首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distribution of blood flow in muscles of miniature swine during exercise   总被引:7,自引:0,他引:7  
The purpose of this study was to determine how the distribution of blood flow within and among the skeletal muscles of miniature swine (22 +/- 1 kg body wt) varies as a function of treadmill speed. Radiolabeled microspheres were used to measure cardiac output (Q) and tissue blood flows in preexercise and at 3-5 min of treadmill exercise at 4.8, 8.0, 11.3, 14.5, and 17.7 km/h. All pigs (n = 8) attained maximal O2 consumption (VO2max) (60 +/- 4 ml X min-1 X kg-1) by the time they ran at 17.7 km/h. At VO2max, 87% of Q (9.9 +/- 0.5 l/min) was to skeletal muscle, which constituted 36 +/- 1% of body mass. Average total muscle blood flow at VO2max was 127 +/- 14 ml X min-1 X 100 g-1; average limb muscle flow was 135 +/- 17 ml X min-1 X 100 g-1. Within the limb muscles, blood flow was distributed so that the deep red parts of extensor muscles had flows about two times higher than the more superficial white portions of the same muscles; the highest muscle blood flows occurred in the elbow flexors (brachialis: 290 +/- 44 ml X min-1 X 100 g-1). Peak exercise blood flows in the limb muscles were proportional (P less than 0.05) to the succinate dehydrogenase activities (r = 0.84), capillary densities (r = 0.78), and populations of oxidative (slow-twitch oxidative + fast-twitch oxidative-glycolytic) fiber types (r = 0.93) in the muscles. Total muscle blood flow plotted as a function of exercise intensity did not peak until the pigs attained VO2max, although flows in some individual muscles showed a plateau in this relationship at submaximal exercise intensities. The data demonstrate that blood flow in skeletal muscles of miniature swine is distributed heterogeneously and varies in relation to fiber type composition and exercise intensity.  相似文献   

2.
The work of breathing (W(b)) normally incurred during maximal exercise not only requires substantial cardiac output and O(2) consumption (VO(2)) but also causes vasoconstriction in locomotor muscles and compromises leg blood flow (Q(leg)). We wondered whether the W(b) normally incurred during submaximal exercise would also reduce Q(leg). Therefore, we investigated the effects of changing the W(b) on Q(leg) via thermodilution in 10 healthy trained male cyclists [maximal VO(2) (VO(2 max)) = 59 +/- 9 ml. kg(-1). min(-1)] during repeated bouts of cycle exercise at work rates corresponding to 50 and 75% of VO(2 max). Inspiratory muscle work was 1) reduced 40 +/- 6% via a proportional-assist ventilator, 2) not manipulated (control), or 3) increased 61 +/- 8% by addition of inspiratory resistive loads. Increasing the W(b) during submaximal exercise caused VO(2) to increase; decreasing the W(b) was associated with lower VO(2) (DeltaVO(2) = 0.12 and 0.21 l/min at 50 and 75% of VO(2 max), respectively, for approximately 100% change in W(b)). There were no significant changes in leg vascular resistance (LVR), norepinephrine spillover, arterial pressure, or Q(leg) when W(b) was reduced or increased. Why are LVR, norepinephrine spillover, and Q(leg) influenced by the W(b) at maximal but not submaximal exercise? We postulate that at submaximal work rates and ventilation rates the normal W(b) required makes insufficient demands for VO(2) and cardiac output to require any cardiovascular adjustment and is too small to activate sympathetic vasoconstrictor efferent output. Furthermore, even a 50-70% increase in W(b) during submaximal exercise, as might be encountered in conditions where ventilation rates and/or inspiratory flow resistive forces are higher than normal, also does not elicit changes in LVR or Q(leg).  相似文献   

3.
The purpose of this study was to compare the coronary blood flow reserve (CBFR) that exists during maximal +Gz stress to the CBFR during maximal exercise stress. Maximal exercise stress was defined as an exercise intensity greater than or equal to that necessary to produce maximal levels of O2 consumption (VO2max). Coronary blood flows (CBF) were determined with the use of the microsphere technique in chronically instrumented conscious miniature swine during +Gz stress and exercise stress at 70 and 100% of maximal tolerance (for each stress) before and after maximal coronary vasodilation with 1-2 mg/kg dipyridamole. CBFR was measured as the amount of blood flow increase produced by maximal coronary vasodilation. During exercise at VO2max, dipyridamole produced 20-30% increases in CBF, whereas it induced no coronary vasodilation or changes in CBF during +Gz stress. Dipyridamole also produced decreases in the animals' tolerance to +Gz in that all five animals could maintain a steady state for 60 s at 7 +Gz before dipyridamole, whereas only two of these animals could maintain a steady state for 60 s at 7 +Gz after dipyridamole. These results confirm that CBFR exists during maximal exercise in normal mammals. However, this dose of dipyridamole produced no coronary vasodilation during either level of +Gz stress.  相似文献   

