首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the Late Barremian and Early Aptian (about 120 million years ago) intense volcanic degassing and extremely rapid release of methane hydrates contained in marine sediments added high amounts of carbon to the ocean and atmosphere, and resulted most probably in rising atmospheric carbon dioxide pressure. In order to document the response of the shallow water carbonate-producing communities to this pronounced disturbance of the carbon cycle we studied a Late Barremian to Early Aptian neritic carbonate succession deposited on the northern Tethyan shelf (Swiss Alps). The sedimentological and stable carbon and oxygen isotope records of two sections located along a N–S transect from proximal to more distal shelf environments were investigated. The sediments correspond to outer-, mid-, and inner-ramp deposits of a homoclinal carbonate ramp. Vertical facies variations within the two studied sections feature three progradation phases of the platform. A highly resolved correlation of the shelf sediments with a pelagic succession from the Southern Alps (Northern Italy) is based on both δ13C stratigraphy and biostratigraphy, and indicates that the drowning of the Helvetic carbonate platform coincided with a pronounced calcification crisis of calcareous nannofossils. The biocalcification crisis started before but culminated during the Aptian methane event recorded in a negative carbon-isotope spike. We propose that increased carbon dioxide concentrations in oceans and atmosphere related to volcanic activity and to sudden methane release reduced the marine calcium carbonate oversaturation and the calcification potential of benthic and planktonic organisms. Carbonate-producing shallow water communities on platforms and ramps suffering from additional environmental stress such as extreme temperatures or high nutrient levels could not survive during times of rising sea level, and, as a consequence, carbonate platforms drowned.  相似文献   

2.
In this paper, new biostratigraphic, stable isotope (C, O) and organic geochemical data are presented for the Pindos Zone in NW Greece (SE Epirus region) in order to investigate whether the organic carbon rich strata of the Kalarrytes sections A and B correspond to a local expression of the early Aptian Oceanic Anoxic Event (OAE 1a or Selli Event) or not. The Pindos Zone Mesozoic to Tertiary sedimentary sequence constitutes the deep-sea sedimentary cover of the Pindos Ocean, which was separated from its oceanic basement as an accretionary prism during the complete closure of this ocean, and was emplaced westwards onto the adjacent Gavrovo-Tripolis carbonate platform. Stable carbon and oxygen isotope data from the Kalarrytes sections reveal an isotopic composition compatible with the characteristic features of the OAE 1a. Calcareous nannofossil and radiolarian biostratigraphy indicates an early Aptian age for both sequences. Biomarker analysis on the organic-rich intervals reveals the primary marine origin of the organic matter, with substantial contribution from bacteria, cyanobacteria and dinoflagellates, as well as a significant terrigenous input. Findings of authigenic framboidal pyrite provide evidence for the prevalence of sulphidic conditions during deposition. Furthermore, similarities between the biomarker signatures of the Pindos organic-rich strata and coeval strata of early Aptian age where the impact of OAE 1a has previously been recorded, are identified. The presented data show that the organic-rich intervals of both Kalarrytes sections constitute the first records of the OAE 1a in oceanic deposits of Greece.  相似文献   

