首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A hybridoma producing monoclonal antibodies (McAb) NATF9.9 (F9) was obtained from fusion of murine myeloma X63 and splenocytes of AKR mice immunized with a single intravenous injection of 5 X 10(7) thymocytes of CBA mice. F9 McAb were cytotoxic for 80% thymocytes, 10% splenocytes, 20% lymph node cells, 85% cortical and 32% medullary thymocytes of CBA, C57BL/6, BALB/c, DBA/2 and SJL but not for the cells of C58 and AKR mice. F9 McAb reacted only with T cells and did not react with B cells and EL4 thymoma cells (Thy-1.2+, Lyt-1+2-3-). The proportion of F9+ cells accounts for about 40% among T lymphocytes of the lymph nodes and spleen as tested by flow-type cytometry. Lymph node cells treated with F9 McAb plus complement completely lost their reactivity with rat anti-Lyt-2 McAb and only partly (by 30%) with anti-Lyt-1 McAb. The reactivity pattern of F9 McAb attests to their specificity for Lyt-3.2 antigen.  相似文献   

2.
T cell subsets from virgin and immunized mice, which are Ir gene controlled nonresponders to GAT, which regulate antibody responses to GAT have been characterized. Virgin nonresponder B10.Q B cells develop GAT-specific antibody responses to GAT, B10.Q GAT-M phi, and GAT-MBSA when cultured with virgin or GAT-primed Lyt-1+, I-J-, Qa1- B10.Q helper T cells. Virgin T cells are radiosensitive, whereas immune T cells are radioresistant (750 R); qualitatively identical helper activity is obtained with T cells from mice immunized with soluble GAT, B10.Q GAT-M phi, and GAT-MBSA. Responses to GAT and GAT-M phi are not observed when virgin or GAT-primed Lyt-1+, I-J+, Qal+ T cells are added to culture of virgin or GAT-primed Lyt-1+, I-J-, Qa1- helper T cells and virgin B cells; the GAT-specific response to GAT-MBSA is intact. The Lyt-1+, I-J+, Qa1+ T cells from mice primed with GAT, GAT-M phi, and GAT-MBSA were qualitatively identical in mediating this suppression. Virgin Lyt-2+ T cells have no suppressive activity alone or with virgin Lyt-1+, I-J+, Qa1+ T cells, whereas responses to GAT, GAT-M phi, and GAT-MBSA are suppressed in cultures of GAT-primed helper T cells containing GAT-primed Lyt-2+ T cells (with or without GAT-primed Lyt-1+, I-J+, Qa1+ T cells). Suppression of responses to GAT-MBSA in cultures of GAT-M phi-primed helper T cells requires both GAT-M phi-primed Lyt-1+, I-J+, Qa1+ T cells and Lyt-2+ T cells; the Lyt-1+, I-J+, Qa1+ T cells appear to function as inducer cells in this case. In cultures containing GAT-MBSA-primed helper T cells, either GAT-MBSA-primed Lyt-1+, I-J+, Qa1+ or Lyt-2+ T cells suppress responses to GAT and GAT-M phi; under no circumstances are responses to GAT-MBSA suppressed by GAT-MBSA-primed regulatory T cells. This regulation of antibody responses to GAT by suppressor T cells is discussed in the context of the involvement of suppressor T cells in responses to antigens under Ir control, and of the evidence that nonresponsiveness to GAT is not due to a defect in the T cell repertoire, but rather is due to an imbalance in the activation of suppressor vs helper T cells.  相似文献   

