首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic hepatitis C virus (HCV) infection is associated with impaired proliferative, cytokine, and cytotoxic effector functions of HCV-specific CD8(+) T cells that probably contribute significantly to viral persistence. Here, we investigated the potential role of T cells with a CD4(+)CD25(+) regulatory phenotype in suppressing virus-specific CD8(+) T-cell proliferation during chronic HCV infection. In vitro depletion studies and coculture experiments revealed that peptide specific proliferation as well as gamma interferon production of HCV-specific CD8(+) T cells were inhibited by CD4(+)CD25(+) T cells. This inhibition was dose dependent, required direct cell-cell contact, and was independent of interleukin-10 and transforming growth factor beta. Interestingly, the T-cell-mediated suppression in chronically HCV-infected patients was not restricted to HCV-specific CD8(+) T cells but also to influenza virus-specific CD8(+) T cells. Importantly, CD4(+)CD25(+) T cells from persons recovered from HCV infection and from healthy blood donors exhibited significantly less suppressor activity. Thus, the inhibition of virus-specific CD8(+) T-cell proliferation was enhanced in chronically HCV-infected patients. This was associated with a higher frequency of circulating CD4(+)CD25(+) cells observed in this patient group. Taken together, our results suggest that chronic HCV infection leads to the expansion of CD4(+)CD25(+) T cells that are able to suppress CD8(+) T-cell responses to different viral antigens. Our results further suggest that CD4(+)CD25(+) T cells may contribute to viral persistence in chronically HCV-infected patients and may be a target for immunotherapy of chronic hepatitis C.  相似文献   

2.
Broadly directed hepatitis C virus (HCV)-specific cytotoxic T lymphocytes (CTL) have been identified from liver-infiltrating lymphocytes but have been more difficult to assess in peripheral blood of infected persons. To enhance the detection of CTL from peripheral blood mononuclear cells (PBMC), we cocultured PBMC with autologous Epstein-Barr virus-transformed B-lymphoblastoid cell lines that had been infected with recombinant vaccinia virus constructs so that they expressed the entire translated polyprotein of HCV-H, a type 1a strain. These stimulated cells from HCV-infected as well as exposed seronegative persons were then cloned at limiting dilution and tested for HCV-specific CTL activity using a standard (51)Cr release assay. HCV-specific CTL were detected in PBMC from seven of nine persons with chronic hepatitis, including five of seven in whom CTL had previously been detected from liver biopsy specimens but not PBMC. In a single person with chronic HCV infection, CTL directed against as many as five different epitopes were detected in peripheral blood and were similar in specificity to those detected in liver tissue. This technique was used to evaluate eight subjects identified to be at high risk for HCV exposure due to continued injection drug abuse; no evidence of CTL in PBMC was found. We conclude that CTL can be detected in PBMC from the majority of persons with chronic HCV infection but are present at lower levels or absent in exposed but persistently seronegative persons. The high degree of concordance of HCV epitopes identified from liver and PBMC suggests that this strategy is a reasonable alternative to liver biopsy for characterizing the CTL response to HCV in chronically infected persons.  相似文献   

3.
CD55 limits excessive complement activation on the host cell surface by accelerating the decay of C3 convertases. In this study, we observed that hepatitis C virus (HCV) infection of hepatocytes or HCV core protein expression in transfected hepatocytes upregulated CD55 expression at the mRNA and protein levels. Further analysis suggested that the HCV core protein or full-length (FL) genome enhanced CD55 promoter activity in a luciferase-based assay, which was further augmented in the presence of interleukin-6. Mutation of the CREB or SP-1 binding site on the CD55 promoter impaired HCV core protein-mediated upregulation of CD55. HCV-infected or core protein-transfected Huh7.5 cells displayed greater viability in the presence of CD81 and CD55 antibodies and complement. Biochemical analysis revealed that CD55 was associated with cell culture-grown HCV after purification by sucrose density gradient ultracentrifugation. Consistent with this, a polyclonal antibody to CD55 captured cell culture-grown HCV. Blocking antibodies against CD55 or virus envelope glycoproteins in the presence of normal human serum as a source of complement inhibited HCV infection. The inhibition was enhanced in the presence of both the antibodies and serum complement. Collectively, these results suggest that HCV induces and associates with a negative regulator of the complement pathway, a likely mechanism for immune evasion.  相似文献   