3.
Luigi Spalluto 《Facies》2012,58(1):17-36
The “mid”-Cretaceous carbonate succession of the Apulia Carbonate Platform cropping out in northern Murge area (Apulia, southern Italy) is composed of shallow-water carbonate rocks and is over 400 m in thickness. This paper focuses on the lithofacies analysis of this carbonate succession, its paleoenvironmental interpretation, and its sequence-chronostratigraphic architecture. Lithofacies analysis permitted to identify deposits which can be grouped into the following three facies belts: (1) terrestrial facies belt formed by: intraclast-supported paleosoils; solution-collapse breccias; (2) restricted facies belt made up of lithofacies deposited in protected peritidal environments; (3) normal-marine facies belt made up of lithofacies formed in moderate- to high-energy subtidal environments. The detailed study both in outcrops and in thin-sections revealed that, at the bed scale, lithofacies are cyclically arranged and form shallowing-upward small-scale depositional sequences comparable to parasequences and/or simple sequences. The following three small-scale sequence types have been distinguished: (1) subtidal sequences mostly made up of lithofacies formed in the normal-marine open subtidal domain; (2) peritidal sequences made up of lithofacies formed in the restricted peritidal domain; (3) peritidal sequences showing a cap formed by paleosoils. Small-scale sequences are not randomly arranged in the compiled succession but form discrete packages, or sets, that alternate in the sedimentary record. The repetition of such small-scale sequence packages in the succession has been the key to recognize large-scale sequences comparable to third-order depositional sequences. Although sedimentological data are often fragmentary due to late dolomitization, four large-scale sequences have been distinguished. The data support a generalized landward-backstepping of facies belts during transgression, which implies a gradual gain of accommodation culminating with the deposition of a package of small-scale sequences formed by normal-marine subtidal deposits. These mark periods of maximum accommodation space and form the maximum-flooding zones of large-scale sequences. A gradual seaward progradation of facies belts is recorded during highstand conditions, which implies a gradual loss of accommodation culminating with the deposition of a package of peritidal small-scale sequences capped by paleosoils or by solution-collapse breccias. The occurrence of terrestrial deposits marks periods of minimum accommodation on the platform and determines the sequence boundary of large-scale sequences. The large-scale sequences identified in this study fit with the main transgressive/regressive cycles published in the sequence-chronostratigraphic chart of European basins. As a consequence, it is interpreted that changes of the sea level recorded at the scale of European basins played an important role in determining the sequence-stratigraphic architecture of the studied succession. In spite of this, the occurrence of solution-collapse breccias, which implies a significant gap in carbonate sedimentation in between Early and Middle Cenomanian times, may also have an alternative interpretation. In particular, this deposit may represent the local fingerprint of the well-known tectonic phase which, during Late Albian-Early/Middle Cenomanian times, determined the subaerial exposure of large parts of Periadriatic carbonate platforms producing a marked regional unconformity.  相似文献   

4.
The Cretaceous (Early Aptian, uppermost Bedoulian, Dufrenoyia furcata Zone) Zamaia Formation is a carbonate unit, up to 224 m thick and 1.5 km wide, which formed on a regional coastal sea bordering the continental Iberian craton. A high-resolution, facies-based, stratigraphic framework is presented using facies mapping and vertical-log characterization. The depositional succession consists of a shallow estuarine facies of the Ereza Fm overlain by shallow-water rudist limestones (Zamaia Fm) building relief over positive tectonic blocks and separated by an intraplatform depression. The margins of these shallow-water rudist buildups record low-angle transitional slopes toward the adjacent surrounding basins. Syn-depositional faulting is responsible for differential subsidence and creation of highs and lows, and local emplacement of limestone olistoliths and slope breccias. Two main carbonate phases are separated by an intervening siliciclastic-carbonate estuarine episode. The platform carbonates are composed of repetitive swallowing-upward cycles, commonly ending with a paleokarstic surface. Depositional systems tracts within sequences are recognized on the basis of facies patterns and are interpreted in terms of variations of relative sea level. Both Zamaia carbonate platform phases were terminated by a relative sea-level fall and karstification, immediately followed by a relative sea-level rise. This study refines our understanding of the paleogeography and sea-level history in the Early Cretaceous Aptian of the Basque-Cantabrian Basin. The detailed information on biostratigraphy and lithostratigraphy provides a foundation for regional to global correlations.  相似文献   