4.
Systemic O2 transport during maximal exercise at different inspired PO2 (PIO2) values was studied in sodium cyanate-treated (CY) and nontreated (NT) rats. CY rats exhibited increased O2 affinity of Hb (exercise O2 half-saturation pressure of Hb = 27.5 vs. 42.5 Torr), elevated blood Hb concentration, pulmonary hypertension, blunted hypoxic pulmonary vasoconstriction, and normal ventilatory response to exercise. Maximal rate of convective O2 transport was higher and tissue O2 extraction was lower in CY than in NT rats. The relative magnitude of these opposing changes, which determined the net effect of cyanate on maximal O2 uptake (VO2 max), varied at different PIO2: VO2 max (ml. min-1. kg-1) was lower in normoxia (72.8 +/- 1.9 vs. 81. 1 +/- 1.2), the same at 70 Torr PIO2 (55.4 +/- 1.4 vs. 54.1 +/- 1.4), and higher at 55 Torr PIO2 (48 +/- 0.7 vs. 40.4 +/- 1.9) in CY than in NT rats. The beneficial effect of cyanate on VO2 max at 55 Torr PIO2 disappeared when Hb concentration was lowered to normal. It is concluded that the effect of cyanate on VO2 max depends on the relative changes in blood O2 convection and tissue O2 extraction, which vary at different PIO2. Although uptake of O2 by the blood in the lungs is enhanced by cyanate, its release at the tissues is limited, probably because of a reduction in the capillary-to-tissue PO2 diffusion gradient secondary to the increased O2 affinity of Hb.  相似文献   

5.
We studied muscle blood flow, muscle oxygen uptake (VO(2)), net muscle CO uptake, Mb saturation, and intracellular bioenergetics during incremental single leg knee-extensor exercise in five healthy young subjects in conditions of normoxia, hypoxia (H; 11% O(2)), normoxia + CO (CO(norm)), and 100% O(2) + CO (CO(hyper)). Maximum work rates and maximal oxygen uptake (VO(2 max)) were equally reduced by approximately 14% in H, CO(norm), and CO(hyper). The reduction in arterial oxygen content (Ca(O(2))) (approximately 20%) resulted in an elevated blood flow (Q) in the CO and H trials. Net muscle CO uptake was attenuated in the CO trials. Suprasystolic cuff measurements of the deoxy-Mb signal were not different in terms of the rate of signal rise or maximum signal attained with and without CO. At maximal exercise, calculated mean capillary PO(2) was most reduced in H and resulted in the lowest Mb-associated PO(2). Reductions in ATP, PCr, and pH during H, CO(norm), and CO(hyper) occurred earlier during progressive exercise than in normoxia. Thus the effects of reduced Ca(O(2)) due to mild CO poisoning are similar to H.  相似文献   

6.
Twelve male and female subjects (eight trained, four untrained) exercised for 30 min on a treadmill at an intensity of maximal O2 consumption (% VO2max) 90.0%, SD 4.7 greater than the anaerobic threshold of 4 mmol.l-1 (Than = 83.6% VO2max, SD 8.9). Time-dependent changes in blood lactate concentration [( lab]) during exercise occurred in two phases: the oxygen uptake (VO2) transient phase (from 0 to 4 min) and the VO2 steady-state phase (4-30 min). During the transient phase, [lab] increased markedly (1.30 mmol.l-1.min-1, SD (0.13). During the steady-state phase, [lab] increased slightly (0.02 mmol.l-1.min-1, SD 0.06) and when individual values were considered, it was seen that there were no time-dependent increases in [lab] in half of the subjects. Following hyperlacticaemia (8.8 mmol.l-1, SD 2.0) induced by a previous 2 min of supramaximal exercise (120% VO2max), [lab] decreased during the VO2 transient (-0.118 mmol.l-1.min-1, SD 0.209) and steady-state (-0.088 mmol.l-1.min-1, SD 0.103) phases of 30 min exercise (91.4% VO2max, SD 4.8). In conclusion, it was not possible from the Than to determine the maximal [lab] steady state for each subject. In addition, lactate accumulated during previous supramaximal exercise was eliminated during the VO2 transient phase of exercise performed at an intensity above the Than. This effect is probably largely explained by the reduction in oxygen deficit during the transient phase. Under these conditions, the time-course of changes in [lab] during the VO2 steady state was also affected.  相似文献   

