首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structure-based prediction of DNA target sites by regulatory proteins   总被引:15,自引:0,他引:15  
Kono H  Sarai A 《Proteins》1999,35(1):114-131
Regulatory proteins play a critical role in controlling complex spatial and temporal patterns of gene expression in higher organism, by recognizing multiple DNA sequences and regulating multiple target genes. Increasing amounts of structural data on the protein-DNA complex provides clues for the mechanism of target recognition by regulatory proteins. The analyses of the propensities of base-amino acid interactions observed in those structural data show that there is no one-to-one correspondence in the interaction, but clear preferences exist. On the other hand, the analysis of spatial distribution of amino acids around bases shows that even those amino acids with strong base preference such as Arg with G are distributed in a wide space around bases. Thus, amino acids with many different geometries can form a similar type of interaction with bases. The redundancy and structural flexibility in the interaction suggest that there are no simple rules in the sequence recognition, and its prediction is not straightforward. However, the spatial distributions of amino acids around bases indicate a possibility that the structural data can be used to derive empirical interaction potentials between amino acids and bases. Such information extracted from structural databases has been successfully used to predict amino acid sequences that fold into particular protein structures. We surmised that the structures of protein-DNA complexes could be used to predict DNA target sites for regulatory proteins, because determining DNA sequences that bind to a particular protein structure should be similar to finding amino acid sequences that fold into a particular structure. Here we demonstrate that the structural data can be used to predict DNA target sequences for regulatory proteins. Pairwise potentials that determine the interaction between bases and amino acids were empirically derived from the structural data. These potentials were then used to examine the compatibility between DNA sequences and the protein-DNA complex structure in a combinatorial "threading" procedure. We applied this strategy to the structures of protein-DNA complexes to predict DNA binding sites recognized by regulatory proteins. To test the applicability of this method in target-site prediction, we examined the effects of cognate and noncognate binding, cooperative binding, and DNA deformation on the binding specificity, and predicted binding sites in real promoters and compared with experimental data. These results show that target binding sites for several regulatory proteins are successfully predicted, and our data suggest that this method can serve as a powerful tool for predicting multiple target sites and target genes for regulatory proteins.  相似文献   

2.
3.
We analyzed structural features of 11,038 direct atomic contacts (either electrostatic, H-bonds, hydrophobic, or other van der Waals interactions) extracted from 139 protein-DNA and 49 protein-RNA nonhomologous complexes from the Protein Data Bank (PDB). Globally, H-bonds are the most frequent interactions (approximately 50%), followed by van der Waals, hydrophobic, and electrostatic interactions. From the protein viewpoint, hydrophilic amino acids are over-represented in the interaction databases: Positively charged amino acids mainly contact nucleic acid phosphate groups but can also interact with base edges. From the nucleotide point of view, DNA and RNA behave differently: Most protein-DNA interactions involve phosphate atoms, while protein-RNA interactions involve more frequently base edge and ribose atoms. The increased participation of DNA phosphate involves H-bonds rather than salt bridges. A statistical analysis was performed to find the occurrence of amino acid-nucleotide pairs most different from chance. These pairs were analyzed individually. Finally, we studied the conformation of DNA in the interaction sites. Despite the prevalence of B-DNA in the database, our results suggest that A-DNA is favored in the interaction sites.  相似文献   

4.
Cation-pi interactions play an important role in the stability of protein structures. In this work, we have analyzed the influence of cation-pi interactions in DNA binding proteins. We observed cation-pi interactions in 45 out of 62 DNA binding proteins and there is no significant correlation between the number of amino acid residues and number of cation-pi interactions. These interactions are mainly formed by long-range contacts, and the role of short and medium-range contacts is minimal. The preference of Arg is higher than Lys to form cation-pi interactions. The pair-wise cation-pi interaction energy between aromatic and positively charged residues shows that Arg-Tyr energy is the strongest among the possible six pairs. The structural analysis of cation-pi interaction forming residues shows that Lys, Trp, and Tyr prefer to be in the binding site of protein-DNA complexes. Further, the accessible surface areas of cation-pi interaction forming cationic residues are significantly less than that of other residues. The preference of cation-pi interaction forming residues in different secondary structures shows that Lys prefers to be in strand and Phe prefers to be in turn regions. The results obtained in the present study will be useful in understanding the contribution of cation-pi interactions to the stability and specificity of protein-DNA complexes.  相似文献   

5.
We investigate the conservation of amino acid residue sequences in 21 DNA-binding protein families and study the effects that mutations have on DNA-sequence recognition. The observations are best understood by assigning each protein family to one of three classes: (i) non-specific, where binding is independent of DNA sequence; (ii) highly specific, where binding is specific and all members of the family target the same DNA sequence; and (iii) multi-specific, where binding is also specific, but individual family members target different DNA sequences. Overall, protein residues in contact with the DNA are better conserved than the rest of the protein surface, but there is a complex underlying trend of conservation for individual residue positions. Amino acid residues that interact with the DNA backbone are well conserved across all protein families and provide a core of stabilising contacts for homologous protein-DNA complexes. In contrast, amino acid residues that interact with DNA bases have variable levels of conservation depending on the family classification. In non-specific families, base-contacting residues are well conserved and interactions are always found in the minor groove where there is little discrimination between base types. In highly specific families, base-contacting residues are highly conserved and allow member proteins to recognise the same target sequence. In multi-specific families, base-contacting residues undergo frequent mutations and enable different proteins to recognise distinct target sequences. Finally, we report that interactions with bases in the target sequence often follow (though not always) a universal code of amino acid-base recognition and the effects of amino acid mutations can be most easily understood for these interactions.  相似文献   

