首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Information on spatial variability and distribution patterns of organisms in coral reef environments is necessary to evaluate the increasing anthropogenic disturbance of marine environments (Richmond 1993; Wilkinson 1993; Dayton 1994). Therefore different types of subtidal, reef-associated hard substrata (reef flats, reef slopes, coral carpets, coral patches, rock grounds), each with different coral associations, were investigated to determine the distribution pattern of molluscs and their life habits (feeding strategies and substrate relations). The molluscs were strongly dominated by taxa with distinct relations to corals, and five assemblages were differentiated. The Dendropoma maxima assemblage on reef flats is a discrete entity, strongly dominated by this encrusting and suspension-feeding gastropod. All other assemblages are arranged along a substrate gradient of changing coral associations and potential molluscan habitats. The Coralliophila neritoideaBarbatia foliata assemblage depends on the presence of Porites and shows a dominance of gastropods feeding on corals and of bivalves associated with living corals. The Chamoidea–Cerithium spp. assemblage on rock grounds is strongly dominated by encrusting bivalves. The Drupella cornus–Pteriidae assemblage occurs on MilleporaAcropora reef slopes and is strongly dominated by bivalves associated with living corals. The Barbatia setigeraCtenoides annulata assemblage includes a broad variety of taxa, molluscan life habits and bottom types, but occurs mainly on faviid carpets and is transitional among the other three assemblages. A predicted degradation of coral coverage to rock bottoms due to increasing eutrophication and physical damage in the study area (Riegl and Piller 2000) will result in a loss of coral-associated molluscs in favor of bivalve crevice dwellers in dead coral heads and of encrusters on dead hard substrata.  相似文献   

2.
A comparative study of recent epiphytal ostracod and benthic foraminiferal populations was conducted in August 2001, at two gulfs (Korthi and Kastro) located at the southeastern part of Andros Island (middle Aegean Sea, Greece). Thirty samples (representing living macro-benthic algae and seagrasses) from both gulfs were studied and a total of 34 ostracod species and 60 benthic foraminiferal species were identified. In the gulf of Korthi both benthic foraminiferal and epiphytal ostracod assemblages were characterized by high abundances of Amphistegina lessonii and Xestoleberis spp., respectively, therefore the performed Q-mode cluster analysis verified the presence of a Normal Environment Biofacies (NE). Declined Environment (DE) and Stressed (SE) Environment Biofacies were recognized in the gulf of Kastro, an area more affected by anthropogenic activities. Several deformed foraminiferal specimens have been documented in the assemblages from both gulfs, but malformed tests are significantly increased in SE Biofacies of Kastro gulf. This study suggests that great accumulations of A. lessonii (35-60%) associated with high frequencies of Xestoleberis communis and/or Xestoleberis decipiens and high species diversities can be used as bioindicators of coastal health.  相似文献   

3.
An investigation into the insular shelf and submerged banks surrounding Tutuila, American Samoa, was conducted using a towed camera system. Surveys confirmed the presence of zooxanthellate scleractinian coral communities at mesophotic depths (30–110 m). Quantification of video data, separated into 10-m-depth intervals, yielded a vertical, landward-to-seaward and horizontal distribution of benthic assemblages. Hard substrata composed a majority of bottom cover in shallow water, whereas unconsolidated sediments dominated the deep insular shelf and outer reef slopes. Scleractinian coral cover was highest atop mid-shelf patch reefs and on the submerged bank tops in depths of 30–50 m. Macroalgal cover was highest near shore and on reef slopes approaching the bank tops at 50–60 m. Percent cover of scleractinian coral colony morphology revealed a number of trends. Encrusting corals belonging to the genus Montipora were most abundant at shallow depths with cover gradually decreasing as depth increased. Massive corals, such as Porites spp., displayed a similar trend. Percent cover values of plate-like corals formed a normal distribution, with the highest cover observed in the 60–70 m depth range. Shallow plate-like corals belonged mostly to the genus Acropora and appeared to be significantly prevalent on the northeastern and eastern banks. Deeper plate-like corals on the reef slopes were dominated by Leptoseris, Pachyseris, or Montipora genera. Branching coral cover was high in the 80–110 m depth range. Columnar and free-living corals were also occasionally observed from 40–70 m.  相似文献   