3.
Several murine strains with spontaneously occurring systemic lupus erythematosus-like disease demonstrate defects in immunoregulation. The MRL/MpJ-lpr/lpr (MRL-1) strain develops a severe age-progressive defect in interleukin 2 (IL 2) production in response to mitogen or antigen. In this study, we demonstrate in vitro the presence of suppressor cells in the lymph nodes of naive mice of the MRL background. Suppression by MRL-1 lymph node cells was partially reversed by treatment with anti-Lyt-1.2 monoclonal antibody and complement and was moderately radiosensitive. Suppression by lymph node cells from the congenic MRL/MpJ-+/+ (MRL-+) mouse was somewhat more resistant to treatment with anti-Lyt-1.2 and complement, or radiation. Lymph node cells from the H-2-syngeneic mouse strain, C3H/HeJ, failed to suppress. Thus, lymph nodes from mice of the MRL background contain cells capable of suppressing in vitro IL 2 responses. We next performed cell transfers to determine whether suppressor cells contribute in vivo to the IL 2 defect. Lymph node cells, but not spleen cells, from MRL-1 mice by 5 to 6 mo of age suppressed antigen-specific IL 2, CTL, and DTH responses when transferred into young MRL-+ recipients. Transfer of identical numbers of lymph node cells from age-matched MRL-+ mice failed to suppress IL 2 production. Transfer of suppression was sensitive to treatment with monoclonal anti-Lyt-2.1 and complement, and to 250 rad of radiation. Thus, this study suggests a role for active suppression of IL 2 production in the establishment of the IL 2 defect in the MRL-1 mouse. Further, suppression may involve phenotypically distinct T lymphocyte subpopulations.  相似文献   

4.
Members of the papain family of cysteine proteases (cathepsins) mediate late stage processing of MHC class II-bound invariant chain (Ii), enabling dissociation of Ii, and binding of antigenic peptide to class II molecules. Recognition of cell surface class II/Ag complexes by CD4(+) T cells then leads to T cell activation. Herein, we demonstrate that a pan-active cathepsin inhibitor, SB-331750, attenuated the processing of whole cell Ii p10 to CLIP by Raji cells, and DBA/1, SJL/J, and C57BL/6 splenocytes. In Raji cells and C57BL/6 splenocytes, SB-331750 inhibited class II-associated Ii processing and reduced surface class II/CLIP expression, whereas in SB-331750-treated DBA/1 and SJL/J splenocytes, class II-associated Ii processing intermediates were undetectable. Incubation of lymph node cells/splenocytes from collagen-primed DBA/1 mice and myelin basic protein-primed SJL/J mice with Ag in the presence of SB-331750 resulted in concentration-dependent inhibition of Ag-induced proliferation. In vivo administration of SB-331750 to DBA/1, SJL/J, and C57BL/6 mice inhibited splenocyte processing of whole cell Ii p10 to CLIP. Prophylactic administration of SB-331750 to collagen-immunized/boosted DBA/1 mice delayed the onset and reduced the severity of collagen-induced arthritis (CIA), and reduced paw tissue levels of IL-1beta and TNF-alpha. Similarly, treatment of myelin basic protein-primed SJL/J lymph node cells with SB-331750 delayed the onset and reduced the severity of adoptively transferred experimental autoimmune encephalomyelitis (EAE). Therapeutic administration of SB-331750 reduced the severity of mild/moderate CIA and EAE. These results indicate that pharmacological inhibition of cathepsins attenuates CIA and EAE, potentially via inhibition of Ii processing, and subsequent Ag-induced T cell activation.  相似文献   

5.
The fine specificity of anti-Glu60Ala30Tyr10 (GAT) and anti-Glu60Ala40 (GA) proliferating cells was studied. T cells primed with GAT proliferate both to GAT and GA and GA-primed T cells proliferate also to GA and GAT. This cross-reactivity was unexpected given the results previously reported on the fine specificity of anti-GAT antibodies. The effect on the proliferation of BALB/c lymph node cells (LNC) of a syngeneic anti-idiotypic serum, prepared in BALB/c against anti-GAT antibodies, was studied. Two major points are made in this paper: (i) the in vitro addition of the anti-idiotypic serum in cultures containing GAT-primed LNC and GAT enhances the proliferation of GAT-specific T cells; (ii) the anti-idiotypic serum is effective in priming in vivo LNC which then acquire the capacity to proliferate specifically with GAT in vitro. These results further confirm the existence of idiotype-like determinants on T cells.  相似文献   