7.
The lactic acid (L.A.) concentration in blood after a 20 sec supramaximal exercise (2.5 times VO2max) has been measured in 4 subjects in the following experimental conditions: a) during the resting period following the supramaximal exercise (rest recovery) and b) during a 3 min exercise at VO2max immediately following the supramaximal effort (exercise recovery). The L.A. concentration in blood has been found to be consistently higher (on the average by 16.9 mg%) in case (b). Since in such condition it may be reasonably assumed that the oxygen taken up by the subject is completely utilized for the exercise, the increase of blood lactate is considered evidence for the occurrence of anaerobic recovery, i.e. of a partial re-synthesis of the high energy phosphate stores of the muscle (GP = ATP + PC) depleted during the supramaximal effort, at the expense of anaerobic glycolysis. From the increase in blood L.A. concentration during the anaerobic recovery period, the amount of L.A. produced has been estimated together with the amount of GP resynthesized. The latter corresponds to 4 to 7 mMoles/kg of muscle, i.e. to about 25% of the average GP concentration in resting human muscle. The finalistic implication of this mechanism is the prompt restoration of the potential maximal power of the muscle even in the absence of O2.  相似文献   

8.
Exercise-induced arterial hypoxemia (EIAH) has been reported in male athletes, particularly during fast-increment treadmill exercise protocols. Recent reports suggest a higher incidence in women. We hypothesized that 1-min incremental (fast) running (R) protocols would result in a lower arterial PO(2) (Pa(O(2))) than 5-min increment protocols (slow) or cycling exercise (C) and that women would experience greater EIAH than previously reported for men. Arterial blood gases, cardiac output, and metabolic data were obtained in 17 active women [mean maximal O(2) uptake (VO(2 max)) = 51 ml. kg(-1). min(-1)]. They were studied in random order (C or R), with a fast VO(2 max) protocol. After recovery, the women performed 5 min of exercise at 30, 60, and 90% of VO(2 max) (slow). One week later, the other exercise mode (R or C) was similarly studied. There were no significant differences in VO(2 max) between R and C. Pulmonary gas exchange was similar at rest, 30%, and 60% of VO(2 max). At 90% of VO(2 max), Pa(O(2)) was lower during R (mean +/- SE = 94 +/- 2 Torr) than during C (105 +/- 2 Torr, P < 0.0001), as was ventilation (85.2 +/- 3.8 vs. 98.2 +/- 4.4 l/min BTPS, P < 0.0001) and cardiac output (19.1 +/- 0.6 vs. 21.1 +/- 1.0 l/min, P < 0.001). Arterial PCO(2) (32.0 +/- 0.5 vs. 30.0 +/- 0.6 Torr, P < 0.001) and alveolar-arterial O(2) difference (A-aDO(2); 22 +/- 2 vs. 16 +/- 2 Torr, P < 0.0001) were greater during R. Pa(O(2)) and A-aDO(2) were similar between slow and fast. Nadir Pa(O(2)) was 相似文献   

9.
Stroke volume (SV) increases above the resting level during exercise and then declines at higher intensities of exercise in sedentary subjects. The purpose of this study was to determine whether an attenuation of the decline in SV at higher exercise intensities contributes to the increase in maximal cardiac output (Qmax) that occurs in response to endurance training. We studied six men and six women, 25 +/- 1 (SE) yr old, before and after 12 wk of endurance training (3 days/wk running for 40 min, 3 days/wk interval training). Cardiac output was measured at rest and during exercise at 50 and 100% of maximal O2 uptake (Vo2max) by the C2H2-rebreathing method. VO2max was increased by 19% (from 2.7 +/- 0.2 to 3.2 +/- 0.3 l/min, P less than 0.001) in response to the training program. Qmax was increased by 12% (from 18.1 +/- 1 to 20.2 +/- 1 l/min, P less than 0.01), SV at maximal exercise was increased by 16% (from 97 +/- 6 to 113 +/- 8 ml/beat, P less than 0.001) and maximal heart rate was decreased by 3% (from 185 +/- 2 to 180 +/- 2 beats/min, P less than 0.01) after training. The calculated arteriovenous O2 content difference at maximal exercise was increased by 7% (14.4 +/- 0.4 to 15.4 +/- 0.4 ml O2/100 ml blood) after training. Before training, SV at VO2max was 9% lower than during exercise at 50% VO2max (P less than 0.05). In contrast, after training, the decline in SV between 50 and 100% VO2max was only 2% (P = NS). Furthermore, SV was significantly higher (P less than 0.01) at 50% VO2max after training than it was before. Left ventricular hypertrophy was evident, as determined by two-dimensional echocardiography at the completion of training. The results indicate that in young healthy subjects the training-induced increase in Qmax is due in part to attenuation of the decrease in SV as exercise intensity is increased.  相似文献   