5.
The Mersin Mélange (MM) as a part of the Mersin Ophiolitic Complex in southern Turkey is a sedimentary complex including blocks and tectonic slices within a Late Cretaceous matrix. Two blocks (Keven and Cingeypinari) within the MM originated from the northern branch of Neotethys (Izmir-Ankara-Erzincan Ocean) and have been studied in detail using foraminiferal assemblages to correlate them with coeval successions in the Taurides and to approach the Early Permian evolution of the northern branch of the Neotethys. The Keven block includes mainly slope deposits (poorly-sorted carbonate breccia and fossiliferous calcarenite) and dated as late Asselian-Sakmarian, whereas the Cingeypinari block consists of platform deposits (fossiliferous platform carbonate and quartz sandstone alternation) assigned to the Sakmarian-early Artinskian. These Early Permian Cingeypinari and Keven blocks from the Beysehir-Hoyran Nappes are biostratigraphically well correlated to the northerly originated Hadim nappe and its equivalents in the Tauride Belt. Considering recent studies on the Mersin Mélange, a possible mantle plume existed during the Late Carboniferous-Early Permian time interval along the northern Gondwanan margin. This event led to the opening of the northern Neotethys and deposition of the pelagic “Karincali” sequence with volcanic material in the basinal conditions. The data presented suggest that the Keven block relates to the slope and the Cingeypinari block to platform conditions deposited as a lateral equivalent of the Karincali sequences during the Early Permian.  相似文献   

6.
The Triassic sediments of the External Zones of the Betic Cordillera were deposited on the Southern Iberian Continental Palaeomargin. Two coeval Ladinian formations, namely the Siles Formation and the Cehegín Formation, are described to illustrate the facies and lithostratigraphic variability in the Muschelkalk carbonates. There has been some dispute over the number of carbonate units present in the Siles Formation. Our studies assign a tectonic origin to these recurrent carbonate units. Both formations comprise only one carbonate unit, which is correlated to the Upper Muschelkalk of the Catalan and Germanic basins and some Iberian Range sections. To characterize the sedimentological features of these formations, 14 facies were defined. The most widespread sediment was originally lime mud, although bioclastic deposits are also common. In the facies succession, a main transgressive-regressive sequence could be identified. According to the facies model proposed here, a muddy coastal and shallow-water platform prograded over mid ramp deposits. There is no evidence for a seawards reefal or oolitic-bioclastic sandy barrier. The most significant feature of this sedimentary interpretation is that these carbonate facies show clear characteristics of an epicontinental platform.  相似文献   

7.
8.
A δ13C curve is reported for the latest Barremian to Early Aptian at a section located in the Prebetic zone (Cau section, SE Spain). The studied section records a hemipelagic succession of dark shales, deposited on a distal carbonate ramp with a high subsidence rate, adjacent to shallow carbonate environments. The integrated biostratigraphy of the section is based on ammonites, planktonic foraminifera and calcareous nannofossils, and it has allowed an accurate dating of the succession. The δ13C curve presented shows a distinctive evolution, leading to the recognition of three major excursions, as well as a subdivision into eight segments, which represents an improvement of the current biostratigraphic resolution. The correlation, both isotopic and biostratigraphical, with other well resolved sections is very accurate even at the higher resolution attained. Correlation with sections with low-resolution biostratigraphic characterisation from shallow platform limestones also gives good results, which supports the effectiveness of carbon isotope stratigraphy as a correlation tool.  相似文献   

9.
10.
The microbiostratigraphic analysis of the three outcrop sections from the Cretaceous inner platform carbonate succession in the Yavca area (Bolkar Mountains) allows to recognize the four local benthic foraminiferal zones. These are: (1) Voloshinoides murgensis and Praechrysalidina infracretacea Cenozone in the Lower Aptian; (2) Pseudorhapydionina dubia and Biconcava bentori Cenozone in the Middle-Upper Cenomanian; (3) Ostracoda and Miliolidae Interval Zone in the probable Turonian, represented by dolomitized limestones without any significant markers; (4) Moncharmontia compressa and Dicyclina schlumbergeri Cenozone in the Coniacian-Santonian. The benthic foraminiferal assemblages correspond to those in other areas of the Mediterranean realm, with the exception of a lack of alveolinids and orbitolinids due to unfavorable environmental conditions (inner platform, restricted shelf). After the regionally well-known emergence during the late Aptian, Albian and early Cenomanian, very shallow subtidal to intertidal conditions were re-established during the middle-late Cenomanian time. The Coniacian-Santonian benthic foraminiferal assemblage shows an increase in diversity and abundance as a result of open marine influence, confirmed by the presence of larger foraminifera (Dicyclina), Rotaliidae and radiolitid fragments. Thaumatoporella and Aeolisaccus-bearing wackestone intercalations still indicate the existence of sporadic restricted environment conditions. The Cretaceous shallow-water platform carbonate succession of the Yavca area is conformably overlain by gray pelagic limestones with calcispheres and planktonic foraminifera. The Campanian flooding of the Bolkar Da? carbonate platform resulted in drowning of the pre-existing biota and facies.  相似文献   