4.
BACKGROUND: Hepatitis C infection induces an acute and chronic liver inflammation that may lead to cirrhosis, liver failure, or hepatocarcinoma. Since the role of alphabeta T lymphocytes in hepatitis C virus (HCV) immunopathology has been analyzed extensively, we investigated the distribution and functional activation of gammadelta T cell subsets in chronically HCV-infected patients. MATERIALS AND METHODS: Blood samples and liver biopsies from 35 patients with compensated chronic HCV infection were compared in terms of T cell subset distribution, expression of activation markers, gammadelta T cell receptor (TCR) repertoire, and pattern of cytokine production. Moreover, we analyzed whether these immunological parameters were associated with other clinical observations (plasma viremia, ALT levels, Ishak index). RESULTS: Differing from peripheral blood distribution, a specific compartmentalization of Vdelta1 T cells (p < 0.001) was observed in the liver of HCV patients. These cells represented a relevant fraction of intrahepatic T lymphocytes (1.8-8.7%) and expressed the memory/effector phenotype (CD62-L- CD45-RO+CD95+). This phenotype was consistent with selective homing upon antigen recognition. Mitogenic stimulation of Vdelta1 + T lymphocytes recruited in the liver revealed the T helper cell type 1 (Th1) pattern of cytokine secretion. Interestingly, the frequency of interferon-gamma (IFN-gamma)-producing Vdelta1 T cells was associated with an higher degree of liver necroinflammation, measured by the Ishak index. Finally, the T-cell repertoire analysis revealed the absence of Vgamma selection in the TCR repertoire of intrahepatic Vdelta1 T cells. CONCLUSIONS: gammadelta T cell distribution in the peripheral blood differs from the Vdelta1 T cell subset because it is policlonally activated and recruited in the liver of chronic HCV-infected patients. During HCV-infection, this T cell subset may release Th1 cytokines and contribute to the necroinflammatory liver disease.  相似文献   

5.
AimThe lack of potent innate immune responses during HCV infection might lead to a delay in initiating adaptive immune responses. Kupffer cells (KCs) and liver-infiltrating monocytes/macrophages (CD68+ cells) are essential to establish effective anti-HCV responses. They express co-stimulatory molecules, CD80 and CD86. CD86 upregulation induces activator responses that are then potentially regulated by CD80. The relative levels of expression of CD80, CD86 and the inhibitory molecule, PD-L1, on CD68+ cells modulate T cell activation. A few studies have explored CD80 and PD-L1 expression on KCs and infiltrating monocytes/macrophages in HCV-infected livers, and none investigated CD86 expression in these cells. These studies have identified these cells based on morphology only. We investigated the stimulatory/inhibitory profile of CD68+ cells in HCV-infected livers based on the balance of CD80, CD86 and PD-L1 expression.MethodsCD80, CD86 and PD-L1 expression by CD68+ cells in the lobular and portal areas of the liver of chronic HCV-infected (n = 16) and control (n = 14) individuals was investigated using double staining immunohistochemistry.ResultsThe count of CD68+ KCs in the lobular areas of the HCV-infected livers was lower than that in the control (p = 0.041). The frequencies of CD68+CD80+ cells and CD68+PD-L1+ cells in both lobular and total areas of the liver were higher in HCV-infected patients compared with those in the control group (p = 0.001, 0.031 and 0.007 respectively). Moreover, in the lobular areas of the HCV-infected livers, the frequency of CD68+CD80+ cells was higher than that of CD68+CD86+ and CD68+PD-L1+ cells. In addition, the frequencies of CD68+CD80+ and CD68+CD86+ cells were higher in the lobular areas than the portal areas.ConclusionsOur results show that CD68+ cells have an inhibitory profile in the HCV-infected livers. This might help explain the delayed T cell response and viral persistence during HCV infection.  相似文献   

6.
Following infection with the hepatitis C virus (HCV), in most cases immunity fails to eradicate the virus, resulting in slowly progressing immunopathology in the HCV-infected liver. We are the first to examine intrahepatic T cells and CD4(+) CD25(+) FoxP3(+) regulatory T cells (Treg) in patients chronically infected with HCV (chronic HCV patients) during and after antiviral therapy by collecting multiple aspiration biopsy samples from the liver at different time points. We found that intrahepatic Treg frequencies were increased upon alpha interferon and ribavirin administration in about 50% of chronic HCV patients, suggesting stronger regulation of intrahepatic immunity by Treg during antiviral therapy. After cessation of antiviral therapy, the frequency of intrahepatic Treg remained above baseline in the large majority of livers of individuals who successfully cleared the virus. The phenotype of those Treg that were retained in the liver months after therapy-induced clearance of HCV RNA indicated a reduced contribution of effector memory cells. Our findings, gathered by multiple samplings of the liver, indicate that successful antiviral therapy of chronic HCV patients does not lead to normalization of the local immune response to a resting state comparable to that for healthy livers. The continuous presence of high numbers of Treg, with a phenotype reflecting a relatively weak suppressive activity, suggests ongoing residual regulation of immunopathology. These findings provide important insight into the dynamics of the immune response to HCV, as well as the effect of therapy on intrahepatic immunity.  相似文献   