10.
Previous work with pregnant ewes has shown that acute bouts of exercise may cause changes in plasma hormone concentrations, blood flow distribution, and maternal and fetal temperatures. However, most of these studies do not quantify the chosen exercise intensity through measurement of oxygen consumption (VO2). Therefore the purpose of this study was to statistically model the VO2 response of pregnant sheep to treadmill (TM) exercise to determine the exercise intensities (% maximal VO2) of previous studies. Ewes with either single (n = 9) or twin (n = 5) fetuses were studied from 100 to 130 days of gestation. After 1-2 wk of TM habituation, maximal VO2 (VO2max) was determined by measurements of VO2 (open flow-through method) and blood lactate concentration. VO2 was measured as a function of TM incline (0, 3, 5, and 7 degree) and speed (0.8-3.4 m/s). VO2max averaged 57 +/- 7 (SD) ml.min-1.kg-1, and peak lactate concentration during exercise averaged 22 +/- 2 mmol/l. The relationship between VO2 (ml.min-1.kg-1) and incline (INC) and speed (SP) [VO2 = 0.70(INC) + 13.95(SP) + 1.07(INC x SP) - 1.18] was linear (r2 = 0.94). Our findings suggest that most previous research used exercise intensities less than 60% VO2max and indicate the need for further research that examines the effect of exercise during pregnancy at levels greater than 60% VO2max.  相似文献   

11.
This study determined the effects of endurance or resistance exercise training on maximal O2 consumption (VO2max) and the cardiovascular responses to exercise of 70- to 79-yr-old men and women. Healthy untrained subjects were randomly assigned to a control group (n = 12) or to an endurance (n = 16) or resistance training group (n = 19). Training consisted of three sessions per week for 26 wk. Resistance training consisted of one set of 8-12 repetitions on 10 Nautilus machines. Endurance training consisted of 40 min at 50-70% VO2max and at 75-85% VO2max for the first and last 13 wk of training, respectively. The endurance training group increased its VO2max by 16% during the first 13 wk of training and by a total of 22% after 26 wk of training; this group also increased its maximal O2 pulse, systolic blood pressure, and ventilation, and decreased its heart rate and perceived exertion during submaximal exercise. The resistance training group did not elicit significant changes in VO2max or in other maximal or submaximal cardiovascular responses despite eliciting 9 and 18% increases in lower and upper body strength, respectively. Thus healthy men and women in their 70s can respond to prolonged endurance exercise training with adaptations similar to those of younger individuals. Resistance training in older individuals has no effect on cardiovascular responses to submaximal or maximal treadmill exercise.  相似文献   