11.
The Paleocene–Eocene Taleh Zang Formation of the Zagros Basin is a sequence of shallow-water carbonates. We have studied carbonate platform, sedimentary environments and its changes based on the facies analysis with particular emphasis on the biogenic assemblages of the Late Paleocene Sarkan and Early Eocene Maleh kuh sections. In the Late Paleocene, nine microfacies types were distinguished, dominated by algal taxa and corals at the lower part and larger foraminifera at the upper part. The Lower Eocene section is characterised by 10 microfacies types, which are dominated by diverse larger foraminifera such as alveolinids, orbitolitids and nummulitids. The Taleh Zang Formation at the Sarkan and Maleh kuh sections represents sedimentation on a carbonate ramp.

The deepening trends show a gradual increase in perforate foraminifera, the deepest environment is marked by the maximum occurrence of perforate foraminifers (Nummulites), while the shallowing trends are composed mainly of imperforate foraminifera and also characterised by lack of fossils in tidal flat facies.

Based on the facies changes and platform evolution, three stages are assumed in platform development: I; algal and coralgal colonies (coralgal platform), II; coralgal reefs giving way to larger foraminifera, III; dominance of diverse and newly developing larger foraminifera lineages in oligotrophic conditions.  相似文献   

12.
The succession of the Galala Mountains at the southern Tethyan margin (Eastern Desert, Egypt) provides new data for the evolution of an isolated carbonate platform in the Early Eocene. Since the Late Cretaceous emergence of the Galala platform, its evolution has been controlled strongly by eustatic sea-level fluctuations and the tectonic activity along the Syrian Arc-Fold-Belt. Previous studies introduced five platform stages to describe platform evolution from the Maastrichtian (stage A) to the latest Paleocene shift from a platform to ramp morphology (stage E). A first Early Eocene stage F was tentatively introduced but not described in detail. In this study, we continue the work at the Galala platform, focussing on Early Eocene platform evolution, microfacies analysis and the distribution of larger benthic foraminifera on a south-dipping inner ramp to basin transect. We redefine the tentative platform stage F and introduce two new platform stages (stage G and H) by means of the distribution of 13 facies types and syn-depositional tectonism. In the earliest Eocene (stage F, NP 9b–NP 11), facies patterns indicate mainly aggradation of the ramp system. The first occurrence of isolated sandstone beds at the mid ramp reflects a post-Paleocene-Eocene thermal maximum (PETM) reactivation of a Cretaceous fault system, yielding to the tectonic uplift of Mesozoic and Palaeozoic siliciclastics. As a consequence, the Paleocene ramp with pure carbonate deposition shifted to a mixed carbonate-siliciclastic system during stage F. The subsequent platform stage G (NP 11–NP 14a) is characterised by a deepening trend at the mid ramp, resulting in the retrogradation of the platform. The increasing deposition of quartz-rich sandstones at the mid ramp reflects the enhanced erosion of Mesozoic and Palaeozoic deposits. In contrast to the deepening trend at the mid ramp, the deposition of cyclic tidalites reflects a coeval shallowing and the temporarily subaerial exposure of inner ramp environments. This oppositional trend is related to the continuing uplift along the Syrian Arc-Fold-Belt in stage G. Platform stage H (NP 14a–?) demonstrates the termination of Syrian Arc uplift and the recovery from a mixed siliciclastic carbonate platform to pure carbonate deposition.  相似文献   