6.
Bacteriophage λ repressor binds co-operatively to adjacent pairs of DNA target sites. A novel combination of positive genetic selections, involving two different operon fusions derived from P22 challenge phages, was used to isolate mutant λ repressors that have lost the ability to bind co-operatively to tandem sites yet retain the ability to bind a strong, single site. These cb (co-operative binding) mutations result in 10 different amino acid changes, which define eight residues in the carboxyl-terminus of repressor. Because challenge phage derivatives may be applied to study essentially any specific protein-DNA interaction, analogous combinations of genetic selections may be used to explore the ways that a variety of proteins interact to assemble regulatory complexes.  相似文献   

7.
Protein-DNA interactions are crucial for many biological processes. Attempts to model these interactions have generally taken the form of amino acid-base recognition codes or purely sequence-based profile methods, which depend on the availability of extensive sequence and structural information for specific structural families, neglect side-chain conformational variability, and lack generality beyond the structural family used to train the model. Here, we take advantage of recent advances in rotamer-based protein design and the large number of structurally characterized protein-DNA complexes to develop and parameterize a simple physical model for protein-DNA interactions. The model shows considerable promise for redesigning amino acids at protein-DNA interfaces, as design calculations recover the amino acid residue identities and conformations at these interfaces with accuracies comparable to sequence recovery in globular proteins. The model shows promise also for predicting DNA-binding specificity for fixed protein sequences: native DNA sequences are selected correctly from pools of competing DNA substrates; however, incorporation of backbone movement will likely be required to improve performance in homology modeling applications. Interestingly, optimization of zinc finger protein amino acid sequences for high-affinity binding to specific DNA sequences results in proteins with little or no predicted specificity, suggesting that naturally occurring DNA-binding proteins are optimized for specificity rather than affinity. When combined with algorithms that optimize specificity directly, the simple computational model developed here should be useful for the engineering of proteins with novel DNA-binding specificities.  相似文献   

8.
9.
Cys2-His2 zinc fingers are one of the most common types of DNA-binding domains. Modifications to zinc-finger binding specificity have recently enabled custom DNA-binding proteins to be designed to a wide array of target sequences. We present here a 1.96 A structure of Aart, a designed six-zinc finger protein, bound to a consensus DNA target site. This is the first structure of a designed protein with six fingers, and was intended to provide insights into the unusual affinity and specificity characteristics of this protein. Most protein-DNA contacts were found to be consistent with expectations, while others were unanticipated or insufficient to explain specificity. Several were unexpectedly mediated by glycerol, water molecules or amino acid-base stacking interactions. These results challenge some conventional concepts of recognition, particularly the finding that triplets containing 5'A, C, or T are typically not specified by direct interaction with the amino acid in position 6 of the recognition helix.  相似文献   

10.
Homing endonucleases represent protein scaffolds that provide powerful tools for genome manipulation, as these enzymes possess a very low frequency of DNA cleavage in eukaryotic genomes due to their high specificity. The basis of protein-DNA recognition must be understood to generate tailored enzymes that target the DNA at sites of interest. Protein-DNA interaction engineering of homing endonucleases has demonstrated the potential of these approaches to create new specific instruments to target genes for inactivation or repair. Protein-DNA interface studies have been focused mostly on specific contacts between amino acid side chains and bases to redesign the binding interface. However, it has been shown that 4 bp in the central DNA sequence of the 22-bp substrate of a homing endonuclease (I-CreI), which do not show specific protein-DNA interactions, is not devoid of content information. Here, we analyze the mechanism of target discrimination in this substrate region by the I-CreI protein, determining how it can occur independently of the specific protein-DNA interactions. Our data suggest the important role of indirect readout in this substrate region, opening the possibility for a fully rational search of new target sequences, thus improving the development of redesigned enzymes for therapeutic and biotechnological applications.  相似文献   

11.
The nucleotide excision repair (NER) pathway corrects DNA damage caused by sunlight, environmental mutagens and certain antitumor agents. This multistep DNA repair reaction operates by the sequential assembly of protein factors at sites of DNA damage. The efficient recognition of DNA damage and its repair are orchestrated by specific protein-protein and protein-DNA interactions within NER complexes. We have investigated an essential protein-protein interaction of the NER pathway, the binding of the XPA protein to the ERCC1 subunit of the repair endonuclease ERCC1-XPF. The structure of ERCC1 in complex with an XPA peptide shows that only a small region of XPA interacts with ERCC1 to form a stable complex exhibiting submicromolar binding affinity. However, this XPA peptide is a potent inhibitor of NER activity in a cell-free assay, blocking the excision of a cisplatin adduct from DNA. The structure of the peptide inhibitor bound to its target site reveals a binding interface that is amenable to the development of small molecule peptidomimetics that could be used to modulate NER repair activities in vivo.  相似文献   