12.
Cardiovascular response to cycle exercise during and after pregnancy   总被引:1,自引:0,他引:1  
Our purpose was to determine if pregnancy alters the cardiovascular response to exercise. Thirty-nine women [29 +/- 4 (SD) yr], performed submaximal and maximal exercise cycle ergometry during pregnancy (antepartum, AP, 26 +/- 3 wk of gestation) and postpartum (PP, 8 +/- 2 wk). Neither maximal O2 uptake (VO2max) nor maximal heart rate (HR) was different AP and PP (VO2 = 1.91 +/- 0.32 and 1.83 +/- 0.31 l/min; HR = 182 +/- 8 and 184 +/- 7 beats/min, P greater than 0.05 for both). Cardiac output (Q, acetylene rebreathing technique) averaged 2.2 to 2.8 l/min higher AP (P less than 0.01) at rest and at each exercise work load. Increases in both HR and stroke volume (SV) contributed to the elevated Q at the lower exercise work loads, whereas an increased SV was primarily responsible for the higher Q at higher levels. The slope of the Q vs. VO2 relationship was not different AP and PP (6.15 +/- 1.32 and 6.18 +/- 1.34 l/min Q/l/min VO2, P greater than 0.05). In contrast, the arteriovenous O2 difference (a-vO2 difference) was lower at each exercise work load AP, suggesting that the higher Q AP was distributed to nonexercising vascular beds. We conclude that Q is greater and a-vO2 difference is less at all levels of exercise in pregnant subjects than in the same women postpartum but that the coupling of the increase in Q to the increase in systemic O2 demand (VO2) is not different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Distribution of muscle blood flow has not been measured in man during prolonged exercise, but progressive elevations in skin flow coupled with constant cardiac output (QT) have suggested muscle blood flow may be compromised. However, previous experiments with rats demonstrated progressive increases in muscle blood flow over time during prolonged submaximal exercise. The present study was performed to study muscle blood flow in miniature swine during long-term exercise to shed light on this apparent anomaly. QT and distribution of QT were studied with radiolabeled microspheres while pigs ran on a level treadmill at a speed (10.5 km/h) requiring 71 +/- 4% of maximal O2 consumption (VO2 max). QT increased 23% from the 5th to the 30th min of exercise, whereas total skeletal muscle flow increased by 49%. Increases in flow in the muscles resulted from decreased resistance, since mean arterial pressure declined over this time period (-7%). In addition, the proportional increases in muscle flow were similar within synergistic muscle groups independent of fiber type composition (e.g., elbow extensors: 59-78%; elbow flexors: 26-40%). The factor that limited continued exercise appeared to be body temperature. Colonic temperature rose in linear fashion over time; the animals became exhausted at approximately 42 degrees C. These flow data are similar to previous findings in rats and indicate that during prolonged treadmill locomotion in quadrupedal animals muscle blood flow increases over time to near maximal levels.  相似文献   

14.
To study the distribution of blood flow after blood volume expansion, seven miniature swine ran at high speed (17.6-20 km/h, estimated to require 115% of maximal O2 uptake) on a motor-driven treadmill on two occasions: once during normovolemia and once after an acute 15% blood volume expansion (homologous whole blood). O2 uptake, cardiac output, heart rate, mean arterial pressure, and distribution of blood flow (with radiolabeled microspheres) were measured at the same time during each of the exercise bouts. Maximal heart rate was identical between conditions (mean 266); mean arterial pressure was elevated during the hypovolemic exercise (149 +/- 5 vs. 137 +/- 6 mmHg). Although cardiac output was higher and arterial O2 saturation was maintained during the hypervolemic condition (10.5 +/- 0.7 vs. 9.3 +/- 0.6 l/min), O2 uptake was not different (1.74 +/- 0.08 vs. 1.74 +/- 0.09 l/min). Mean blood flows to cardiac (+12.9%), locomotory (+9.8%), and respiratory (+7.5%) muscles were all elevated during hypervolemic exercise, while visceral and brain blood flows were unchanged. Calculated resistances to flow in skeletal and cardiac muscle were not different between conditions. Under the experimental conditions of this study, O2 uptake in the miniature swine was limited at the level of the muscles during hypervolemic exercise. The results also indicate that neither intrinsic contractile properties of the heart nor coronary blood flow limits myocardial performance during normovolemic exercise, because both the pumping capacity of the heart and the coronary blood flow were elevated in the hypervolemic condition.  相似文献   