6.
The T cell proliferative response in mice to the synthetic polymer GAT is under Ir gene control, mapping to the I-A subregion of the H-2 major histocompatibility complex (MHC). Antigen-dependent proliferation in vitro of in vivo GAT-primed lymph node cells can be inhibited by a monoclonal antibody to Ia-17, an I-A public determinant. Using this antibody for direct immunofluorescent analysis, T cells in GAT-stimulated proliferative culture are identified that express syngeneic I-A during culture. This expression is strictly antigen dependent, requires restimulation in vitro, and requires the presence of I-A-positive adherent antigen-presenting cells. T cells bearing I-A can be enriched by a simple affinity procedure, and I-A-positive cells separated on a FACS are shown to retain antigen-specific reactivity. The acquisition of I-A determinants by T cells under these culture conditions is not nonspecific. The Ia determinants borne by T cell blasts appear to be dictated by the I subregion to which the relevant Ir gene maps, and which codes for the Ia molecule involved in presentation of the antigen. Thus, (B6A)F1 (H-2b X H-2a)F1 LNC express I-Ak antigens when proliferating to GAT but not when stimulated by GLPhe, the response to which is under I-E subregion control. The relation of Ir gene function to Ia-restricted antigen presentation and self-Ia recognition is discussed.  相似文献   

7.
T cell subsets that regulate antibody responses to L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) in mice that are Ir gene non-responders have been further characterized. We previously defined several T cell subsets in GAT-primed non-responder mice. The Lyt-2+ suppressor-effector T cells suppress responses to GAT and GAT complexed to methylated BSA (GAT-MBSA). The Lyt-1+ cell population is complex and can be separated into I-J- Th cells, which support responses to GAT and GAT-MBSA. After priming, the Lyt-1+, I-J+ cell population contains suppressor-inducer cells that activate precursors of suppressor-effector cells to suppress responses to GAT and GAT-MBSA as well as Ts cells that directly inhibit responses to GAT but not GAT-MBSA. By contrast, the Lyt-1+ cells from virgin mice contain only cells that directly suppress responses to GAT but not GAT-MBSA. The major question addressed in the present studies was whether the Lyt-1+, I-J+ Ts cells in virgin and primed mice and the suppressor-inducer cells in GAT-primed mice were functionally and serologically distinct subsets. The studies used mAb and panning procedures to separate cell populations and inhibition of PFC cell responses to functionally define the activity of the cell populations. We used the following two mAb that were raised by immunizing rats with GAT-specific suppressor factors: 1248A4.10 (known to react with suppressor-inducer cells) and 1248A4.3, another reagent from the same fusion. Lyt-1+ cells from virgin spleens contained Ts cells that were A4.10-, A4.3+ and no suppressor-inducer T cells, whereas Lyt-1+ cells from GAT-primed spleens contained Ts cells that were A4.10-, A4.3+ as well as A4.10+, A4.3- suppressor-inducer cells. Thus, the Lyt1+, I-J+ cell subset can be divided into two functionally and serologically distinct subsets, direct Ts cells (1248A4.3+), which suppress responses to GAT but not GAT-MBSA, and GAT-primed suppressor-inducer T cells (1248A4.10+).  相似文献   

8.
Peripheral lymph node cells from C3H mice that were fed and injected with bovine serum albumin (REG cells) demonstrate an impaired proliferative response to antigenic stimulation in vitro compared to cells from mice only injected with BSA. To determine whether suppressor cells contributed to this enterically induced impairment of systemic T cell responses, REG cells were pretreated with various monoclonal antibodies and complement (C), and were then co-cultured with antigen-reactive indicator T cells (IND) from parenterally immunized mice. Proliferation of IND cells [( 3H]thymidine uptake) was suppressed only if REG cells were treated with anti-Lyt-2 and C before co-culture. The ability of anti-Lyt-1 plus anti-Lyt-2 and C treatment to abrogate suppression suggested that the suppressor effect was due to an Lyt-1+, 2- REG cell. Suppression was independent of Lyt-2+ IND cells, and was observed at different antigen concentrations, cultivation times, and cell densities. The cells responsible for suppressor activity were radiosensitive, nylon wool nonadherent, and antigen specific. These data suggest that an Lyt-1+, 2- T cell could be an important component in mediating enterically induced regulation of systemic T cell responses.  相似文献   

