lower in the 2× O3 treatment compared with 1× O3, while Vcmax was unaffected. There was no evidence that gi was affected by ozone.  相似文献   

2.
We measured the biomass production and ecosystem carbon CO2 exchange in a high yield grassland dominated by Miscanthus sinensis. The experimental grassland is managed by mowing once a year in winter every year and the harvested biomass on the ground is left to become the humus. The maximum aboveground and belowground biomasses were 1117 and 2803 g d.w. m?2 in our grassland. Although the high potential of our grassland for biomass production led to higher carbon uptake than with other types of grassland, the large biomass contributed to a higher respired carbon loss. Biomass increase led to a linear increase in ecosystem respiration. Over the 3 years, RE10 increased with increasing aboveground biomass. The potential gross primary production at a photosynthetic photon flux density of 2000 μmol m2 s?1 logarithmic increased with LAI. These responses of CO2 exchange to biomass production suggest this grassland behaved as weak CO2 sink or near carbon neutral (?78 and 17 g C m?2 year?1) in current management.  相似文献   

3.
The first trees in New York were Middle Devonian (earliest Givetian) cladoxyls (?Duisbergia and Wattieza), with shallow-rooted manoxylic trunks. Cladoxyl trees in New York thus postdate their latest Emsian evolution in Spitzbergen. Progymnosperm trees (?Svalbardia and Callixylon–Archaeopteris) appeared in New York later (mid-Givetian) than progymnosperm trees from Spitzbergen (early Givetian). Associated paleosols are evidence that Wattieza formed intertidal to estuarine mangal and Callixylon formed dry riparian woodland. Also from paleosols comes evidence that Wattieza and Callixylon required about 350 mm more mean annual precipitation than plants of equivalent stature today, that Wattieza tolerated mean annual temperature 7 °C less than current limits of mangal (20 °C), and Callixylon could tolerate temperatures 14 °C less than modern mangal. Devonian mangal and riparian woodland spread into New York from wetter regions elsewhere during transient paleoclimatic spikes of very high CO2 (3923 ± 238 ppmv), and subhumid (mean annual precipitation 730 ± 147 mm) conditions, which were more likely extrinsic atmospheric perturbations rather than consequences of tree evolution. For most of the Middle Devonian CO2 was lower (2263 ± 238 ppmv), and paleoclimate in New York was semiarid (mean annual precipitation 484 ± 147 mm). Such transient perturbations and immigration events may explain the 40 million year gap between the late Emsian (400 Ma) evolution of trees and Famennian (360 Ma) CO2 drawdown and expansion of ice caps.  相似文献   

4.
Carbon dioxide concentrating mechanisms (CCMs) act to improve the supply of CO2 at the active site of ribulose‐1,5‐bisphosphate carboxylase/oxygenase. There is substantial evidence that in some microalgal species CCMs involve an external carbonic anhydrase (CAext) and that CAext activity is induced by low CO2 concentrations in the growth medium. However, much of this work has been conducted on cells adapted to air‐equilibrium concentrations of CO2, rather than to changing CO2 conditions caused by growing microalgal populations. We investigated the role of CAext in inorganic carbon (Ci) acquisition and photosynthesis at three sampling points during the growth cycle of the cosmopolitan marine diatom Chaetoceros muelleri. We observed that CAext activity increased with decreasing Ci, particularly CO2, concentration, supporting the idea that CAext is modulated by external CO2 concentration. Additionally, we found that the contribution of CAext activity to carbon acquisition for photosynthesis varies over time, increasing between the first and second sampling points before decreasing at the last sampling point, where external pH was high. Lastly, decreases in maximum quantum yield of photosystem II (Fv/Fm), chlorophyll, maximum relative electron transport rate, light harvesting efficiency (α) and maximum rates of Ci‐ saturated photosynthesis (Vmax) were observed over time. Despite this decrease in photosynthetic capacity an up‐regulation of CCM activity, indicated by a decreasing half‐saturation constant for CO2 (K0.5CO2), occurred over time. The flexibility of the CCM during the course of growth in C. muelleri may contribute to the reported dominance and persistence of this species in phytoplankton blooms.  相似文献   