7.
In this study, we have examined the relative contributions of CD4+ and CD8+ T cells in controlling an acute or chronic lymphocytic choriomeningitis virus (LCMV) infection. To study acute infection, we used the LCMV Armstrong strain, which is cleared by adult mice in 8 to 10 days, and to analyze chronic infection, we used a panel of lymphocyte-tropic and macrophage-tropic variants of LCMV that persist in adult mice for several months. We show that CD4+ T cells are not necessary for resolving an acute LCMV infection. CD4+ T-cell-depleted mice were capable of generating an LCMV-specific CD8+ cytotoxic T-lymphocyte (CTL) response and eliminated virus with kinetics similar to those for control mice. The CD8+ CTL response was critical for resolving this infection, since beta 2-microglobulin knockout (CD8-deficient) mice were unable to control the LCMV Armstrong infection and became persistently infected. In striking contrast to the acute infection, even a transient depletion of CD4+ T cells profoundly affected the outcome of infection with the macrophage- and lymphocyte-tropic LCMV variants. Adult mice given a single injection of anti-CD4 monoclonal antibody (GK1.5) at the time of virus challenge became lifelong carriers with high levels of virus in most tissues. Unmanipulated adult mice infected with the different LCMV variants contained virus for prolonged periods (> 3 months) but eventually eliminated infection from most tissues, and all of these mice had LCMV-specific CD8+ CTL responses. Although the level of CTL activity was quite low, it was consistently present in all of the chronically infected mice that eventually resolved the infection. These results clearly show that even in the presence of an overwhelming viral infection of the immune system, CD8+ CTL can remain active for long periods and eventually resolve and/or keep the virus infection in check. In contrast, LCMV-specific CTL responses were completely lost in chronically infected CD4-depleted mice. Taken together, these results show that CD4+ T cells are dispensable for short-term acute infection in which CD8+ CTL activity does not need to be sustained for more than 2 weeks. However, under conditions of chronic infection, in which CD8+ CTLs take several months or longer to clear the infection, CD4+ T-cell function is critical. Thus, CD4+ T cells play an important role in sustaining virus-specific CD8+ CTL during chronic LCMV infection. These findings have implications for chronic viral infections in general and may provide a possible explanation for the loss of human immunodeficiency virus-specific CD8+ CTL activity that is seen during the late stages of AIDS, when CD4+ T cells become limiting.  相似文献   

8.
In this study, we engineered Listeria monocytogens (Lm) by deleting the LmΔactAinlB virulence determinants and inserting HCV-NS5B consensus antigens to develop a therapeutic vaccine against hepatitis C virus (HCV) infection. We tested this recombinant Lm-HCV vaccine in triggering of innate and adaptive immune responses in vitro using immune cells from HCV-infected and uninfected individuals. This live-attenuated Lm-HCV vaccine could naturally infect human dendritic cells (DC), thereby driving DC maturation and antigen presentation, producing Th1 cytokines, and triggering CTL responses in uninfected individuals. However, vaccine responses were diminished when using DC and T cells derived from chronically HCV-infected individuals, who express higher levels of inhibitory molecule Tim-3 on immune cells. Notably, blocking Tim-3 signaling significantly improved the innate and adaptive immune responses in chronically HCV-infected patients, indicating that novel strategies to enhance the potential of antigen presentation and cellular responses are essential for developing an effective therapeutic vaccine against HCV infection.  相似文献   