13.
The compositional variation of Pleistocene carbonate gravity deposits from the Exuma Sound Basin, Bahamas, was determined. Two types of gravity deposit were present in the cores of ODP Leg 101, Site 632A, i.e., calciturbidites and calcidebrites. In analogy with earlier studies, the compositional variations in the calciturbidites could be linked to different sources on the carbonate margin, i.e., platform interior, platform edge, and platform slope. Calciturbidites deposited during interglacial, sea-level highstands show a dominance of non-skeletal grains, largely derived from the platform interior, while calciturbidites of glacial, sea-level lowstands, show a dominance of skeletal platform-edge to platform-slope-derived grains. Thus, the calciturbidite composition can be used to reconstruct the position of absolute sea level. In addition, the mud content of the calciturbidites increased after Marine Isotope Stage 11. In contrast, the composition of the calcidebrites remained unaltered through time and showed a clear dominance of platform-edge-derived sediments during varying sea-level positions. The Bahamian carbonate platform is located in a tectonically stable passive-margin setting and the gravity-flow deposits were laid down in an environment exclusively controlled by eustatic sea-level fluctuations. This study shows that all types of gravity-induced carbonate deposits, calciturbidites, and calcidebrites, were deposited in response to global eustatic sea-level variations. The sediment composition could be linked directly to sediment input from specific facies realms along the carbonate platform margin. Hence, sediment composition analysis is a strong tool that may be used to discriminate between gravity-induced deposition triggered by eustatic sea-level changes and that related to tectonic events, when analyzing resedimentation processes in sedimentary basins.  相似文献   

14.
New sampling on critical intervals of the uppermost Permian and Triassic successions of the Northern Karakorum Terrain in the Karakorum Range (Pakistan) has refined the stratigraphy. Two types of successions may be distinguished in the Karakorum Range: a carbonate platform succession, spanning the whole interval from Upper Permian to Upper Triassic, possibly with several gaps; and a basinal succession, deposited from the Middle Permian to Early Carnian (Late Triassic), when the carbonate platform prograded into the basin. With the approaching and later docking of the Karakorum Block against the Asian margin closing the Paleo-Tethys, a portion of Karakorum emerged while another part subsided as a fore-deep, receiving clastics from the emerging Cimmerian Range. Molassic sediments filled the basin, whilst shallow-water carbonates transgressed over the emerged carbonate platform sometime between the latest Triassic and the Pliensbachian (Early Jurassic), with Cimmerian deformation occurring to the north. The age control is provided by conodonts, with assemblages of late Wuchiapingian, Changhsingian, Induan (Griesbachian and Dienerian), late Olenekian, early Anisian, late Ladinian, and early Carnian ages, respectively. Some information on the section around the P/T boundary is provided by palynology and isotopic C13 values. The dating of the Norian/Rhaetian platform is provided by foraminifers.  相似文献   

15.
Varied west-transported and far-traveled Jurassic mélanges in southwestern Serbia represent a key to understand the geodynamic history and to solve paleogeographic questions and reconstructions in the Triassic–Jurassic passive and active margin arrangement of the Inner Dinarides. Of special interest are the carbonate-clastic radiolaritic mélange areas in the Zlatar Mountain below the Dinaridic Ophiolite nappe. The present study reports from a Middle Jurassic sedimentary mélange in the area of Vodena Poljana. Carbonate components and blocks of the mass-flow deposits consist exclusively of a reworked Middle/Late Anisian to Early Jurassic distal shelf succession. Ophiolite components from the Dinaridic Ophiolite nappe stack are missing in the spectrum. The underlying series of the Zlatar Mélange belong to Early/Middle Anisian shallow-water carbonates and to Late Anisian to Middle Jurassic deep-water sedimentary rocks of the Hallstatt facies zone. South of Vodena Poljana in the overlying ophiolitic mélange occur Late Triassic radiolaritic components from the sedimentary cover of the Late Triassic ocean floor, beside ophiolite clasts and limestone components from the continental slope. A comparison with preserved Hallstatt Limestone successions and Jurassic mélange complexes from the Eastern Alps, Western Carpathians, and Albanides strengthen the interpretation of a provenance of the Zlatar mélange from the distal passive margin facing the Neotethys Ocean to the east. An autochthonous Dinaridic Ocean west of the Drina-Ivanjica Unit cannot be confirmed.  相似文献   