4.
Active restoration is being practiced to supplement conservation activities for the purpose of reversing the trend of reef degradation. In the last decade, the feasibility of different restoration approaches such as coral transplantation and restocking of other marine biota has been the focus of research and relatively few have examined experimentally its effects on the resultant communities. In this study, coral transplantation and giant clam restocking were applied on 25 degraded patch reefs (~ 25 m2) inside a marine sanctuary in Pangasinan, northwestern Philippines to examine their effects on the community structure of reef fishes. Five interventions or treatments were employed: 1) “coral” consisted of transplantation of a combination of Acropora spp. and Pocillopora spp. on concrete blocks; 2) “clam” consisted of restocking of Tridacna gigas; 3) “clam+coral” consisted of restocking of T. gigas with Acropora spp. transplanted on their shells; 4) “shell” consisted of deployment of T. gigas shells; and 5) “control” consisted of no intervention. Fish communities on the patch reefs were monitored monthly for 3 months before the intervention and were monitored further for 11 months after the intervention, including 1 recruitment season. After the intervention, the coral cover and the “other biota” category increased in the coral and clam+coral treatments, due to the transplanted corals and deployed giant clams. Consequently, the complexity of the substrate was enhanced. A month after the intervention, a rapid increase in the abundance and species richness of reef fishes on the coral, clam+coral and clam treatments was observed compared to the shell and control treatments. A change in species composition of reef fish assemblage was also apparent in the coral and clam+coral treatments relative to the clam, shell and control, especially 4 months after the intervention. The present experiment demonstrates the feasibility of improving the condition of degraded patch reefs, which can subsequently enhance the fish community. Results also show the importance of the underlying substratum and the abundance of live corals and clams to reef fishes.  相似文献   

5.
Summary The shallow marine subtropical Northern Bay of Safaga is composed of a complex pattern of sedimentary facies that are generally rich in molluscs. Thirteen divertaken bulk-samples from various sites (reef slopes, sand between coral patches, muddy sand, mud, sandy seagrass, muddy seagrass, mangrove channel) at water depths ranging from shallow subtidal to 40m were investigated with regard to their mollusc fauna >1mm, which was separated into fragments and whole individuals. Fragments make up more than 88% of the total mollusc remains of the samples, and their proportions correspond to characteristics of the sedimentary facies. The whole individuals were differentiated into 622 taxa. The most common taxon,Rissoina cerithiiformis, represented more than 5% of the total mollusc content in the samples. The main part of the fauna consists of micromolluscs, including both small adults and juveniles. Based on the results of cluster-, correspondence-, and factor analyses the fauna was grouped into several associations, each characterizing a sedimentary facies: (1) “Rhinoclavis sordidula—Corbula erythraeensis-Pseudominolia nedyma association” characterizes mud. (2) “Microcirce sp.—Leptomyaria sp. association” characterizes muddy sand. (3)”Smaragdia spp.-Perrinia stellata—Anachis exilis—assemblage” characterizes sandy seagrass. (4) “Crenella striatissima—Rastafaria calypso—Cardiates-assemblage” characterizes muddy seagrass. (5) “Glycymeris spp.-Parvicardium sueziensis-Diala spp.-assemblage” characterizes sand between coral patches. (6) “Rissoina spp.-Triphoridae —Ostreoidea-assemblage” characterizes reef slopes. (7) “Potamides conicus—Siphonaria sp. 2—assemblage” characterizes the mangrove. The seagrass fauna is related to those of sand between coral patches and reef slopes with respect to gastropod assemblages, numbers of taxa and diversity indices, and to the muddy sand fauna on the basis of bivalve assemblages and feeding strategies of bivalves. The mangrove assemblage is related to those of sand between coral patches and the reef slope with respect to taxonomic composition and feeding strategies of bivalves, but has a strong relationship to those of the fine-grained sediments when considering diversity indices. Reef slope assemblages are closely related to that of sand between coral patches in all respects, except life habits of bivalves, which distincly separates the reef slope facies from all others.  相似文献   