5.
The effects of elevated atmospheric CO2 (eCO2) and water table draw-down on soil carbon sequestration in an ombrotrophic bog ecosystem were examined. Peat monoliths (11 cm diameter, 25 cm deep) with intact bog vegetation were exposed to ambient or elevated (ambient + 200 mg l?1) atmospheric CO2, combined with a natural water table (level with the peat surface) or a water table draw-down (?5 cm). Eight observations per treatment were included in the study, which was conducted over a 12 week period. Concentration of dissolved organic carbon (DOC), phenolic compounds and the fluxes of CO2 and CH4 were measured. The eCO2 treatment caused an increase in the CH4 and CO2 fluxes and a small decrease in both the DOC and phenolic concentrations. The water table draw-down invoked decreases in phenolic and DOC concentrations, a decrease in CH4 flux and a small increase in CO2 flux. The combined (eCO2 + water table draw-down) treatment caused a larger than expected CH4 flux decrease and CO2 flux increase and an increase in DOC concentration. Our results suggest very different effects on the system dependent on the treatment applied. The draw-down treatment principally increased oxidation of the rhizosphere resulting in increased decomposition and as such a removal of material from the dissolved carbon pool. The data also suggest labile carbon availability may be limiting the rate of decomposition and so slowing inorganic nutrient and carbon pool turn-over. The elevated CO2 addressed the labile-carbon limitation. Under the environment of the combined treatment, these limitations were effectively removed, culminating in a destabilisation of the carbon-sequestering environment to a weaker sink (or even a source) of atmospheric carbon.  相似文献   

6.
Marine bivalves such as the hard shell clams Mercenaria mercenaria and eastern oysters Crassostrea virginica are affected by multiple stressors, including fluctuations in temperature and CO2 levels in estuaries, and these stresses are expected to be exacerbated by ongoing global climate change. Hypercapnia (elevated CO2 levels) and temperature stress can affect survival, growth and development of marine bivalves, but the cellular mechanisms of these effects are not yet fully understood. In this study, we investigated whether oxidative stress is implicated in cellular responses to elevated temperature and CO2 levels in marine bivalves. We measured the whole-organism standard metabolic rate (SMR), total antioxidant capacity (TAOC), and levels of oxidative stress biomarkers in the muscle tissues of clams and oysters exposed to different temperatures (22 and 27 °C) and CO2 levels (the present day conditions of ~ 400 ppm CO2 and 800 ppm CO2 predicted by a consensus business-as-usual IPCC emission scenario for the year 2100). SMR was significantly higher and the antioxidant capacity was lower in oysters than in clams. Aerobic metabolism was largely temperature-independent in these two species in the studied temperature range (22–27 °C). However, the combined exposure to elevated temperature and hypercapnia led to elevated SMR in clams indicating elevated costs of basal maintenance. No persistent oxidative stress signal (measured by the levels of protein carbonyls, and protein conjugates with malondialdehyde and 4-hydroxynonenal) was observed during the long-term exposure to moderate warming (+ 5 °C) and hypercapnia (~ 800 ppm CO2). This indicates that long-term exposure to moderately elevated CO2 and temperature minimally affects the cellular redox status in these bivalve species and that the earlier observed negative physiological effects of elevated CO2 and temperature must be explained by other cellular mechanisms.  相似文献   

7.
A series of 4-alkoxycarbonyl-1,5-diaryl-1,2,3-triazoles were synthesized regioselectively using click chemistry and evaluated at CB1 cannabinoid receptors. The n-propyl ester 11 (Ki = 4.6 nM) and phenyl ester 14 (Ki = 11 nM) exhibited the most potent affinity of the series.  相似文献   