9.
The B cell is the initiating antigen-presenting cell in peripheral lymph nodes   总被引:27,自引:0,他引:27  
We have examined the role of B cells in antigen presentation in lymph nodes in several ways. We found that mice depleted of B lymphocytes via chronic injection of anti-mu-chain antibody do not mount peripheral lymph node T cell proliferative responses to normally immunogenic doses of antigen. Depletion of B cells by passage of immune lymph node cells over anti-immunoglobulin columns early after immunization depletes antigen-presenting function from draining lymph nodes, and this function can be restored by using B cells or splenic adherent cells to allow the remaining T cells to proliferate. Lymph node B cells present antigen very effectively to lines of antigen-specific T cells. However, unfractionated lymph node cells from anti-mu-treated mice present very poorly, if at all, whereas unfractionated spleen cells from the same mice do present antigen. This is in keeping with our previous finding that helper T cell function in the spleen is normal in B cell-deprived mice. Finally, when mice homozygous for the lymphoproliferative gene lpr are treated chronically with anti-mu-chain antibody, lymphadenopathy is greatly retarded, suggesting a role for B cells in the massive proliferation of T cells in this syndrome. From this analysis, it would appear that the initiating antigen-presenting cell in the lymph node is a B lymphocyte, and that B lymphocytes in lymph nodes may be distinct from those in the spleen. It is of interest that these results also suggest that the lymph node lacks an antigen-presenting cell that is found in the spleen, perhaps the dendritic cell.  相似文献   

10.
The ability of lymphoid cells from congenitally athymic (nu/nu) mice to produce interleukin 2 (IL 2) was investigated. Spleen or lymph node cells (superficial or mesenteric) from nude mice on an N:NIH(S)II or BALB/c genetic background were stimulated with concanavalin A (Con A) or with irradiated allogeneic (DBA/2) spleen cells that had been depleted of T cells by treatment with monoclonal anti-Thy-1.2 antibody plus complement. After 24 hr, supernatants were harvested and assayed for their ability to support the proliferation of a cloned IL 2-dependent cytolytic T cell line. With this quantitative microassay, IL 2 production was not detectable in spleen and lymph nodes of 6-wk-old N:NIH(S)II nude mice; however, by 12 mo of age, IL 2 production increased more than 100-fold to reach levels comparable to control (nu/+) animals. Con A was more potent than alloantigen in the induction of IL 2 in either nude or control (nu/+) animals. Furthermore, differences in the genetic background of nude mice resulted in corresponding differences in both numbers of T cells (defined by monoclonal anti-Thy-1 antibody) and IL 2 production. By using negative selection with monoclonal antibodies plus complement, IL 2 production in aged nude mice was shown to depend upon a subpopulation of cells that expressed Thy-1 but not Lyt-2. These data thus demonstrate that a subpopulation of IL 2-producing cells with a Thy-1+ Lyt-2- surface phenotype can develop in the apparent absence of thymic influence.  相似文献   

11.
An in vitro study has been made of the mechanism by which a suppressor T cell, that is induced in lymph nodes by a syngeneic splenic cell antigen, prevents generation of cytotoxic T cells specific for hapten-altered self antigens. When popliteal lymph node cells exposed in vivo to syngeneic splenic cells were immunized in vitro with heat-treated syngeneic TNP-coupled thymocytes and excess helper factors, the Ts remained inactive. In this condition the exposed popliteal lymph node cells routinely demonstrated approximately twice the CTL response developed by lymph node cells from normal mice. Nevertheless, when triggered in vitro by splenic antigen on either X-irradiated B or T cells, the exposed but not the normal lymph node cells exhibited reduced hapten-altered self-specific CTL responses. Furthermore, T cells within spleen cell-exposed popliteal lymph node cell populations when reexposed to splenic T cells made a factor that was found to be suppressive of CTL generation by normal lymph node cells in vitro. The nondialyzable T-cell suppressor factor (TsF) did not appear to act on lymph node precursor CTLs, nor on helper T cells but instead acted at the level of utilization of helper factors in the development of CTLs. In an examination of the effect of TsF on cellular replication, TsF was found to be nontoxic for CTLL-20, an IL-2-dependent T cell, and it did not hinder the uptake of IL-2 by receptor blockade of this cell. Nevertheless, the replication of CTLL-20 that is IL-2 driven was diminished in the presence of TsF. Similarly, TsF was found to be inhibitory for T-cell proliferation stimulated by mitogen but had no effect on a B myeloma cell proliferative response. Thus, TsF appears to act as an inhibitor of a T cell's capability to replicate despite the presence of the stimulus for replication, namely, IL-2.  相似文献   