6.
Sea-level rise will change environmental conditions on coral reef flats, which comprise extensive habitats in shallow tropical seas and support a wealth of ecosystem services. Rapid relative sea-level rise of 0.6 m over a relatively pristine coral reef in Solomon Islands, caused by a subduction earthquake in April 2007, generated a unique opportunity to examine in situ coral reef response to relative sea-level rise of the magnitude (but not the rate) anticipated by 2100. Extent of live coral was measured from satellite imagery in 2003, 2006, 2009 and 2012. Ecological data were obtained from microatolls and ecological surveys in May 2013. The reef was sampled at 12 locations where dense live hard coral remained absent, remained present or changed from absent to present following subsidence. Ecological data (substratum depth, live coral canopy depth, coral canopy height, substratum suitability, recruitment, diversity and Acropora presence) were measured at each location to identify factors associated with coral response to relative sea-level rise. Vertical and horizontal proliferation of coral occurred following subsidence. Lateral expansion of live coral, accomplished primarily by branching Acropora spp., resulted in lower diversity in regions which changed composition from pavement to dense live coral following subsidence. Of the ecological factors measured, biotic factors were more influential than abiotic factors; species identity was the most important factor in determining which regions of the reef responded to rapid sea-level rise. On relatively pristine reef flats under present climatic conditions, rapid relative sea-level rise generated an opportunity for hard coral to proliferate. However, the species assemblage of the existing reef was important in determining response to sea-level change, by providing previously bare substrate with a source of new coral colonies. Degraded reefs with altered species composition and slower coral growth rates may be less able to respond to climate change-induced sea-level changes.  相似文献   

7.
Using the same methodology and identical sites, we repeat a study dating from 1973 and quantify cover of hard coral species, soft corals, sponges, hard substratum and soft substratum, and density of a commercially important reef fish species, the graysby Cephalopholis cruentata, along a depth-gradient of 3–36 m on the coral reefs of Curaçao. The objective was to determine the multi-decade change in benthic coral reef cover and structural complexity, and their effect on densities of an associated reef fish species. Total hard coral cover decreased on average from 52% in 1973 to 22% in 2003, representing a relative decline of 58%. During this time span, the cover of hard substratum increased considerably (from 11 to 58%), as did that of soft corals (from 0.1 to 2.2%), whereas the cover of sponges showed no significant change. Relative decline of hard coral cover and of reef complexity was greatest in shallow waters (near the coast), which is indicative of a combination of anthropogenic influences from shore and recent storm damage. Cover of main reef builder coral species (Agaricia spp., Siderastrea siderea, Montastrea annularis) decreased more than that of other species, and resulted in a significant decrease in reef complexity. Although density of C. cruentata was highly correlated to cover of Montastrea and Agaricia in 1973, the loss of coral cover did not show any effect on the total density of C. cruentata in 2003. However, C. cruentata showed a clear shift in density distribution from shallow water in 1973 to deep water in 2003. It can be concluded that the reefs of Curaçao have degraded considerably in the last three decades, but that this has had no major effect on the population size of one commercially important coral-associated fish species.  相似文献   

8.
Distinct partitioning has been observed in the composition and diversity of bacterial communities inhabiting the surface and overlying seawater of three coral species infected with black band disease (BBD) on the southern Caribbean island of Curaçao, Netherlands Antilles. PCR amplification and sequencing of bacterial 16S rRNA genes (rDNA) with universally conserved primers have identified over 524 unique bacterial sequences affiliated with 12 bacterial divisions. The molecular sequences exhibited less than 5% similarity in bacterial community composition between seawater and the healthy, black band diseased, and dead coral surfaces. The BBD bacterial mat rapidly migrates across and kills the coral tissue. Clone libraries constructed from the BBD mat were comprised of eight bacterial divisions and 13% unknowns. Several sequences representing bacteria previously found in other marine and terrestrial organisms (including humans) were isolated from the infected coral surfaces, including Clostridium spp., Arcobacter spp., Campylobacter spp., Cytophaga fermentans, Cytophaga columnaris, and Trichodesmium tenue.  相似文献   

