首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The study of eye movements and oculomotor disorders has, for four decades, greatly benefitted from the application of control theoretic concepts. This paper is an example of a complementary approach based on the theory of nonlinear dynamical systems. Recently, a nonlinear dynamics model of the saccadic system was developed, comprising a symmetric piecewise-smooth system of six first-order autonomous ordinary differential equations. A preliminary numerical investigation of the model revealed that in addition to generating normal saccades, it could also simulate inaccurate saccades, and the oscillatory instability known as congenital nystagmus (CN). By varying the parameters of the model, several types of CN oscillations were produced, including jerk, bidirectional jerk and pendular nystagmus. The aim of this study was to investigate the bifurcations and attractors of the model, in order to obtain a classification of the simulated oculomotor behaviours. The application of standard stability analysis techniques, together with numerical work, revealed that the equations have a rich bifurcation structure. In addition to Hopf, homoclinic and saddlenode bifurcations organised by a Takens-Bogdanov point, the equations can undergo nonsmooth pitchfork bifurcations and nonsmooth gluing bifurcations. Evidence was also found for the existence of Hopf-initiated canards. The simulated jerk CN waveforms were found to correspond to a pair of post-canard symmetry-related limit cycles, which exist in regions of parameter space where the equations are a slow-fast system. The slow and fast phases of the simulated oscillations were attributed to the geometry of the corresponding slow manifold. The simulated bidirectional jerk and pendular waveforms were attributed to a symmetry invariant limit cycle produced by the gluing of the asymmetric cycles. In contrast to control models of the oculomotor system, the bifurcation analysis places clear restrictions on which kinds of behaviour are likely to be associated with each other in parameter space, enabling predictions to be made regarding the possible changes in the oscillation type that may be observed upon changing the model parameters. The analysis suggests that CN is one of a range of oculomotor disorders associated with a pathological saccadic braking signal, and that jerk and pendular nystagmus are the most probable oscillatory instabilities. Additionally, the transition from jerk CN to bidirectional jerk and pendular nystagmus observed experimentally when the gaze angle or attention level is changed is attributed to a gluing bifurcation. This suggests the possibility of manipulating the waveforms of subjects with jerk CN experimentally to produce waveforms with an extended foveation period, thereby improving visual resolution.  相似文献   

2.
Rats were immunized with cysts of two Toxoplasma strains or with RH strain tachyzoites prior to pregnancy. The litters of the 13 rats that received homologous challenges with cysts during pregnancy, were all protected, whereas of 173 rats that received heterologous challenges with cysts or oocysts, only 21 protected their litters. 38.3 and 17% of rats immunized with the RH and with complete strains respectively, and 57% of control rats challenged with cysts, transmitted the infection congenitally. The percentages when similar groups were challenged with oocysts, were 33.3, 48.2, and 56.2%, respectively. Immunization with cysts did not completely protect against challenge with oocysts, even if the same strain was used. The divergence of these results from the complete protection against congenital toxoplasmosis observed in immune women and ewes, might be due to the use of excessive challenge doses in the model.  相似文献   

3.
More than 150 molecular species were detected in a single glycoconjugate fraction obtained from urine of a congenital disorders of glycosylation (CDG) patient by use of high-resolution FT-ICR MS. With respect to its high-mass accuracy and resolving power, FT-ICR MS represents an ideal tool for analysis of single components in complex glycoconjugate mixtures obtained from body fluids. The presence of overlapping nearly isobaric ionic species in glycoconjugate mixtures obtained from CDG patient's urine was postulated from fragmentation data of several precursor ions obtained by nanoESI Q-TOF CID. Their existence was confirmed by high-resolution/high-mass accuracy FT-ICR MS detection. High-resolution FT-ICR mass spectra can, therefore, be generally considered for glycoscreening of complex mixture samples in a single stage. From the accurate molecular ion mass determinations the composition of glycoconjugate species can be identified. Particular enhancement of identification is offered by computer-assisted calculations in combination with monosaccharide building block analysis, which can be extended by considerations of non-carbohydrate modifications, such as amino acids, phosphates and sulfates. Taking advantage of this strategy, the number of compositions assigned to mass peaks was significantly increased in a fraction obtained from urine by size exclusion and anion exchange chromatography.  相似文献   

4.
Research examining the electromyographic (EMG) burst structure of rapid discrete limb movements has led to discordant findings concerning agonist burst duration. Some research has shown that duration varies as a function of movement speed while other research has shown burst constancy. Unfortunately, much of this research may be confounded by not carefully controlling movement termination accuracy and movement time (MT). Due to these potential problems, the present study was conducted to determine the effects of strict spatiotemporal constraints on EMG characteristics of a rapid elbow flexion-extension response under two movement extent conditions across five different MTs. Results revealed that a decreased MT was accompanied by a decreased agonist (biceps) burst duration and increased agonist burst amplitude. The burst duration and amplitude both increased as the movement extent increased with MT held constant. None of three current theoretical perspectives of rapid movement control (the impulse-timing model, the speed-control system hypothesis, or the speed-sensitive strategy) could fully account for these results. Instead, a control strategy was exhibited in which moving faster was accomplished by relative scaling of burst area via concomitant expansion of burst amplitude and compression of burst duration.  相似文献   

5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号