8.
《Ecological Indicators》2002,1(3):213-223
This paper presents for 16 typical forest types across Europe a standard carbon sequestration profile. The study was carried out with the model CO2FIX which was parameterised with local yield table data and additional required parameters. CO2FIX quantifies the carbon of the forest ecosystem–soil–wood products chain at the stand level. To avoid misleading results annual net sequestration rates are not presented here, because these strongly fluctuate in time. Therefore, only its advancing mean is presented as a more reliable indicator. This avoids a great deal of uncertainty for policy makers. The variation between forest types is large, but mean sequestration rates mostly peak after some 38 years (with a net source lasting up to 15 years after afforestation) at an average value of 2.98 Mg C ha−1 per year (ranging between forest types from 4.1 to 1.15). After 200 years, the net sequestration rate saturates to a value of 0.8 Mg C ha−1 per year (ranging from 1.4 to 0.13). The long-term mean carbon stock in tree biomass and products amounts on average to 114 Mg C ha−1 (ranging from 52 to 196).  相似文献   

9.
《Inorganica chimica acta》2006,359(5):1650-1658
A series of nickel(II) and palladium(II) complexes containing one or two pentafluorophenyl ligands and the phosphino-amides o-Ph2PC6H4CONHR [R = iPr (a), Ph (b)] displaying different coordination modes have been synthesised. The chelating ability of these ligands and the influence of both coligands and the metal centre in their potential hemilabile behaviour have been explored. The crystal structure of (b) has been determined and reveals N–H⋯O intermolecular hydrogen bonding. Bis-pentafluorophenyl derivatives [M(C6F5)2(o-Ph2PC6H4CO-NHR)] [M = Ni; R = iPr (1a); R = Ph (1b); M = Pd; R = iPr (2a); R = Ph (2b)] in which (a) and (b) act as rigid P, O-chelating ligands were readily prepared from the labile precursors cis-[M(C6F5)2(PhCN)2]. X-ray structures of (1a), (1b) and (2a) have been established, allowing an interesting comparative structural discussion. Dinuclear [{Pd(C6F5)(tht)(μ-Cl)}2] reacted with (a) and (b) yielding the monopentafluorophenyl complexes [Pd(C6F5)Cl{PPh2(C6H4–CONH–R)}] (R = iPr (3a), Ph (3b)) that showed a P, O-chelating behaviour of the ligands, confirmed by the crystal structure determination of (3a). New cationic palladium(II) complexes in which (a) and (b) behave as P-monodentate ligands have been synthesised by reacting them with [{Pd(C6F5)(tht)(μ-Cl)}2], stoichiometric Ag(O3SCF3) and external chelating reagents such as cod [Pd(C6F5)(cod){PPh2(C6H4-CONH-R)}](O3SCF3)(R = iPr (4a), Ph (4b)) and 2,2-bipy [Pd(C6F5)(bipy){PPh2(C6H4-CONH-R)}](O3SCF3) (R = iPr (5a), Ph (5b)). When chloride abstraction in [{Pd(C6F5)(tht)(μ-Cl)}2] is promoted by means of a dithioanionic salt as dimethyl dithiophospate in the presence of (a) or (b), the corresponding neutral complexes [Pd(C6F5){S(S)P(OMe)2}{PPh2(C6H4-CONH-R)}] (R = iPr (6a), Ph (6b)) were obtained.  相似文献   

10.
The kinetics of a stomatal response to sudden increases or decreases of CO2 concentrations ([CO2]) was studied in 13 plant species growing in the field. Plants were well supplied with water. In each plant, gas exchange measurements were made on a fully developed leaf that was first left to achieve steady-state stomatal conductance (gs) at 400 μmol (CO2) mol−1) and then exposed to a step change of [CO2] (to 700 μmol mol−1 in one experiment; and to 700 and back to 400 μmol mol−1 in a second experiment). Porometric data were captured in intervals of 3 s until a new steady state was reached.A comparison of t1/2, the half-time needed to achieve new gs, indicates similar responses of stomata in grasses when compared to herbs. The stomata of C4 plants responded in approximately 5 min, the highest closure rate was detected in Echinochloa crus-galli and Digitaria sanguinalis. Opening rates were similar to closing rates and the response as a whole was rather symmetric. In C3 plants, the full response of stomata was much slower. Analysis revealed differences in absolute rates of gs change between C3 and C4 plants. These differences can be related to the specificities of the type of photosynthetic metabolism. C4 photosynthesis enables plants to reduce gs, which can hasten further changes of diffusivity in response to the environmental signals. A possible coupling of C4 metabolism to the regulation of guard cells also has to be taken into account when explaining the observed results.  相似文献   