9.
Information on spatial variability and distribution patterns of organisms in coral reef environments is necessary to evaluate the increasing anthropogenic disturbance of marine environments (Richmond 1993; Wilkinson 1993; Dayton 1994). Therefore different types of subtidal, reef-associated hard substrata (reef flats, reef slopes, coral carpets, coral patches, rock grounds), each with different coral associations, were investigated to determine the distribution pattern of molluscs and their life habits (feeding strategies and substrate relations). The molluscs were strongly dominated by taxa with distinct relations to corals, and five assemblages were differentiated. The Dendropoma maxima assemblage on reef flats is a discrete entity, strongly dominated by this encrusting and suspension-feeding gastropod. All other assemblages are arranged along a substrate gradient of changing coral associations and potential molluscan habitats. The Coralliophila neritoidea-Barbatia foliata assemblage depends on the presence of Porites and shows a dominance of gastropods feeding on corals and of bivalves associated with living corals. The Chamoidea-Cerithium spp. assemblage on rock grounds is strongly dominated by encrusting bivalves. The Drupella cornus-Pteriidae assemblage occurs on Millepora-Acropora reef slopes and is strongly dominated by bivalves associated with living corals. The Barbatia setigera-Ctenoides annulata assemblage includes a broad variety of taxa, molluscan life habits and bottom types, but occurs mainly on faviid carpets and is transitional among the other three assemblages. A predicted degradation of coral coverage to rock bottoms due to increasing eutrophication and physical damage in the study area (Riegl and Piller 2000) will result in a loss of coral-associated molluscs in favor of bivalve crevice dwellers in dead coral heads and of encrusters on dead hard substrata.  相似文献   

10.
Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA.  相似文献   

11.
The study of the coral biodiversity of the Upper Oligocene sedimentary series (Lower Coralline Limestone, Chattian) of Malta permitted the identification of 25 scleractinian genera represented by 41 species. Three new species are proposed: Miophora naxxarensis n. sp., Nerthastraea maltensis n. sp. and Gyrosmilia maltensis n. sp. Observations made in various Oligocene sites in Malta, especially around Naxxar and Tal Bajjada, allow to establish a suite of coral associations which may vary spatially and vertically. The identified scleractinian associations can be represented by different types of coral assemblages and bioconstructions: isolated colonies, coral beds of varying density but of large spatial extent, more cohesive coral banks (coral carpets) or patch reefs forming morphologies with gentle lateral slopes. The colonial morphologies are closely linked to these different types of bioconstructions. These coral constructions have been established and developed in shallow marine areas. The coral biodiversity of the Oligocene of Malta fits well in the evolution of the Cenozoic reef phenomenon whose development reached its peak in the Oligocene with great coral richness in the Chattian in the Mediterranean area.  相似文献   

