首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Opsins, the protein moieties of animal visual photo-pigments, have emerged as moonlighting proteins with diverse, light-dependent and -independent physiological functions. This raises the need to revise some basic assumptions concerning opsin expression, structure, classification, and evolution.  相似文献   

2.
3.
《Current biology : CB》2020,30(8):1367-1379.e6
  1. Download : Download high-res image (230KB)
  2. Download : Download full-size image
  相似文献   

4.
Opsins and mammalian photoentrainment   总被引:8,自引:0,他引:8  
Research over the past decade has provided overwhelming evidence that photoreception in the vertebrate eye is not confined to the rod and cone photoreceptors. It appears that photoreceptor cells within the inner retina provide irradiance information to a wide variety of different photosensory tasks including photoentrainment, pupillary constriction and masking behaviour. Action spectra in mice lacking all rod and cone photoreceptors ( rd/rd cl) have demonstrated the existence of a previously uncharacterised, opsin/vitamin-A-based photopigment with peak sensitivity at 479 nm (opsin photopigment/OP(479)). The review addresses the question: has the gene encoding OP(479) already been isolated, and if not, what type of gene should we be seeking and where in the eye might this gene be expressed? On the basis of available data, the gene that encodes OP(479) remains unidentified, and two broad possibilities exist. On the assumption that OP(479) will be like all of the other vertebrate photopigments (ocular and extraocular) and share a close phylogenetic relationship based upon amino acid identity and a conserved genomic structure, then the gene encoding OP(479) has yet to be isolated. Alternatively, there may have been a separate line of photopigment evolution in the vertebrates that has given rise to the melanopsin family. If true then the mammalian melanopsin gene may encode OP(479). Only when melanopsin and other candidates for OP(479) have been functionally expressed, and shown to encode a photopigment that matches the action spectrum of OP(479), can firm conclusions about the identity of the non-rod, non-cone ocular photoreceptor of mammals be made.  相似文献   

5.
Understanding how sterile worker castes in social insects first evolved is one of the supreme puzzles in social evolution. Here, we show that in the bee tribe Allodapini, the earliest societies did not entail a foraging worker caste, but instead comprised females sharing a nest with supersedure of dominance. Subordinates delayed foraging until they became reproductively active, whereupon they provided food for their own brood as well as for those of previously dominant females. The earliest allodapine societies are, therefore, not consistent with an 'evo-devo' paradigm, where decoupling of foraging and reproductive tasks is proposed as a key early step in social evolution. Important features of these ancestral societies were insurance benefits for dominants, headstart benefits for subordinates and direct reproduction for both. The two lineages where morphologically distinct foraging worker castes evolved both occur in ecosystems with severe constraints on independent nesting and where brood rearing periods are very seasonally restricted. These conditions would have strongly curtailed dispersal options and increased the likelihood that dominance supersedure occurred after brood rearing opportunities were largely degraded. The origins of foraging castes, therefore, represented a shift towards assured fitness gains by subordinates, mediated by the dual constraints of social hierarchies and environmental harshness.  相似文献   

6.
7.
Opn3/TMT opsins belong to one of the opsin groups with vertebrate visual and non-visual opsins, and are widely distributed in eyes, brains and other internal organs in various vertebrates and invertebrates. Vertebrate Opn3/TMT opsins are further classified into four groups on the basis of their amino acid identities. However, there is limited information about molecular properties of these groups, due to the difficulty in preparing the recombinant proteins. Here, we successfully expressed recombinant proteins of TMT1 and TMT2 opsins of medaka fish (Oryzias latipes) in cultured cells and characterized their molecular properties. Spectroscopic and biochemical studies demonstrated that TMT1 and TMT2 opsins functioned as blue light-sensitive Gi/Go-coupled receptors, but exhibited spectral properties and photo-convertibility of the active state different from each other. TMT1 opsin forms a visible light-absorbing active state containing all-trans-retinal, which can be photo-converted to 7-cis- and 9-cis-retinal states in addition to the original 11-cis-retinal state. In contrast, the active state of TMT2 opsin is a UV light-absorbing state having all-trans-retinal and does not photo-convert to any other state, including the original 11-cis-retinal state. Thus, TMT opsins are diversified so as to form a different type of active state, which may be responsible for their different functions.  相似文献   