16.
Andrej Šmuc  Jože Čar 《Facies》2002,46(1):205-216
Summary An Upper Ladinian to Lower Carnian succession in the Idrija-Cerkno region (W Slovenia) is described and correlated with similar successions in the Dolomites. Structurally, the area belongs to the Rodne unit (Trnovo nappe, NW Dinarides). The succession was reconstructed from three stratigraphically superimposed sections. The Orehovska Grapa section is characterised by finegrained turbidites composed of sandy mudstones with intercalations of lenses and beds of trachy-andesite tuff and resedimented tuffs. Beds of hemipelagic light grey wackestone are rarely interstratified. These rocks are correlative with the Upper Ladinian Wengen Group. The Police1 section is composed of black shaly marls and mudstones, hemipelagic wackestone, tuffaceous sand-stones, and in the upper part, of calciturbidites overlain by black laminated shales. The section is correlated with the lower part of the San Cassiano Formation. The Police 2 section consists mainly of wavy bedded peloidal and bioclastic limestone, alternating with thin interbeds of shaly mudstones and marls. The limestone and mudstones are interpreted as tempestites and gradually pass into bedded and massive dolomite of Early Carnian age. This succession is similar to the transition from the San Cassiano Formation to the Cassian Dolomite. The studied succession represents a shallowing upward basinal sequence capped by carbonate platform deposits. Palaeogeographically it is a Late Ladinian transition from the carbonate platform in the south to the typical basinal area in the north.  相似文献   

17.
The Brilon-reef complex is one of the biggest Devonian carbonate buildups (~80 km2) of the Rheinisches Schiefergebirge. The Burgberg section is located in the southeastern fore-reef area of the Brilon Reef Complex and exposes a succession of strata (117 m thick), which extends from the Middle Givetian (middle varcus conodont Zone) to the Viséan (bilineatus conodont Zone). Field and microfacies observations led to the definition of nine microfacies that are integrated into a sedimentary model divided into off-reef, intermediate fore-reef, and proximal fore-reef sedimentary domains (SD). The off-reef domain (SD1) is the most distal setting observed and is characterized by fine-grained sediments, dominated by pelagic biota and the local occurrence of gravity-flow deposits. The intermediate fore-reef (SD2) is characterized by a mixture of biota and sediments coming from both deeper-water and shallow-water sources and is influenced by storm and gravity-flow currents. In this domain, Renalcis mound-like structures developed locally. Finally, the proximal fore-reef (SD3) corresponds to the most proximal setting that is strongly influenced by gravity-flow currents derived from the Brilon Reef Complex. The temporal evolution of microfacies in the fore-reef setting of the Burgberg section show five main paleoenvironmental trends influenced by the onset, general development, and demise/drowning of the Brilon Reef Complex. Fore-reef to off-reef lithologies and their temporal changes are from the base to the top of the section: (U1)—fine-grained sediments with large reef debris, corresponding to the initial development of the reef building upon submarine volcaniclastic deposits during the Middle Givetian (middle varcus Zone) and first export of reef debris in the fore-reef setting; (U2)—high increase of reef-derived material in the fore-reef area, corresponding to a significant progradation of the reef from the Middle Givetian to the Early Frasnian (maximum extension of the Brilon Reef Complex to the south, disparilis to the falsiovalis conodont biozones); (U3)—progressive decrease of shallow-water derived material and increase of fine-grained sediments and deep-water biota into the fore-reef setting, corresponding to the stepwise withdrawal of the reef influence; from the Middle to the Late Frasnian (jamieae conodont Zone); (U4)—development of a submarine rise characterized by nodular and cephalopod-bearing limestones extending from the Late Frasnian to the Late Famennian corresponding to the demise and drowning of the Brilon Reef Complex as a result of the Late Frasnian Kellwasser events (upper rhenana and triangularis conodont biozones); (U5)—significant deepening of the Burgberg area starting in the Late Famennian, directly followed by an aggrading trend marked by pelagic shales overlying the nodular limestone deposits.  相似文献   