12.
In this study, new paleontology and lithology foundations on the Bakhtiari Formation were obtained from Shalamzar area in Zagros basin. A depositional mollasic cycle was divided into Bk1, Bk2 and Bk3 units from the base to the top of the Formation. Bk2, with limestone- and mudstone-dominated deposits, was found to alternate with conglomerates and form a marine succession between the two limestone clast-supported conglomeratic continental units. A diverse fossil association has been described for the first time and consists of foraminifera (Oolina spp., Oolina hexagona, Textularia spp., Spiroloculina spp., Peneroplis spp., Elphidium spp., Planulina sp., Amphistegina spp., Lagena spp. Globigerina spp., Globigerinoides spp., Uvigerina spp., Triloculina spp., Quinqueloculina spp., Spiroloculina spp. Nodosariid., Orbitina spp., Borelis melo, Bolivina spp. and Miogypsina spp.), a gastropod community of Strombus spp., Potamides spp., Turitella spp., Cyprea cf. persica and Pleurotomaria sp. and a higher energy colony of scleractinian corals comprising Porites branching, Porites-encrusting massive Favites spp., Favia spp., Tarbellastrea spp. and Acropora spp. The early–middle Miocene marine level of the Bakhtiari Formation, confirms a nearshore accommodation through a middle shelf and an open coastal lagoon (inner shelf) within a fluvial-dominated delta or open estuary during the last presence of a marine trough in the Zagros basin. This saline to hypersaline shallow marine regime was probably dominated in tropical to subtropical conditions. Palaeobiogeography analysis reflects a last seaway faunal exchange between the area and early–middle Miocene basins of Pakistan, India, Australia, Turkey, Greece, Romania Algeria, Egypt, Italy, France, Portugal and Austrian/Hungarian border, which reconstructs a shallow junction between Zagros basin and Mediterranean Tethys and Indo-pacific Ocean during Burdigalian–Langhian (Badenian) before the terminal Tethyan event in late middle Miocene and Tortonian.  相似文献   

13.
 Fringing reef development is limited around 22° S along the inner Great Barrier Reef, although there is substantial development north and south of this latitude. This study examined the relationships among coral communities and the extent of reef development. Reefs were examined to determine coral composition, colony abundance, colony size and growth form between the latitudes 20°S and 23°S. Major reef framework builders (scler- actinian genus Acropora and families Faviidae and Poritidae) dominated reefs north and south of 22°S, but declined significantly at 22°S where foliose and encrusting corals (Turbinaria and Montipora spp.) were most common. Porites spp. were present at 22° S but had encrusting morphologies. Consistently high turbidity at this latitude, caused by a 10 m tidal range and strong tidal flows, resuspends silts from the shallow shelf, and appears to have precluded reef development throughout the Holocene, by limiting the abundance, stunting the growth, and shortening the life expectancies of reef framework corals. The distinctions between ‘natural’ and ‘human-induced’ degradation may be interpreted on the basis of the relationship between Holocene development and current benthic community longevity. A mismatch between substantial past reef building capacity (a broad and/or thick reef) and non-existent or limited present reef-building capacity could signify anything from a long-period, natural cycle to an unprecedented deterioration in ecosystem function caused by human influence. Accepted: 29 July 1996  相似文献   

14.
《Palaeoworld》2022,31(2):334-357
This paper presents a quantitative study of dinoflagellate cysts (dinocysts) and palynofacies of the Campanian–Danian marly succession at the village of Tattofte (western External Rif, northwestern Morocco). The paleoenvironmental and paleoclimatic interpretations, inferred from this palynologic analysis, are compared to coeval sequences of other areas in the Northern Hemisphere. Changes in the relative abundances of dinocyst taxa, which are paleoenvironmental indicators, throughout the section suggest a deposition in a marine inner to outer neritic setting. The upper Campanian dinocyst assemblage is characterized by the presence of outer neritic-oceanic and low productivity indicator taxa (e.g., Spiniferites spp., Odontochitina spp.) and cold-water taxa (e.g., Manumiella spp., Chantangiella spp., Laciniadinium spp.), whereas, the lower Maastrichtian assemblage is characterized by inner neritic, high productivity and warm-water indicator taxa (e.g., Palaeocystodinium spp., Andalusiella spp.). The upper Maastrichtian dinocyst assemblage displays a return to an outer neritic environment under a transgressive regime, but with a cooling pulse and a moderate productivity. However, the Cretaceous–Paleogene (K/Pg) boundary interval records remarkable changes in the relative abundances of dinocyst taxa, indicating an inner neritic (coastal) setting, which is the most proximal in the study section; such changes reflect instable paleoenvironmental conditions which may be related to global cooling periods, likely caused by the Deccan volcanism in India and/or the Chicxulub asteroid impact in Mexico at the K/Pg boundary. In the Danian, the dinocyst relative abundances indicate a gradual return to stable environmental conditions.A quantitative analysis of the kerogen plots (palynomorphs, phytoclasts and amorphous organic matter (AOM)) reveals five types of palynofacies, generally indicating oxic to suboxic marine environments. The upper Campanian and upper Maastrichtian (lowermost part) strata are characterized by a playnofacies (V), indicating a distal shelf, while the lower Maastrichtian and lower Danian (uppermost part) strata record a playnofacies (III), reflecting an intermediate inner-outer neritic environment. However, the K/Pg boundary transition is characterized by playnofacies types (I) and (II), indicating a proximal (coastal) environment.  相似文献   