8.
The role of sequence variation in the spectral tuning of color vision is well established in many systems. This includes the cichlids of Lake Victoria where sequence variation has been linked to environmental light gradients and speciation. The cichlids of Lake Malawi are a similar model for visual evolution, but the role of gene sequence variation in visual tuning between closely related species is unknown. This work describes such variation in multiple species of two rock-dwelling genera: Metriaclima and Labidochromis. Genomic DNA for seven cone opsin genes was sequenced and the structure of the opsin proteins was inferred. Retinal binding pocket polymorphisms were identified and compared to available data regarding spectral absorbance shifts. Sequence variation with known or potential effects on absorbance spectra were found in four genes: SWS1 (UV sensitive), SWS2B (violet sensitive), RH2Aβ (green sensitive), and LWS (red sensitive). Functional variation was distributed such that each genus had both a variable short-wavelength and long-wavelength sensitive opsin. This suggests spectral tuning is important at the margins of the cichlid visual spectrum. Further, there are two SWS1 opsin alleles that differ in sensitivity by 10 nm and are >2 MY divergent. One of these occurs in a haplotype block >1 kb. Potential haplotype blocks were found around the RH2 opsin loci. These data suggest that molecular diversification has resulted in functionally unique alleles and changes to the visual system. These data also suggest that opsin sequence variation tunes spectral sensitivities between closely related species and that the specific regions of spectral tuning are genus-specific.  相似文献   

9.
Cetaceans have a long history of commitment to a fully aquatic lifestyle that extends back to the Eocene. Extant species have evolved a spectacular array of adaptations in conjunction with their deployment into a diverse array of aquatic habitats. Sensory systems are among those that have experienced radical transformations in the evolutionary history of this clade. In the case of vision, previous studies have demonstrated important changes in the genes encoding rod opsin (RH1), short-wavelength sensitive opsin 1 (SWS1), and long-wavelength sensitive opsin (LWS) in selected cetaceans, but have not examined the full complement of opsin genes across the complete range of cetacean families. Here, we report protein-coding sequences for RH1 and both color opsin genes (SWS1, LWS) from representatives of all extant cetacean families. We examine competing hypotheses pertaining to the timing of blue shifts in RH1 relative to SWS1 inactivation in the early history of Cetacea, and we test the hypothesis that some cetaceans are rod monochomats. Molecular evolutionary analyses contradict the “coastal” hypothesis, wherein SWS1 was pseudogenized in the common ancestor of Cetacea, and instead suggest that RH1 was blue-shifted in the common ancestor of Cetacea before SWS1 was independently knocked out in baleen whales (Mysticeti) and in toothed whales (Odontoceti). Further, molecular evidence implies that LWS was inactivated convergently on at least five occasions in Cetacea: (1) Balaenidae (bowhead and right whales), (2) Balaenopteroidea (rorquals plus gray whale), (3) Mesoplodon bidens (Sowerby''s beaked whale), (4) Physeter macrocephalus (giant sperm whale), and (5) Kogia breviceps (pygmy sperm whale). All of these cetaceans are known to dive to depths of at least 100 m where the underwater light field is dim and dominated by blue light. The knockout of both SWS1 and LWS in multiple cetacean lineages renders these taxa rod monochromats, a condition previously unknown among mammalian species.  相似文献   

10.
The Drosophila Bolwig organs are small photoreceptor bundles that facilitate the phototactic behavior of the larva. Comparative literature suggests that these highly reduced visual organs share evolutionary ancestry with the adult compound eye. A recent molecular genetic study produced the first detailed account of the mechanisms controlling differential opsin expression and photoreceptor subtype determination in these enigmatic eyes of the Drosophila larva. Here, the evolutionary implications are examined, taking into account the dynamic diversification of opsin genes and the spatial regulation of opsin homolog expression in other insects. It is concluded that, consistent with their common evolutionary roots, the Drosophila larval and adult eyes use the same mechanisms for the regulation of opsin expression and photoreceptor cell fate specification. Strikingly, the structurally highly derived Bolwig organs retained a more ancestral state of opsin expression and regulation. Inconspicuous in size, the Drosophila larval eyes deliver useful lessons in the reconstruction of homology between neuronal cell types with gene expression data, and on the conservative nature of gene regulatory network evolution during the emergence of novel organs from ancestral templates.  相似文献   