12.
13.
The murine DNA binding protein Rc binds to the heptamer motif of the V(D)J recombination signal sequences and to the kappa B motif of the immunoglobulin enhancer. Bacterial fusion proteins for Rc and DNA ligands of Rc form multiple protein-DNA complexes in electrophoretic mobility shift assays (EMSA). Large complexes formation is favored by an increased Rc concentration. In order to determine the architecture of these complexes, the apparent molecular weights of the protein-DNA complexes were first determined by their gel mobilities. The data suggest that Rc binds to its DNA ligands as dimers, tetramers, and multiples of tetramers. The inference that Rc binds DNA as dimers was substantiated by the formation of chimeric complexes when two electrophoretically distinguishable Rc proteins were employed in EMSA. Methylation interference experiments show that there are no contiguous protein binding sites evident in the DNA of the larger complexes. Apparently, multimerization occurs via protein-protein interactions. Such interaction was demonstrated by the formation of Rc dimers and tetramers in a chemical crosslinking experiment. Significantly, the multimerization of DNA-bound Rc could be involved in bringing the variable region gene segments together for the somatic V(D)J recombination.  相似文献   

14.
15.
Non-histone protein-DNA complexes with acceptor activity for estradiol-receptor complexes were reconstituted from fractionated calf uterine chromatin. Acceptor activity had tissue specificity with target tissue binding exceeding non-target tissue binding. The binding of estradiol-receptor complexes to acceptor sites was dependent on intact non-histone protein-DNA complexes, reconstituted select non-histone proteins, and protein equivalent: DNA reconstitution ratios. [3H]Estradiol-receptor complexes were bound to reconstituted non-histone protein-DNA complexes (i.e., nucleoacidic protein) with a high affinity and with a limited number of binding sites. Fractionation of uterine chromatin non-histone proteins identified two major sets of non-histone proteins which had acceptor activity when reconstituted with DNA. Thus, it seems possible to reconstitute nucleoacidic protein fractions with specific acceptor activity for the calf uterine estrogen receptor.  相似文献   

16.
The interactions of human estrogen receptor subtypes ERalpha and ERbeta with DNA and a 210 amino acid residue fragment of the coactivator protein SRC-1 bearing three nuclear receptor interaction motifs were investigated quantitatively using fluorescence anisotropy in the presence of agonist and antagonist ligands. ERalpha and ERbeta were found to bind in a similar manner to DNA, and both salt and temperature affected the affinity and/or stoichiometry of these interactions. The agonist ligands estradiol, estrone and estriol did not modify the binding of ERalpha to the fluorescein-labeled target estrogen response element. However, in the case of ERbeta, these ligands led to the formation of some higher-order protein-DNA complexes and a small decrease in affinity. The partial agonist 4-hydroxytamoxifen had little effect on either ER subtype, whereas the pure antagonist ICI 182,780 led to the cooperative formation of protein-DNA complexes of higher order than dimer, as further demonstrated by competition experiments and gel mobility-shift assays. In addition to DNA binding, the interaction of both ER subtypes with the Alexa488-labeled SRC-1 coactivator fragment was investigated by fluorescence anisotropy. The agonist ligands estrone, estradiol, estriol, genistein and ethynyl estradiol exhibited distinct capacities for inducing the recruitment of SRC-1 that were not correlated with their affinity for the receptor. Moreover, estrone and genistein exhibited subtype specificity in that they induced SRC-1 recruitment to ERbeta with much higher efficiency than in the case of ERalpha. The differential coactivator recruitment capacities of the ER agonists and their receptor subtype coactivator recruitment specificity may be linked to the molecular structure of the agonists with respect to their interactions with a specific histidine residue located at the back of the ligand-binding pocket. Altogether, these quantitative in vitro studies of ER interactions reveal the complex energetic and stoichiometric consequences of changes in the chemical structures of these proteins and their ligands.  相似文献   

17.
18.
Interactions between distantly separated DNA regions mediated by specialized proteins lead to the formation of synaptic protein-DNA complexes. This is a ubiquitous phenomenon which is critical in various genetic processes. Although such interactions typically occur between two sites, interactions among three specific DNA regions have been identified, and a corresponding model has been proposed. Atomic force microscopy was used to test this model for the EcoRII restriction enzyme and provide direct visualization and characterization of synaptic protein-DNA complexes involving three DNA binding sites. The complex appeared in the images as a two-loop structure, and the length measurements proved the site specificity of the protein in the complex. The protein volume measurements showed that an EcoRII dimer is the core of the three-site synaptosome. Other complexes were identified and analyzed. The protein volume data showed that the dimeric form of the protein is responsible for the formation of other types of synaptic complexes as well. The applications of these results to the mechanisms of the protein-DNA interactions are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号