12.
The ability of synthetic P. falciparum (NANP)n circumsporozoite peptides to elicit murine T cell proliferative responses was studied. When C57BL/6, C3H, and DBA/2 mice were injected with (NANP)40, only C57BL/6 (H-2b)-immune lymph node cells proliferated on restimulation in vitro with the same peptide. By using anti-I-A monoclonal antibodies or spleen cells from congenic H-2b mice as a source of antigen-presenting cells, the T cell proliferative response was shown to be restricted to the I-Ab region of the C57BL/6 haplotype. These results are in agreement with previous experiments which demonstrated that the anti-(NANP)40 antibody response was uniquely restricted to C57BL/6 (H-2b) mice. Several C57BL/6 long-term (NANP)n-specific T cell lines and clones were derived. All of the clones exhibited the L3T4 helper T cell phenotype. A considerable heterogeneity of T cell responses was observed when the lines and clones were stimulated with different concentrations of the various peptides studied. The results, together with the observed genetic restriction for both antibody and T cell responses, suggest that perhaps not all individuals who receive a similar repetitive tetrapeptide sporozoite malaria vaccine will develop T cell and or antibody responses.  相似文献   

13.
We have been examining the mechanisms that control in vivo development and down regulation of cytolytic T lymphocytes (CTL) to trinitrophenyl (TNP)-altered self antigens. In vivo generation of hapten-specific CTL requires an auxiliary antigenic stimulus, which can be provided by H-2 compatible but Mls-disparate cells. These experiments were designed to study the effect of tolerization with such Mls-disparate cells on CTL development. C3H/HeN (H-2k, Mlsc ) mice sensitized in the footpads with C3H-TNP spleen cells plus CBA/J (H-2k, Mlsd ) spleen cells develop CTL in the draining lymph nodes that will lyse 51Cr-labeled TNP-modified C3H targets. However, we have found that if C3H/HeN mice are given tolerizing doses of CBA/J spleen cells 5 to 7 days before sensitization, a splenic suppressor T cell (Ts) appears. This Ts will suppress CTL development in its tolerant host, and can be transferred adoptively to function in naive mice. Ts and its precursor are cyclophosphamide insensitive and therefore different from the naturally existing suppressor cell present in mice. When triggered by cells with Mlsd , the Ts produces a factor (TsF) that hinders helper factors from functioning in an in vitro CTL assay. Furthermore, TsF acts to prevent utilization of IL 2 by an IL 2-dependent cell line. Thus, evidence has been provided that the in vivo generation of CTL toward hapten-altered self can be down regulated at the level of helper signals by a Ts. The latter is inducible by the Mls-disparate cells that are needed at a different site to trigger the helper factors in this CTL system.  相似文献   

14.
Immune responses to GAT are controlled by H-2-linked Ir genes; soluble GAT stimulates antibody responses in responder mice (H-2b) but not in nonresponder mice (H-2q). In nonresponder mice, soluble GAT stimulates suppressor T cells that preempt function of helper T cells. After immunization with soluble GAT, spleen cells from (responder x nonresponder: H-2b X H-2q)F1 mice develop antibody responses to responder H-2b GAT-M phi but not to nonresponder H-2q GAT-M phi. This failure of immune F1 spleen cells to respond is due to an active suppressor T cell mechanism that is activated by H-2q, but not H-2b, GAT-M phi and involves two regulatory T cell subsets. Suppressor-inducer T cells are immune radiosensitive Lyt-1 +2-, I-A-, I-J+, Qa-1+ cells. Suppressor-effector T cells can be derived from virgin or immune spleens and are radiosensitive Lyt-1-2+, I-A-, I-J+, Qa-1+ cells. This suppressor mechanism can suppress responses of virgin or immune F1 helper T cells and B cells. Helper T cells specific for H-2b GAT-M phi are easily detected in F1 mice after immunization with soluble GAT; helper T cells specific for H-2q GAT-M phi are demonstrated after elimination of the suppressor-inducer and -effector cells. These helper T cells are radioresistant Lyt-1+2-, I-A+, I-J-, Qa-1- cells. These data indicate that the Ir gene defect in responses to GAT is not due to a failure of nonresponder M phi to present GAT and most likely is not due to a defective T cell repertoire, because the relevant helper T cells are primed in F1 mice by soluble GAT and can be demonstrated when suppressor cells are removed. These data are discussed in the context of mechanisms for expression of Ir gene function in responses to GAT, especially the balance between stimulation of helper vs suppressor T cells.  相似文献   