9.
Infection with hepatitis C virus (HCV) is associated with persistence in the majority of individuals. We demonstrate here that the inhibitory molecule programmed death-1 (PD-1) is significantly upregulated on total and HCV-specific CD8(+) cytotoxic T lymphocytes (CTLs) in the peripheral blood and livers of patients with chronic infection compared to subjects with spontaneous HCV resolution, patients with nonviral liver disease, and normal controls. PD-1 expression on cytomegalovirus-specific CTLs also varies according to HCV status and is highest in patients with chronic infection. HCV-specific CTLs that are PD-1(high) express higher levels of the senescence marker CD57 than PD-1(low) CTLs, and CD57 expression is greater in chronic than in resolved infection. In vitro blockade of PD-1 by monoclonal antibodies specific to its ligands (PD-L1 and PD-L2) results in restoration of functional competence (proliferation and gamma interferon and interleukin-2 secretion) of HCV-specific CTLs, including those residing in the liver. This reversal of CTL exhaustion is evident even in individuals who lack HCV-specific CD4(+) T-cell help. Our data indicate that the PD-1/PD-L pathway is critical in persistent HCV infection in humans and represents a potential novel target for restoring function of exhausted HCV-specific CTLs.  相似文献   

10.
Although cytokines and cytotoxic T lymphocytes (CTL) are among the predominant mechanisms of host defense against viral pathogens, they can induce an inflammatory response that often leads to tissue injury. Hepatitis C virus (HCV) infection, a major cause of liver-related disease, results in the induction of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), and CTL activity, followed by liver injury. Although inflammation facilitates the wound healing process, chronic persistence over several decades results in scar accumulation, fibrosis and often cirrhosis. This review summarizes biological data implicating a cause-and-effect relationship between TNF-alpha levels and the progression of fibrosis in chronic HCV infections, in contrast to the role of TNF-alpha in hepatitis B virus infections. Furthermore, an overview of therapeutic approaches to halting the inflammatory cascade in individuals with chronic HCV, including the use of agents to reduce the level of TNF-alpha, is presented.  相似文献   

11.
CTL are crucial in the defense against viral infections. In the course of investigating peripheral blood and intrahepatic CD8 T cells in patients with chronic hepatitis C virus (HCV) infection, we observed a significant population of CD8 T cells expressing the FcgammaRIIIA (CD16) receptor. This observation led us to characterize these cells with respect to their phenotype and function in a cohort of patients with chronic HCV infection as well as in healthy blood donors. On average, 10% of peripheral blood CD8 T cells from HCV-infected patients expressed CD16 compared with only a few percent in healthy donors. CD16(+) CD8 T cells displayed a late-stage effector phenotype with high levels of perforin. These cells exhibited a restricted TCR profile suggesting underlying clonal expansion. Stimulation of CD16 on CD8 T cells evoked a vigorous response similar to that of CD16 stimulation in NK cells. Our data suggest that CD8 T cells, during chronic HCV infection in humans, continue to differentiate beyond defined stages of terminal effector cells, acquiring CD16 and NK cell-like functional properties.  相似文献   

12.
Plasmacytoid dendritic cells (pDCs) respond to viral infection by production of alpha interferon (IFN-α), proinflammatory cytokines, and cell differentiation. The elimination of hepatitis C virus (HCV) in more than 50% of chronically infected patients by treatment with IFN-α suggests that pDCs can play an important role in the control of HCV infection. pDCs exposed to HCV-infected hepatoma cells, in contrast to cell-free HCV virions, produce large amounts of IFN-α. To further investigate the molecular mechanism of HCV sensing, we studied whether exposure of pDCs to HCV-infected hepatoma cells activates, in parallel to interferon regulatory factor 7 (IRF7)-mediated production of IFN-α, nuclear factor kappa B (NF-κB)-dependent pDC responses, such as expression of the differentiation markers CD40, CCR7, CD86, and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and secretion of the proinflammatory cytokines TNF-α and interleukin 6 (IL-6). We demonstrate that exposure of pDCs to HCV-infected hepatoma cells surprisingly did not induce phosphorylation of NF-κB or cell surface expression of CD40, CCR7, CD86, or TRAIL or secretion of TNF-α and IL-6. In contrast, CpG-A and CpG-B induced production of TNF-α and IL-6 in pDCs exposed to the HCV-infected hepatoma cells, showing that cell-associated virus did not actively inhibit Toll-like receptor (TLR)-mediated NF-κB phosphorylation. Our results suggest that cell-associated HCV signals in pDCs via an endocytosis-dependent mechanism and IRF7 but not via the NF-κB pathway. In spite of IFN-α induction, cell-associated HCV does not induce a full functional response of pDCs. These findings contribute to the understanding of evasion of immune responses by HCV.  相似文献   

13.
Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127lowPD-1highTIM-3high regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein.  相似文献   