11.
《Process Biochemistry》2014,49(6):989-995
Rhamnolipids are surface-active molecules produced by Pseudomonas aeruginosa as congener mixtures. They are considered “green” alternatives to synthetic surfactants used in industrial, remediation and pharmaceutical applications. Optimizing yield as well as controlling congener distribution are necessary steps for successful commercialization of rhamnolipids. This study used a mixture of glucose and fatty acids of different chain length (C12–C22) and saturation (C18:1 and C18:2) to produce monorhamnolipids and determine the effect of fatty acid substrates on rhamnolipid yield, percent carbon conversion and congener distribution. Results show that 1% glucose + 0.25% stearic acid (C18) produced the greatest yield (2.1 g L−1) compared to other glucose–fatty acid combinations (0.8–1.8 g L−1). Various glucose + C18 ratios were then tested to optimize yield and percent substrate carbon conversion to monorhamnolipid. Results revealed a positive linear correlation between the mass percent of C18 used and the percent carbon conversion. A mass percent of 67% C18 was optimal resulting in a 44% carbon conversion and a yield of 13.7 g L−1 monorhamnolipid. For all fatty acid substrates tested, the RhaC10C10 was the most abundant and RhaC10C12:1 was the least abundant of the four major congeners produced. However, the relative amount of RhaC10C8 and RhaC10C12 congeners was dependent on several factors: in general, fatty acid substrates with relatively short chain length (C12 and C14), unsaturated fatty acid substrate (C18:2), and longer cultivation time resulted in a higher RhaC10C8/RhaC10C12 ratio. These findings will assist in mass production of monorhamnolipids and controlling the specific congeners produced.  相似文献   

12.
In water-limited ecosystems, an ecologically significant rainfall pulse was defined as a rainfall event that altered both soil water status and plant physiological activity. We developed a new threshold concept of an ecologically effective precipitation pulse (EEPP) applicable to both plant individual and ecosystem scales. The concept was tested in a typical steppe on Inner Mongolia plateau. Two EEPPs, single 3-mm rainfall and 5-mm rainfall, were applied to investigate their effects on soil and plant water status, CO2 assimilation of five species (four C3 plants and one C4 plant), whole-plot soil respiration (Rs), and net ecosystem CO2 exchange (NEE) on 1 June and 28 July 2009, respectively. Both EEPPs increased leaf water potential (Ψl) of all the species, which peaked 1–3 days after rainfall pulses. Soil water content (SWC) in two depths (5 cm and 20 cm) significantly increased after the two EEPPs for 1–3 days. Soil water potential (Ψs) within 20‐cm soil layer in EEPP treatments significantly differed (p < 0.05) from control. Net assimilation rates (Anet) of all C3 plants had a slight increase at the next day after two EEPPs, in contrast to the C4 species. Rs elevated and peaked 1–3 days later after water supply. Ecosystem net CO2 absorption rate rose to maximum value 3 days after the 5-mm pulse on 28 July, higher than the response to 3-mm pulse on June 1. The grassland turned to net emission of CO2 after 3-mm pulse on 28 July. The results supported that there was an ecosystem level threshold for EEPP, and the threshold was temporally variable. It also highlighted the necessity of considering the response threshold of EEPP in rainfall manipulative experiment. In addition, effective rainfall amount was more approriate than total rainfall amount in modeling ecosystem carbon balance.  相似文献   