15.
Suppressor T cells arising in mice undergoing a graft-vs-host response.   总被引:14,自引:0,他引:14  
We investigated the ability of mice to generate antibody-forming cells when undergoing a graft-vs-host reaction. (C57BL/6 X DBA/2)F1 mice (BDF1) injected with C57BL/6 spleen cells generated suppressor T cells which inhibit antibody synthesis by BDF1 spleen cells in vitro. These T cells arose from the donor inoculum. They differ from helper T cells in size and they act directly on antigen reactive B cells. The suppressor T cells were specifically directed against components of the H-2 region of the reciprocal parental strain (DBA/2 = H-2d) in the hybrid F1 mouse.  相似文献   

16.
Synovial cells were extracted from normal and collagen-arthritic mice and investigated for lymphocyte-activating properties. In mixed cell culture, irradiated fibroblast-like synovial cells from DBA/1 LacJ arthritic mice stimulated a strong proliferative response in spleen cells from syngeneic normal mice, but not in cells from allogeneic DBA/2. B10.RIII, or BALB/c mice. This novel stimulus occurred in the absence of detectable Class II MHC antigen expression on the fibroblast-like synovial cell surface or increased autologous mixed lymphocyte reactions between DBA/1 LacJ spleen and lymph node cells. Irradiated synovial cells were also unable to present type II collagen to a collagen-specific T cell line and to stimulate proliferation. Addition of interferon-gamma or interleukin-1 failed to induce detectable surface Ia on the synovial fibroblasts or induce the capacity for antigen presentation in these cells.  相似文献   

17.
RCS tumor cells induce marked proliferation of syngeneic SJL T cells in vivo and in vitro. Certain F1 hybrids of SJL mice give high proliferative responses to gamma-RCS, while other F1 hybrids give low responses. SJL----"non-responder" F1 and "non-responder" F1----SJL semiallogeneic bone marrow chimeras were prepared to study how the host environment affects the ability of T cells to give a proliferative response to gamma-RCS. The results indicate that T cells educated in an SJL host become responsive to RCS cells, while T cells educated in an (SJL X BALB/c)F1 host become unresponsive. This finding applies to both thymus and lymph node T cells. The unresponsiveness in F1 mice is not due to suppressor cells, since added F1 cells do not affect the proliferative response of SJL cells to gamma-RCS. Instead, it appears that RCS-specific T cells are either deleted in (SJL X BALB/c)F1 mice, or expanded in SJL mice as they develop. These findings are discussed in relation to the specificity of the responding T cells, for LPS activated syngeneic B cell blasts as well as RCS cells, and to the presence of a "leaky" thymus barrier in SJL mice for B cells.  相似文献   

18.
The ability to generate proliferative and helper T lymphocyte responses in mice was compared by using the 14 amino acid peptide, human fibrinopeptide B (hFPB). Lymph node or peritoneal exudate T cells from mice immunized with hFPB were assessed for in vitro proliferation to soluble hFPB as determined by the uptake of 3H-thymidine. The T cell proliferative response to hFPB was found to be under MHC-linked Ir gene control; mice possessing the H-2a,k haplotypes were responders, whereas H-2b,d,q,s mice were nonresponders. The influence of non-H-2 genes on these responses was not investigated, so exclusive regulation by H-2 is provisional. The absence of a detectable lymph node and peritoneal exudate T cell proliferative response persisted in H-2b,d,q,s mice after immunization and boosting with several doses of hFPB. In addition, the capacity to produce a T cell proliferative response was inherited in an autosomal dominant manner and gene(s) controlling responsiveness to hFPB mapped to the I-A subregion of the H-2 complex. To measure peptide-specific helper T cell activity, an in vitro microculture assay in which hFPB-primed lymph node T cells and normal spleen B cells and macrophages were used was developed measuring anti-fluorescein isothiocyanate (FITC) IgM and IgG plaque-forming cell (PFC) responses after culture with FITC-conjugated peptide. Immunization of B10.BR, C57BL/10, B10.D2, and B6AF mice with hFPB primed for significant helper T cell activity as assessed by the ability to augment a primary in vitro IgM response to FITC. The normal B cell IgM responses were completely dependent on hFPB-primed T cells and required that hapten (FITC) and carrier (peptide) be linked. In addition, immunization with FITC-conjugated peptide elicited positive in vivo PFC responses to FITC in B10.BR and C57BL/10 mice, indicating similar genetic control of helper activity in both the intact animals and the in vitro microcultures. Thus, B10.BR mice show both T help and T proliferative responses to hFPB, whereas C57BL/10 mice show only T help and no T proliferative responses. In contrast to B10.BR mice, C3H and CBA mice immunized with hFPB were completely unresponsive when assayed for helper T cell activity in vitro despite their ability to generate positive lymph node T cell proliferative responses. These results indicate responsiveness to hFPB by T helper and proliferating cells is different and is under separate genetic control.  相似文献   