11.
Rhodopsin-type G-protein-coupled receptors (GPCRs) contribute the majority of sensory receptors in vertebrates. With 979 members, they form the largest GPCR family in the sequenced sea urchin genome, constituting more than 3% of all predicted genes. The sea urchin genome encodes at least six Opsin proteins. Of these, one rhabdomeric, one ciliary and two G(o)-type Opsins can be assigned to ancient bilaterian Opsin subfamilies. Moreover, we identified four greatly expanded subfamilies of rhodopsin-type GPCRs that we call sea urchin specific rapidly expanded lineages of GPCRs (surreal-GPCRs). Our analysis of two of these groups revealed genomic clustering and single-exon gene structures similar to the most expanded group of vertebrate rhodopsin-type GPCRs, the olfactory receptors. We hypothesize that these genes arose by rapid duplication in the echinoid lineage and act as chemosensory receptors of the animal. In support of this, group B surreal-GPCRs are most prominently expressed in distinct classes of pedicellariae and tube feet of the adult sea urchin, structures that have previously been shown to react to chemical stimuli and to harbor sensory neurons in echinoderms. Notably, these structures also express different opsins, indicating that sea urchins possess an intricate molecular set-up to sense their environment.  相似文献   

12.
13.
The cricket Modicogryllus siamensis Chopard shows photoperiod‐dependent changes in the duration of nymphal development: nymphs become adult within 60 days after hatching, undergoing seven moults under long‐day conditions, whereas, under short‐day conditions, nymphal development takes much longer (approximately 180 days) with an increased number of moults. Because removal of the compound eyes alters this photoperiodic response, the eyes may be involved in light detection during the photoperiodic response. The role of opsins, expressed in the compound eye, is examined in the present study with reference to the photoperiodic response. Molecular cloning identifies cDNAs of three opsins, opsin‐Ultra Violet (Ms'op‐UV), opsin‐Blue (Ms'op‐B) and opsin‐Long Wave (Ms'op‐LW), and in situ hybridization reveals that the opsin genes are expressed in specific regions of the compound eye in a gene‐specific manner. RNA interference (RNAi) technology using the opsin genes results in a partial disruption in the long‐day responses; most of the treated crickets showed eight or more moults and up to 23.5% show a prolonged nymphal period that is typical of short‐day responses. Under short‐day conditions, op‐UV RNAi crickets show earlier adult development, whereas no distinct alterations are observed in op‐B and op‐LW RNAi insects. The results suggest that the opsin genes may play differential roles in the photoperiodic response in the cricket and that the results can be at least partially explained in terms of the external coincidence model of photoperiodic time measurement.  相似文献   

14.
15.
16.
17.
18.
19.
The “four-eyed” fish Anableps anableps has numerous morphological adaptations that enable above and below-water vision. Here, as the first step in our efforts to identify molecular adaptations for aerial and aquatic vision in this species, we describe the A. anableps visual opsin repertoire. We used PCR, cloning, and sequencing to survey cDNA using unique primers designed to amplify eight sequences from five visual opsin gene subfamilies, SWS1, SWS2, RH1, RH2, and LWS. We also used Southern blotting to count opsin loci in genomic DNA digested with EcoR1 and BamH1. Phylogenetic analyses confirmed the identity of all opsin sequences and allowed us to map gene duplication and divergence events onto a tree of teleost fish. Each of the gene-specific primer sets produced an amplicon from cDNA, indicating that A. anableps possessed and expressed at least eight opsin genes. A second PCR-based survey of genomic and cDNA uncovered two additional LWS genes. Thus, A. anableps has at least ten visual opsins and all but one were expressed in the eyes of the single adult surveyed. Among these ten visual opsins, two have key site haplotypes not found in other fish. Of particular interest is the A. anableps-specific opsin in the LWS subfamily, S180γ, with a SHYAA five key site haplotype. Although A. anableps has a visual opsin gene repertoire similar to that found in other fishes in the suborder Cyprinodontoidei, the LWS opsin subfamily has two loci not found in close relatives, including one with a key site haplotype not found in any other fish species. A. anableps opsin sequence data will be used to design in situ probes allowing us to test the hypothesis that opsin gene expression differs in the distinct ventral and dorsal retinas found in this species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号