15.
For sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography. This laboratory based study tested whether surface microtopography alone (without chemical cues) plays an important contributing role in the settlement of larvae of coral reef sessile invertebrates. We measured settlement to tiles, engineered with surface microtopography (holes) that closely matched the sizes (width) of larvae of a range of corals and sponges, in addition to surfaces with holes that were markedly larger than larvae. Larvae from two species of scleractinian corals (Acropora millepora and Ctenactis crassa) and three species of coral reef sponges (Luffariella variabilis, Carteriospongia foliascens and Ircinia sp.,) were used in experiments. L. variabilis, A. millepora and C. crassa showed markedly higher settlement to surface microtopography that closely matched their larval width. C. foliascens and Ircinia sp., showed no specificity to surface microtopography, settling just as often to microtopography as to flat surfaces. The findings of this study question the sole reliance on chemical based larval settlement cues, previously established for some coral and sponge species, and demonstrate that specific physical cues (surface complexity) can also play an important role in larval settlement of coral reef sessile invertebrates.  相似文献   

16.
Very large amount of microbialites, up to 70% of the reef volume takes part in the edification of Lower Bajocian coral reefs in the Chargey-lès-Port quarry (Haute-Saône, France). Such high amounts of microbialites were unknown within bioconstructions of Middle Jurassic age. Along the 16 m-thick section, seven successive biohermal or biostromal units developed on a shallow platform. Bioconstructions display a first coral growth phase with either constratal or superstratal growth fabrics. Coral fauna is relatively poorly diversified and is dominated by massive forms (Isastrea, Thamnasteria, and Periseris) or branched phaceloid (Cladophyllia) and ramose (Dendraraea) colonies. Corals can be heavily encrusted by microbialites of diverse forms and fabrics (leiolitic, thrombolitic, and stromatolitic). According to the coral growth fabrics, microbialite crusts developed on top of or at the underside of coral colonies, forming a coral-microbialite elementary unit. Microbialites show a multiphase development: (i) directly at the coral surface, a first and mm-scale microbialite layer locally developed; (ii) a second, cm-scale microbialite layer (up to 8 cm thick) covered the entire coral reef framework and assumed the main building role; and (iii) a third, mm- to cm-scale, laminated microbialite layer may also be observed onlapping previous reef structures, before having been progressively buried under sediments. Contemporaneously to the coral growth phase, the first microbialite layer developed on dead portions of coral colonies. The transition between coral growth and microbialite development (i.e., second layer of microbialites) is interpreted as a result of a coral reef crisis, probably reflecting more nutrient-rich conditions. The passage to a stromatolitic (third) layer suggests a control of the accumulation rate. Composition and architecture of coral-microbialite reef units of Chargey-lès-Port highlight the relations between high-frequency fluctuating environmental factors (mainly accumulation rate and trophic conditions) and reef development.  相似文献   

17.
Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC) release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata – Ochrophyta; Amansia rhodantha – Rhodophyta; Halimeda opuntia – Chlorophyta), a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii) and a dominant hermatypic coral (Porites lobata). Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h−1 dm−2), stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h−1) and concomitant oxygen drawdown (0.16±0.05 µmol L−1 h−1 dm−2). Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence reef microbial dynamics and biogeochemical parameters (i.e., DOC and oxygen availability, bacterial abundance and metabolism) in coral reef communities.  相似文献   