15.
Patients with chronic obstructive pulmonary disease (COPD) usually stop exercise before reaching physiological limits in terms of O(2) delivery and extraction. A plateau in lower limb O(2) uptake (VO(2)) and blood flow occurs despite progression of the imposed workload during cycling in some patients with COPD, suggesting that maximal capacity to transport O(2) had been reached and that it had been extracted in the peripheral exercising muscles. This study addresses this observation. Symptom-limited incremental cycle exercise was performed by 14 men [62 +/- 11 (SD) yr] with severe COPD (forced expiratory volume in 1 s = 35 +/- 7% of predicted value). Leg blood flow was measured at each exercise step with a thermodilution catheter inserted in the femoral vein. This value was multiplied by two to account for both working legs (Q(LEGS)). Arterial and femoral venous blood was sampled at each exercise step to measure blood gases. Leg O(2) consumption (VO(2LEGS)) was calculated according to the Fick equation. Total body VO(2) (VO(2TOT)) was measured from expired gas analysis, and tidal volume (VT) and minute ventilation (VE) were derived from the flow signal. In eight patients, VO(2LEGS) kept increasing in parallel with VO(2TOT) as external work rate was increasing. In six subjects, a plateau in VO(2LEGS) and Q(LEGS) occurred during exercise (increment of <3% between 2 consecutive increasing workloads) despite the increase in workload and VO(2TOT) [corresponding mean was 110 +/- 38 ml (11 +/- 4%)]. These six patients also exhibited a plateau in O(2) extraction during exercise. Peak exercise work rate was higher in the eight patients without a plateau than in the six with a plateau (51 +/- 10 vs. 40 +/- 13 W, P = 0.043). VT, VE, and dyspnea were significantly greater at submaximal exercise in patients of the plateau group compared with those of the nonplateau group. These results show that, in some patients with COPD, blood flow directed to peripheral muscles and O(2) extraction during exercise may be limited. We speculate that redistribution of cardiac output and O(2) from the lower limb exercising muscles to the ventilatory muscles is a possible mechanism.  相似文献   

16.
Sixteen men were tested to determine VO2max (ml X kg-1 X min-1), anaerobic threshold VO2 (ATVO2) and oxygen kinetics (time constant, T.C.) during running on a treadmill. For measuring maximal calf blood flow (maxBF, ml X 100 ml-1 X min-1), venous occlusion plethysmography was employed immediately following a combination of arterial occlusion and toe raising exercise to exhaustion. In addition, supramaximal electrical stimulations were given to determine maximal calf twitch force (Fmax, N), maximal rate of twitch force development (dF/dt) and relaxation (R X dF/dt, N X ms-1) and electro-mechanical delay time (EMD, ms). Results demonstrated that VO2max, ATVO2 and maxBF were all inversely related to T.C. (p less than 0.05). MaxBF and ATVO2 showed the highest correlation (r = 0.89, p less than 0.01). Stepwise multiple linear regression analyses revealed that variance in VO2max (60%) and ATVO2 (84%) could be accounted for by the combined effects of the following peripheral factors: VO2max = 51,25-3.24(dF/dt) + 0.14(maxBF), and ATVO2 = 11.68 + 0.42(maxBF) - 0.2(Fmax). These findings, together with the results of cluster analysis, suggest a tight link between ATVO2 and peripheral blood flow capacity. On the other hand, a moderate correlation (r = 0.64, p less than 0.01) between VO2max and maxBF might be due in part to individual differences in oxygen extraction-utilization capacity during heavy exercise above anaerobic threshold.  相似文献   

17.
Ten foxhounds were studied during maximal and submaximal exercise on a motor-driven treadmill before and after 8-12 wk of training. Training consisted of working at 80% of maximal heart rate 1 h/day, 5 days/wk. Maximal O2 consumption (VO2max) increased 28% from 113.7 +/- 5.5 to 146.1 +/- 5.4 ml O2 X min-1 X kg-1, pre- to posttraining. This increase in VO2max was due primarily to a 27% increase in maximal cardiac output, since maximal arteriovenous O2 difference increased only 4% above pretraining values. Mean arterial pressure during maximal exercise did not change from pre- to posttraining, with the result that calculated systemic vascular resistance (SVR) decreased 20%. There were no training-induced changes in O2 consumption, cardiac output, arteriovenous O2 difference, mean arterial pressure, or SVR at any level of submaximal exercise. However, if post- and pretraining values are compared, heart rate was lower and stroke volume was greater at any level of submaximal exercise. Venous lactate concentrations during a given level of submaximal exercise were significantly lower during posttraining compared with pretraining, but venous lactate concentrations during maximal exercise did not change as a result of exercise training. These results indicate that a program of endurance training will produce a significant increase in VO2max in the foxhound. This increase in VO2max is similar to that reported previously for humans and rats but is derived primarily from central (stroke volume) changes rather than a combination of central and peripheral (O2 extraction) changes.  相似文献   