14.
CTL responses against multiple hepatitis C virus (HCV) epitopes were detected in 7 of 29 (24.1%) healthy family members (HFM) persistently exposed to chronically HCV-infected patients (HCV-HFM). These precursor CTL were at very low or undetectable frequencies, as determined by limiting dilution analysis. However, when HCV-specific effector CD8+ T cells, freshly isolated from PBMC of HCV-HFM, were assessed by a sensitive enzyme-linked immunospot assay, their frequencies were severalfold higher than those of precursor CTL. These results indicate that the two assays detect two functionally distinct T cell populations and that the effector cells are not assayed by the 51Cr-release assay. Furthermore, the combination of cell depletion and enzyme-linked immunospot analyses showed that the effector cells were confined into a CD8+ CD45RO+ CD28- population. The persistence of effector CD8+ T cells specific for both the structural and nonstructural viral proteins in uninfected HCV-HFM, suggest that: 1) an immunological memory is established upon a subclinical infection without any evidence of hepatitis, in a large cohort of HCV-exposed individuals; 2) because these cells required neither restimulation nor the addition of particular cytokines in vitro for differentiating in effectors, they should be capable of prompt HCV-specific effector function in vivo, possibly providing antiviral protection; and 3) the maintenance of effector T cell responses may be sustained by persisting low-level stimulation induced by inapparent infections.  相似文献   

15.
In the present study, we generated killer cells specific for hepatitis C virus (HCV) structural protein by re-stimulation of immune spleen cells from H-2(d) haplotype transgenic (Tg) mice, expressing the core, E1, E2, and NS2 genes of HCV regulated by the Cre/loxP switching system. The generated killer cells were conventional CD8(+)L(d) class-I MHC molecule-restricted cytotoxic T lymphocytes (CTLs) and specific for the HCV E1 structural protein. Because the CTLs could also kill hepatocytes from the Tg mice expressing HCV structural proteins in vitro, we attempted to transfer those CTLs intravenously into interferon regulatory factor-1 (IRF-1) negative, CD8-deficient Tg mice representing the HCV structural genes on hepatocytes to examine whether the inoculated CD8(+) CTLs can eliminate hepatocytes expressing the HCV genes in vivo. We observed an elevation of serum ALT level as well as damage of the liver tissue histologically. To our knowledge, this is the first demonstration to show that HCV-specific CD8(+) CTLs specifically attack hepatocytes expressing the HCV structural proteins both in vitro and in vivo.  相似文献   

16.
Chronic hepatitis C virus (HCV) infection is characterized by diminished numbers and function of HCV-reactive T cells and impaired responses to immunization. Because host response to viral infection likely involves TLR signaling, we examined whether chronic HCV infection impairs APC response to TLR ligand and contributes to the origin of dysfunctional T cells. Freshly purified myeloid dendritic cells (MDC) and plasmacytoid DC (PDC) obtained from subjects with chronic HCV infection and healthy controls were exposed to TLR ligands (poly(I:C), R-848, or CpG), in the presence or absence of cytokine (TNF-alpha or IL-3), and examined for indices of maturation and for their ability to activate allogeneic naive CD4 T cells to proliferate and secrete IFN-gamma. TLR ligand was observed to enhance both MDC and PDC activation of naive CD4 T cells. Although there was increased CD83 and CD86 expression on MDC from HCV-infected persons, the ability of MDC to activate naive CD4 T cells in the presence or absence of poly(I:C) or TNF-alpha did not differ between HCV-infected and healthy control subjects. In contrast, PDC from HCV-infected persons had reduced activation marker (HLA-DR) and cytokine (IFN-alpha) expression upon R-848 stimulation, and these were associated with impaired activation of naive CD4 T cells. These data indicate that an impaired PDC responsiveness to TLR ligation may play an important role in the fundamental and unexplained failure to induce new T cell responses to HCV Ags and to other new Ags as a consequence of HCV infection.  相似文献   