18.
Host-associated adaptation is emerging as a potential driver of population differentiation and speciation for marine organisms with major implications for ecosystem structure and function. Coralliophila abbreviata are corallivorous gastropods that live and feed on most of the reef-building corals in the tropical western Atlantic and Caribbean. Populations of C. abbreviata associated with the threatened acroporid corals, Acropora palmata and A. cervicornis, display different behavioral, morphological, demographic, and life-history characteristics than those that inhabit other coral host taxa, indicating that host-specific selective forces may be acting on C. abbreviata. Here, we used newly developed polymorphic microsatellite loci and mitochondrial cytochrome b sequence data to assess the population genetic structure, connectivity, and demographic history of C. abbreviata populations from three coral host taxa (A. palmata, Montastraea spp., Mycetophyllia spp.) and six geographic locations across the Caribbean. Analysis of molecular variance provided some evidence of weak and possibly geographically variable host-associated differentiation but no evidence of differentiation among sampling locations or major oceanographic regions, suggesting high gene flow across the Caribbean. Phylogenetic network and Bayesian clustering analyses supported a hypothesis of a single panmictic population as individuals failed to cluster by host or sampling location. Demographic analyses consistently supported a scenario of population expansion during the Pleistocene, a time of major carbonate reef development in the region. Although further study is needed to fully elucidate the interactive effects of host-associated selection and high gene flow in this system, our results have implications for local and regional community interactions and impact of predation on declining coral populations.  相似文献   

19.
Stemann, T. A. & Johnson, K. G. 1992 07 15: Coral assemblages, biofacies. and ecological zones in the mid-Holocene reef deposits of the Enriquillo Valley, Dominican Republic. A large, subaerially exposed mid-Holocene reef in the Enriquillo Valley (southwest Dominican Republic) provides an excellent opportunity to examine the relationship between reefal ecology and reefal deposits. Coral species richness and diversity in the Enriquillo reef are comparable to that found in the recent of the Caribbean, and ecological zonation comprised of a shallow-water branching coral zone and a deeper water mixed-coral zone is apparent. Similar zonation and diversity patterns have been recognized on living Caribbcan reefs with moderate wave exposure. Three statistically discrete biopdcies can be discriminated in the Enriquillo deposits using quadrat point-counting techniques commonly used to census modern reefs. They include a facies dominated by Acropora cervicornis, a low diversity assemblage with abundant, large colonies of Siderastrea siderea and Stephanocoenia intersepta, and a higher diversity assembbdge composed of various taxa including Montastraea spp., Colpophyllia spp., and Agaricia spp. Each facies can be recognized at scales of 1–3 m2, though in some cases they extend for more than 20 m2. In general, the A. cervicornis facies is spatially segregated from the other two biofacies. although neither the shallow nor the deep-water ecological zone is comprised of a single reef biofacies. Rather, the biofacies described here appear to represent distinct micro-environments resulting from ecological variation at a subzonal scale. Micro-environments of similar scale are most likely preserved in other reef deposits. Recognition of these subzonal biofacies may have important consequences for the stratigraphical and paleoccological interpretation of fossil reefs. Corals, biofacies, reef zonation, coral communities, fossil reefs.  相似文献   

20.
Large-scale coral bleaching episodes are potentially major disturbances to coral reef systems, yet a definitive picture of variation in assemblage response and species susceptibilities is still being compiled. Here, we provide a detailed analysis of the bleaching response of 4160 coral colonies, representing 45 genera and 15 families, from two depths at four sites on reefs fringing inshore islands on the Great Barrier Reef. Six weeks after the onset of large-scale bleaching in 1998, between 11 and 83% of colonies along replicate transects were affected by bleaching, and mortality was 1 to 16%. There were significant differences in bleaching response between sites, depths and taxa. Cyphastrea, Turbinaria and Galaxea were relatively unaffected by bleaching, while most acroporids and pocilloporids were highly susceptible. The hydrocorals (Millepora spp.) were the most susceptible taxa, with 85% mortality. Spatial variation in assemblage response was linked to the taxonomic composition of reef sites and their bleaching history. We suggest, therefore, that much of the spatial variation in bleaching response was due to assemblage composition and thermal acclimation. Accepted: 14 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号