18.
To investigate quantitatively how sweating and cutaneous blood flow responses at the onset of dynamic exercise are affected by increasing exercise intensity in mildly heated humans, 18 healthy male subjects performed cycle exercise at 30, 50, and 70% of maximal O2 uptake (VO2 max) for 60 s in a warm environment. The study was conducted in a climatic chamber with a regulated ambient temperature of 35 degrees C and relative humidity of 50%. The subjects rested in the semisupine position in the chamber for 60 min, and then sweating rate (SR) and skin blood flow were measured during cycle exercise at three different intensities. Changes in the heart rate, rating of perceived exertion, and mean arterial blood pressure were proportional to increasing exercise intensity, whereas esophageal and mean skin temperatures were essentially constant throughout the experiment. The SR on the chest, forearm, and thigh, but not on the palm, increased significantly with increasing exercise intensity (P < 0.05). The mean SR of the chest, forearm, and thigh increased 0.05 mg.cm-2.min-1 with an increase in exercise intensity equivalent to 10% VO2 max. On the other hand, the cutaneous vascular conductance (CVC) on the chest, forearm, and palm decreased significantly with increasing exercise intensity (P < 0.05). The mean CVC of the chest and forearm decreased 5.5% and the CVC on the palm decreased 8.0% with an increase in exercise intensity equivalent to 10% VO2 max. In addition, the reduction in CVC was greater on the palm than on the chest and forearm at all exercise intensities (P < 0.01). We conclude that nonthermal sweating and cutaneous blood flow responses are exercise intensity dependent but directionally opposite at the onset of dynamic exercise in mildly heated humans. Furthermore, cutaneous blood flow responses to increased exercise intensity are greater in glabrous (palm) than in nonglabrous (chest and forearm) skin.  相似文献   

19.
We measured leg blood flow (LBF), drew arterial-venous (A-V) blood samples, and calculated muscle O(2) consumption (VO(2)) during incremental cycle ergometry exercise [15, 30, and 99 W and maximal effort (maximal work rate, WR(max))] in nine sedentary young (20 +/- 1 yr) and nine sedentary old (70 +/- 2 yr) males. LBF was preserved in the old subjects at 15 and 30 W. However, at 99 W and at WR(max), leg vascular conductance was attenuated because of a reduced LBF (young: 4.1 +/- 0.2 l/min and old: 3.1 +/- 0.3 l/min) and an elevated mean arterial blood pressure (young: 112 +/- 3 mmHg and old: 132 +/- 3 mmHg) in the old subjects. Leg A-V O(2) difference changed little with increasing WR in the old group but was elevated compared with the young subjects. Muscle maximal VO(2) and cycle WR(max) were significantly lower in the old subjects (young: 0.8 +/- 0.05 l/min and 193 +/- 7 W; old: 0.5 +/- 0.03 l/min and 117 +/- 10 W). The submaximally unchanged and maximally reduced cardiac output associated with aging coupled with its potential maldistribution are candidates for the limited LBF during moderate to heavy exercise in older sedentary subjects.  相似文献   

20.
This study tested the effects of inhaled nitric oxide [NO; 20 parts per million (ppm)] during normoxic and hypoxic (fraction of inspired O(2) = 14%) exercise on gas exchange in athletes with exercise-induced hypoxemia. Trained male cyclists (n = 7) performed two cycle tests to exhaustion to determine maximal O(2) consumption (VO(2 max)) and arterial oxyhemoglobin saturation (Sa(O(2)), Ohmeda Biox ear oximeter) under normoxic (VO(2 max) = 4.88 +/- 0.43 l/min and Sa(O(2)) = 90.2 +/- 0.9, means +/- SD) and hypoxic (VO(2 max) = 4.24 +/- 0.49 l/min and Sa(O(2)) = 75.5 +/- 4.5) conditions. On a third occasion, subjects performed four 5-min cycle tests, each separated by 1 h at their respective VO(2 max), under randomly assigned conditions: normoxia (N), normoxia + NO (N/NO), hypoxia (H), and hypoxia + NO (H/NO). Gas exchange, heart rate, and metabolic parameters were determined during each condition. Arterial blood was drawn at rest and at each minute of the 5-min test. Arterial PO(2) (Pa(O(2))), arterial PCO(2), and Sa(O(2)) were determined, and the alveolar-arterial difference for PO(2) (A-aDO(2)) was calculated. Measurements of Pa(O(2)) and Sa(O(2)) were significantly lower and A-aDO(2) was widened during exercise compared with rest for all conditions (P < 0.05). No significant differences were detected between N and N/NO or between H and H/NO for Pa(O(2)), Sa(O(2)) and A-aDO(2) (P > 0.05). We conclude that inhalation of 20 ppm NO during normoxic and hypoxic exercise has no effect on gas exchange in highly trained cyclists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号