17.
Dendritic cells (DCs), which are potent antigen-presenting cells (APCs), are used as adjuvants for the treatment of cancer and infectious diseases in human and nonhuman primates, with documented clinical efficacy. The hepatitis C virus (HCV)-chimpanzee model is the best available model for testing the immunotherapeutic effects of DCs in the setting of a chronic infection, as chimpanzees develop a persistent infection resembling that seen in humans. However, several reports have suggested that DCs derived from chronically infected individuals or nonhuman primates are functionally compromised. As a prelude to clinical studies, we evaluated whether functionally mature DCs could be generated in chimpanzee plasma by good manufacturing practice using CD14(+) mononuclear precursors from chronically infected chimpanzees. DCs generated in a medium with HCV-negative plasma and treated with a defined cocktail of cytokines or a CD40 ligand trimer matured fully, as measured by the induction of CD83 expression and the upregulation of costimulatory molecules. Furthermore, the expression of CCR7 was induced, suggesting an acquisition of migration capacity. Mature DCs were capable of stimulating allogeneic T cells, antigen-specific memory CD4(+) T cells, and HCV-specific CD8(+)-T-cell clones. In all cases, there was no evidence of HCV infection in DCs. Furthermore, these DCs maintained their phenotype and APC function after cryopreservation. Finally, no discernible differences were noted between DCs derived from HCV-infected and uninfected chimpanzees. In summary, precursor cells from HCV-infected chimpanzees are fully capable of differentiating into functional, mature DCs, which can now be reproducibly prepared for investigations of their immunotherapeutic potential in the setting of chronic HCV infection.  相似文献   

18.
Hepatitis C virus (HCV) infection is associated with immune-mediated abnormalities and B-cell lymphoproliferation. Recently, CD81 was identified as an HCV receptor on B lymphocytes, providing a mechanism by which B cells are infected and activated by the virus. It has recently been shown that peripheral B-cell CD81 overexpression and CD5(+) subpopulation expansion correlate with HCV viral load and are associated with the development of HCV-related autoimmunity. In the present study, we assessed the effects of combination antiviral therapy (alfa interferon and ribavirin) on peripheral B-cell CD81 expression and CD5 expansion and the presence of autoimmune markers. Peripheral B-cell CD5 expression and the mean fluorescence intensity of CD81 were assessed by flow cytometry before and after treatment in 15 HCV-infected patients, in 10 untreated patients, and in 25 healthy controls. A significant posttreatment decrease in peripheral B-cell CD81 expression and disappearance of CD5(+) B-cell expansion were observed in all nine patients in whom a complete and sustained virological response was achieved (P < 0.01) (comparable to those for healthy controls). The decrease in CD81 overexpression and CD5 expansion in these patients was associated with a decrease and/or disappearance of autoimmune markers. In contrast, in nonresponders overexpression of CD81 and expansion of the CD5(+) B-cell subpopulation were not significantly changed and were comparable to those for untreated patients. In conclusion, antiviral therapy down-regulates peripheral B-cell CD81 expression and the CD5(+) population, either directly or by its effect on HCV RNA load. The overexpression of CD81 and the expansion of the population of CD5(+) peripheral B cells in HCV-infected patients may possibly play a role in the development of HCV-associated autoimmunity and lymphoproliferation.  相似文献   

19.
Hepatitis C virus (HCV) infection is a major public health problem, affecting an estimated 3% of the world's population, and over 10% in some countries. Infection in most cases becomes persistent, and can lead to hepatic inflammation, fibrosis and liver failure. The T lymphocyte reponse, in particular that mediated by cytotoxic T lymphocytes (CTLs), is likely to be involved in determining the outcome of infection, although its overall role is not clear. The use of major histocompatibility complex (MHC) class I peptide tetrameric complexes (tetramers) to study antiviral CTL responses has revolutionized our approach to the study of human infection. We have used a panel of MHC class I tetramers to analyse immune responses in HCV-infected individuals at various stages of disease. We find that the CTL response against HCV is vigorous in its early phases but dwindles over time both in terms of lymphocyte number and function. A number of potential explanations for this 'CTL failure' are discussed.  相似文献   

20.
Two to three percent of the world's population is chronically infected with hepatitis C virus (HCV) and thus at risk of developing liver cancer. Although precise mechanisms regulating HCV entry into hepatic cells are still unknown, several cell surface proteins have been identified as entry factors for this virus. Among these molecules, the tetraspanin CD81 is essential for HCV entry. Here, we have identified a partner of CD81, EWI-2wint, which is expressed in several cell lines but not in hepatocytes. Ectopic expression of EWI-2wint in a hepatoma cell line susceptible to HCV infection blocked viral entry by inhibiting the interaction between the HCV envelope glycoproteins and CD81. This finding suggests that, in addition to the presence of specific entry factors in the hepatocytes, the lack of a specific inhibitor can contribute to the hepatotropism of HCV. This is the first example of a pathogen gaining entry into host cells that lack a specific inhibitory factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号