13.
《Trends in plant science》2023,28(7):795-807
Microalgal photosynthesis is responsible for nearly half of the CO2 annually captured by Earth’s ecosystems. In aquatic environments where the CO2 availability is low, the CO2-fixing efficiency of microalgae greatly relies on mechanisms – called CO2-concentrating mechanisms (CCMs) – for concentrating CO2 at the catalytic site of the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). While the transport of inorganic carbon (Ci) across membrane bilayers against a concentration gradient consumes part of the chemical energy generated by photosynthesis, the bioenergetics and cellular mechanisms involved are only beginning to be elucidated. Here, we review the current knowledge relating to the energy requirement of CCMs in the light of recent advances in photosynthesis regulatory mechanisms and the spatial organization of CCM components.  相似文献   

14.
The coralline algae in the orders Corallinales and Sporolithales (subclass Corallinophycidae), with their high degree of mineralogical variability, pose a challenge to projections regarding mineralogy and response to ocean acidification. Here we relate skeletal carbonate mineralogy to a well-established phylogenetic framework and draw inferences about the effects of future changes in sea-water chemistry on these calcified red algae. A collection of 191 coralline algal specimens from New Zealand, representing 13 genera and 28 species, included members of three families: Corallinaceae, Hapalidiaceae, and Sporolithaceae. While most skeletal specimens were entirely calcitic (range: 73–100 wt.% calcite, mean 97 wt.% calcite, std dev = 5, n = 172), a considerable number contained at least some aragonite. Mg in calcite ranged from 10.5 to 16.4 wt.% MgCO3, with a mean of 13.1 wt.% MgCO3 (std dev = 1.1, n = 172). The genera Mesophyllum and Lithophyllum were especially variable. Growth habit, too, was related to mineralogy: geniculate coralline algae do not generally contain any aragonite. Mg content varied among coralline families: the Corallinaceae had the highest Mg content, followed by the Sporolithaceae and the Hapalidiaceae. Despite the significant differences among families, variation and overlap prevent the use of carbonate mineralogy as a taxonomic character in the coralline algae. Latitude (as a proxy for water temperature) had only a slight relationship to Mg content in coralline algae, contrary to trends observed in other biomineralising taxa. Temperate magnesium calcites, like those produced by coralline algae, are particularly vulnerable to ocean acidification. Changes in biomineralisation or species distribution may occur over the next few decades, particularly to species producing high-Mg calcite, as pH and CO2 dynamics change in coastal temperate oceans.  相似文献   

15.
The effects of two anion/Cl? channel inhibitors, Zn2+ and niflumic acid (NA), on seedling photosynthetic and fluorescent parameters of two Glycine soja populations (salt-tolerant BB52; salt-sensitive N23227) and Glycine max cultivar (salt-tolerant Lee68) were studied and compared under salt stress. Treatments with Zn2+ and NA only (10, 20 μmol L?1) were also imposed for comparisons. Results showed that, there were non-toxic and non-nutritional effects of Zn2+ and NA treatments alone on seed germination and seedling growth of soybeans. Under 150 mmol L?1 NaCl for 6 d, leaf chlorophyll and carotenoid contents, net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), and the maximum photochemical efficiency of photosystem II (PS II) (Fv/Fm) except the stomatal limitation (Ls) significantly decreased in three kinds of soybean seedlings when compared with their control plants. The NaCl stress plus additional 20 μmol L?1 Zn showed an obvious enhancement of leaf chlorophyll and carotenoid contents, Pn, Gs, Ci and Tr, especially for the G. max cultivar Lee68, but the supplementation of 20 μmol L?1 NA showed the reverse effects.  相似文献   