19.
The roles of Ia+ accessory cells in H-2-restricted stimulation of antigen-specific T cell proliferation were explored in an in vitro model. L-glutamic acid60-L-alanine30-L-tyrosine10-(GAT) primed BALB/c nylon wool-passed T cells were depleted of Ia+ antigen-presenting cells (APC) by treatment with monoclonal anti-Ia antibody plus complement. Such cells failed to respond to soluble GAT, or to soluble GAT in the presence of phorbol myristic acetate (PMA), which is known to stimulate production of, or replace, IL-1 in vitro. Addition of gamma-irradiated syngeneic spleen cells reconstituted the response to soluble GAT, but addition of ultraviolet (UV) light-irradiated spleen cells did not, even in the presence of PMA. Preincubation of cells with GAT for 24 hr, followed by washing, then gamma irradiation, generated a cell population able to stimulate GAT-primed T cells to proliferate. The same pulsed cells exposed to UV irradiation failed to stimulate T cell responses unless PMA was added to the cultures. The relevant cells in this UV-irradiated population are Ia+. It is concluded that a finite period of time for interaction of metabolically intact APC with antigen is required before creation of an appropriate (Ia + antigen) signal recognized by the T cell. In addition to such Ia-restricted antigen presentation, however, a 2nd nonspecific signal, again requiring metabolically active APC for elaboration, is necessary for detectable T cell activation. These studies thus define 3 separable activities of APC during the process of H-2 restricted T cell activation.  相似文献   

20.
Immunization of mice with the ABA-GAT conjugate stimulates GAT-specific T helper cells in GAT-responder animals and ABA-specific helpers in nonresponders. Unexpectedly, immunization of (responder X nonresponder) F1 mice, which have the GAT-responder phenotype, leads to the recruitment of both ABA- and GAT-specific clones of T helper lymphocytes. The GAT-reactive population is restricted to the haplotype of the responder parent (Iak), whereas ABA-specific T cells are mostly restricted to the nonresponder one (Ias). This is demonstrated by the ability of monoclonal antibodies to parental la antigens to inhibit T cell proliferation to GAT or ABA-Tyr in vitro. Consistently, ABA-GAT-primed F1 T cells can only activate nonresponder B cells to proliferate in the presence of ABA-Tyr and responder B lymphocytes in the presence of GAT. Furthermore, F1 T cells seem to recognize both ABA and GAT epitopes only in association with molecules encoded by the I-A subregion. Analysis of ABA-specific F1 T cell lines generated by in vitro stimulation with ABA-Tyr or ABA-GAT demonstrates a competition between GAT- and ABA-specific T cells present in the hybrid T cell repertoire and restricted to the same parental I-Ak molecule. The results indicate that F1 macrophages can present both ABA and GAT epitopes to T cells in association with the two parental and hybrid Ia determinants. It seems unlikely that the absence of GAT-specific T cells restricted to the nonresponder I-A in the F1 is due to suppressor T cells. Thus, the competition model that we propose, to explain the selective F1 T cell response to ABA-GAT, leads us to believe that GAT nonresponder animals may lack clones capable of recognizing, with a high affinity, I-As + GAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号