18.
ODP Leg 171B investigated the sediments of the Blake Plateau off northern Florida and recovered 36 Upper Albian ammonites — one from Site 1050C, the others from Site 1052E. This unusually large number of specimens from an ODP site permits the dating of the interval between 668 to 621 m below sea-floor at Site 1052E as late Late Albian, Stoliczkaia ( S .) dispar ammonite zone. This zone is indicated by the genera Mortoniceras and Stoliczkaia ( S. ). Site 1050C (Interval 171B-1050C-31R-3, 0.80–0.86 m) cannot be dated more precisely than Late Aptian to Mid Cenomanian by ammonites. The fauna is cosmopolitan. Tetragonites jurinianus Puzosia mayoriana are widely distributed forms. Kossmatella muhlenbecki was thought to be restricted to a fairly small area around the Mediterranean, but the record off northern Florida presented here, indicates that it is not an endemic species; this is also true for Hemiptychoceras subgaultinum in the Albian. The event-like character of the ammonite-bearing interval at Site 1052E is unique. It is overlain by a laminated claystone succession; the top of this sequence is considered to represent maximum flooding (Oceanic Anoxic Event, OAE 1d). Ammonites perhaps profited from an increased nutrient supply derived from flooded coastal plains during a continuous transgression.  相似文献   

19.
A kilometer-sized block in the Sirogojno carbonate-clastic mélange provides a complete succession of the Wetterstein Carbonate Platform evolution. The platform starts its progradation in Early Carnian times over hemipelagic Late Ladinian cherty limestones with fine-grained allodapic limestone intercalations. Shallow-water reef-slope, reefal to back-reef/lagoonal limestones evolved in the Early Carnian. The top of the platform is recrystallized and partly slightly dolomitized, and in parts karstification is visible. After a period of omission caused by uplift, new subsidence started in the early Late Carnian. This is documented by a flooding respectively drowning sequence of the same age, starting with reefal carbonates and rapidly followed by hemipelagic-influenced limestones. The evolution of the onset and the drowning of the Wetterstein Carbonate Platform prove a paleogeographic derivation of this block from the outer shelf-area facing the Neotethys Ocean, but still in a shallow-water carbonate platform position transitional to the Hallstatt facies zone. This paleogeographic position is especially confirmed by the new pulse of subsidence in the Late Carnian after a long lasting phase of omission. The evolution of the Wetterstein Carbonate Platform in the Inner Dinarides corresponds to successions known from the Northern Calcareous Alps or the southern Western Carpathians. In the Late Triassic both regions belong to the same northeast–southwest striking shelf area facing the Neotethys Ocean to the east and southeast, respectively.  相似文献   

20.
The Lower Jurassic (upper Sinemurian) of the Hronicum domain (Tatra Mts., Western Carpathians, Poland) represents typical tropical shallow-water carbonates of the Bahamian-type. Eight microfacies recognized include oolitic-peloidal grainstone/packstone, peloidal-bioclastic grainstone, peloidal-lithoclastic-bioclastic-cortoidal grainstone/packstone, peloidal-bioclastic packstone/grainstone, peloidal-bioclastic wackestone, spiculitic wackestone, recrystallized peloidal-oolitic grainstone and subordinate dolosparites. The studied sediments were deposited on a shallow-water carbonate platform characterized by normal salinity, in high-energy oolite shoals, bars, back-margin, protected shallow lagoon and subordinately on restricted tidal flat. Some of them contain the microcoprolite Parafavreina, green alga Palaeodasycladus cf. mediterraneous (Pia) and Cayeuxia, typical of the Early Jurassic carbonate platforms of the Western Tethys. The spiculite wackestone from the upper part of the studied succession was deposited in a transitional to deeper-water setting. The studied upper Sinemurian carbonates of the Hronicum domain reveal microfacies similar to the other Bahamian-type platform carbonates of the Mediterranean region. Thereby, they record the northern range of the Lower Jurassic tropical shallow-water carbonates in the western part of the Tethys, albeit the thickness of the Bahamian-type carbonate successions generally decrease in a northerly direction. The sedimentation of the Bahamian-type deposits in the Hronicum domain, located during the Early Jurassic at about 28°N, besides other specific factors (i.e., light, salinity, and nutrients) was strongly controlled by the paleocirculation of warm ocean currents in the Western Tethys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号