16.
Balanced nutrition is fundamental to health and immunity. For herbivorous insects, nutrient-compositional shifts in host plants due to elevated atmospheric CO2 concentrations and temperature may compromise this balance. Therefore, understanding their immune responses to such shifts is vital if we are to predict the outcomes of climate change for plant–herbivore–parasitoid and pathogen interactions. We tested the immune response of Paropsis atomaria Olivier (Coleoptera: Chrysomelidae) feeding on Eucalyptus tereticornis Sm. seedlings exposed to elevated CO2 (640 μmol mol−1; CE) and temperature (ambient plus 4 °C; TE). Larvae were immune-challenged with a nylon monofilament in order to simulate parasitoid or pathogen attack without other effects of actual parasitism or pathology. The cellular (in vivo melanisation) and humoral (in vitro phenoloxidase PO activity) immune responses were assessed, and linked to changes in leaf chemistry. CE reduced foliar nitrogen (N) concentrations and increased C:N ratios and concentrations of total phenolics. The humoral response was reduced at CE. PO activity and haemolymph protein concentrations decreased at CE, while haemolymph protein concentrations were positively correlated with foliar N concentrations. However, the cellular response increased at CE and this was not correlated with any foliar traits. Immune parameters were not impacted by TE. Our study revealed that opposite cellular and humoral immune responses occurred as a result of plant-mediated effects at CE. In contrast, elevated temperatures within the tested range had minimal impact on immune responses. These complex interactions may alter the outcomes of parasitoid and pathogen attack in future climates.  相似文献   

17.
Large perturbations to the global carbon cycle occurred during the Permian–Triassic boundary mass extinction, the largest extinction event of the Phanerozoic Eon (542 Ma to present). Controversy concerning the pattern and mechanism of variations in the marine carbonate carbon isotope record of the Permian–Triassic crisis interval (PTCI) and their relationship to the marine mass extinction has not been resolved to date. Herein, high-resolution carbonate carbon isotope profiles (δ13Ccarb), accompanied by lithofacies, were generated for four sections with microbialite (Taiping, Zuodeng, Cili, and Chongyang) in South China to better constrain patterns and controls on δ13Ccarb variation in the PTCI and to test hypotheses about the temporal relationship between perturbations to the global carbon cycle and the marine mass extinction event. All four study sections exhibit a stepwise negative shift in δ13Ccarb during the Late Permian–Early Triassic, with the shift preceding the end-Permian crisis being larger (> 3‰) than that following it (1–2‰). The pre-crisis shifts in δ13Ccarb are widely correlatable and, hence, represent perturbations to the global carbon cycle. The comparatively smaller shifts following the crisis demonstrate that the marine mass extinction event itself had at most limited influence on the global carbon cycle, and that both Late Permian δ13Ccarb shifts and the mass extinction must be attributed to some other cause. Their origin cannot be uniquely determined from C-isotopic data alone but appears to be most compatible with a mechanism based on episodic volcanism in combination with collapse of terrestrial ecosystems and soil erosion.  相似文献   

18.
In response to an osmotic stress, Dunaliella tertiolecta osmoregulates by metabolizing intracellular glycerol as compatible solute. Upon the application of a salt stress to 0.17 M or 0.7 M NaCl grown D. tertiolecta cells, rates of total glycerol synthesis were substantially higher than that arising from photosynthetic 14CO2 fixation into glycerol. The source of this extra carbon is the reserve starch pool. The contribution of carbon from the starch breakdown to glycerol synthesis was estimated from the difference between the total glycerol synthesized and that arising from 14CO2 fixation. The maximum observed flux of carbon from 14CO2 to glycerol from photosynthesis was of the order of 15–20 μmol 14C-glycerol mg−1 Chl h−1, whereas the total glycerol synthesis reached about 70 μmol glycerol mg−1 Chl h−1. The contribution of products of starch breakdown to glycerol synthesis increased progressively with increasing salt stress. In light, contrary to prevailing assumptions, both the photosynthesis and the starch breakdown contribute carbon to glycerol biosynthesis. The relative contributions of these two processes in the light, while cells were actively photosynthesizing, depended on the magnitude of the salt stress. On application of dilution stress, the flux of carbon from newly photosynthetically fixed 14CO2 into glycerol was reduced progressively with increasing dilution stress that was also accompanied by a decline in total glycerol contents of the cell. The maximum observed rate of glycerol dissimilation was about 135 μmol glycerol mg−1 Chl h−1.  相似文献   

19.
Woodlot plantation takes our attention nowadays because of having high wood value, biomass and carbon stock. It also has considerable potential for regulating climate change by sinking CO2. This study investigated the market value of Swietenia macrophylla woodlots concerning the current carbon trade mechanism, local timber and oxygen value. The carbon-di-oxide equivalence (CO2e) and release oxygen (O2 Release) ranged from 125.5 to 1004.5 Mg/ha (mean 436.3 Mg/ha) and 91.25–730.26 Mg/ha (mean 317.2 Mg/ha), respectively. Form carbon trade, the Swietenia macrophylla woodlots owner will earn 4,285–34,470 BDT/ha (mean 14,900 BDT/ha). It also seemed that the present market value of release oxygen (O2 Release) ranged from 3.2 to 25.5 million BDT/ha (average 11.1 million BDT/ha). However, the study area's average DBH, height, density, and basal area were 18.9 cm, 12.6 m, 1233 stem/ha, and 36.6 m2/ha, respectively. The above-ground biomass, below-ground biomass, and total biomass ranged from 45.9 to 389.7 Mg/ha (mean 166.5 Mg/ha), 22.5–157.7 Mg/ha (mean 71.2 Mg/ha), and 68.4–547.4 Mg/ha (mean 237.7 Mg/ha) correspondingly. Besides, the produced wood volume ranged from 64.95-1225.19 m3/ha (average 481.48 m3/ha). While the price of wood ranged from 0.8 to 15.14 million BDT/ha (mean 5.95 million BDT/ha). However, the above-ground, below-ground, and total carbon ranged 22.97–194.85 Mg/ha (mean 87.27 Mg/ha, 11.23–78.85 Mg/ha (35.61 Mg/ha), and 34.2–273.7 Mg/ha (118.89 Mg/ha) independently. Moreover, our three developed basal area-based allometric models are fit for calculating the carbon stock of Swietenia macrophylla woodlots. This study explores the potentiality of woodlots in Bangladesh. Policymakers should encourage the farmers to create more woodlots that actively participate in climate change mitigation.  相似文献   

20.
Global atmospheric carbon dioxide concentrations (Ca) are rising. As a consequence, recent climate models have projected that global surface air temperature may increase 1.4–5.8 °C with the doubling of Ca by the end of the century. Because, changes in Ca and temperature are likely to occur concomitantly, it is important to evaluate how the temperature dependence of key physiological processes are affected by rising Ca in major crop plants including maize (Zea mays L.), a globally important grain crop with C4 photosynthetic pathway. We investigated the temperature responses of photosynthesis, growth, and development of maize plants grown at five temperature regimes ranging from 19/13 to 38.5/32.5 °C under current (370 μmol mol−1) and doubled (750 μmol mol−1) Ca throughout the vegetative stages using sunlit controlled environmental chambers in order to test if the temperature dependence of these processes was altered by elevated Ca. Leaf and canopy photosynthetic rates, C4 enzyme activities, leaf appearance rates, above ground biomass accumulation and leaf area were measured. We then applied temperature response functions (e.g., Arrhenius and Beta distribution models) to fit the measured data in order to provide parameter estimates of the temperature dependence for modeling photosynthesis and development at current and elevated Ca in maize. Biomass, leaf area, leaf appearance rate, and photosynthesis measured at growth Ca was not changed in response to CO2 enrichment. Carboxylation efficiency and the activities of C4 enzymes were reduced with CO2 enrichment indicating possible photosynthetic acclimation of the C4 cycle. All measured parameters responded to growth temperatures. Leaf appearance rate and leaf photosynthesis showed curvilinear response with optimal temperatures near 32 and 34 °C, respectively. Total above ground biomass and leaf area were negatively correlated with growth temperature. The dependence of leaf appearance rate, biomass, leaf area, leaf and canopy photosynthesis, and C4 enzyme activities on growth temperatures was comparable between current and elevated Ca. The results of this study suggest that the temperature effects on growth, development, and photosynthesis may remain unchanged in elevated Ca compared with current Ca in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号