首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Han M  Wen JK  Zheng B  Zhang DQ 《Life sciences》2004,75(6):675-684
In order to elucidate the mechanism of anti-inflammatory effect of 1-o-acetylbritannilatone (ABL) isolated from Inula Britannica-F, we investigated ABL for its ability to inhibit the inflammatory factor production in RAW 264.7 macrophages. The studies showed that ABL not only inhibited LPS/IFN-gamma-mediated nitric oxide (NO) production and inducible nitric synthase (iNOS) expression, but also decreased LPS/IFN-gamma-induced prostaglandin E2 (PGE2) production and cyclo-oxygenase-2 (COX-2) expression in a concentration-dependent manner. EMSA demonstrated that ABL inhibited effectively the association of NF-kappaB, which is necessary for the expression of iNOS and COX-2, with its binding motif in the promoter of target genes. These data suggest that ABL suppress NO and PGE2 synthesis in RAW 264.7 macrophages through the inhibition of iNOS and COX-2 gene expression, respectively. The anti-inflammatory effect of ABL involves blocking the binding of NF-kappaB to the promoter in the target genes and inhibiting the expression of iNOS and COX-2.  相似文献   

2.
Several natural flavonoids have been demonstrated to perform some beneficial biological activities, however, higher-effective concentrations and poor-absorptive efficacy in body of flavonoids blocked their practical applications. In the present study, we provided evidences to demonstrate that flavonoids rutin, quercetin, and its acetylated product quercetin pentaacetate were able to be used with nitric oxide synthase (NOS) inhibitors (N-nitro-L-arginine (NLA) or N-nitro-L-arginine methyl ester (L-NAME)) in treatment of lipopolysaccharide (LPS) induced nitric oxide (NO) and prostaglandin E2 (PGE2) productions, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expressions in a mouse macrophage cell line (RAW 264.7). The results showed that rutin, quercetin, and quercetin pentaacetate-inhibited LPS-induced NO production in a concentration-dependent manner without obvious cytotoxic effect on cells by MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide as an indicator. Decrease of NO production by flavonoids was consistent with the inhibition on LPS-induced iNOS gene expression by western blotting. However, these compounds were unable to block iNOS enzyme activity by direct and indirect measurement on iNOS enzyme activity. Quercetin pentaacetate showed the obvious inhibition on LPS-induced PGE2 production and COX-2 gene expression and the inhibition was not result of suppression on COX-2 enzyme activity. Previous study demonstrated that decrease of NO production by L-arginine analogs effectively stimulated LPS-induced iNOS gene expression, and proposed that stimulatory effects on iNOS protein by NOS inhibitors might be harmful in treating sepsis. In this study, NLA or L-NAME treatment stimulated significantly on LPS-induced iNOS (but not COX-2) protein in RAW 264.7 cells which was inhibited by these three compounds. Quercetin pentaacetate, but not quercetin and rutin, showed the strong inhibitory activity on PGE2 production and COX-2 protein expression in NLA/LPS or L-NAME/LPS co-treated RAW 264.7 cells. These results indicated that combinatorial treatment of L-arginine analogs and flavonoid derivates, such as quercetin pentaacetate, effectively inhibited LPS-induced NO and PGE2 productions, at the same time, inhibited enhanced expressions of iNOS and COX-2 genes.  相似文献   

3.
Intestinal resident macrophages play an important role in gastrointestinal dysmotility by producing prostaglandins (PGs) and nitric oxide (NO) in inflammatory conditions. The causal correlation between PGs and NO in gastrointestinal inflammation has not been elucidated. In this study, we examined the possible role of PGE(2) in the LPS-inducible inducible NO synthase (iNOS) gene expression in murine distal ileal tissue and macrophages. Treatment of ileal tissue with LPS increased the iNOS and cyclooxygenase (COX)-2 gene expression, which lead to intestinal dysmotility. However, LPS did not induce the expression of iNOS and COX-2 in tissue from macrophage colony-stimulating factor-deficient op/op mice, indicating that these genes are expressed in intestinal resident macrophages. iNOS and COX-2 protein were also expressed in dextran-phagocytized macrophages in the muscle layer. CAY10404, a COX-2 inhibitor, diminished LPS-dependent iNOS gene upregulation in wild-type mouse ileal tissue and also in RAW264.7 macrophages, indicating that PGs upregulate iNOS gene expression. EP(2) and EP(4) agonists upregulated iNOS gene expression in ileal tissue and isolated resident macrophages. iNOS mRNA induction mediated by LPS was decreased in the ileum isolated from EP(2) or EP(4) knockout mice. In addition, LPS failed to decrease the motility of EP(2) and EP(4) knockout mice ileum. EP(2)- or EP(4)-mediated iNOS expression was attenuated by KT-5720, a PKA inhibitor and PD-98059, an ERK inhibitor. Forskolin or dibutyryl-cAMP mimics upregulation of iNOS gene expression in macrophages. In conclusion, COX-2-derived PGE(2) induces iNOS expression through cAMP/ERK pathways by activating EP(2) and EP(4) receptors in muscularis macrophages. NO produced in muscularis macrophages induces dysmotility during gastrointestinal inflammation.  相似文献   

4.
Beta-phenylethyl (PEITC) and 8-methylsulphinyloctyl isothiocyanates (MSO) represent two phytochemical constituents present in watercress Rorripa nasturtium aquaticum, with known chemopreventative properties. In the present investigation, we examined whether PEITC and MSO could modulate the inflammatory response of Raw 264.7 macrophages to bacterial lipopolysaccharide (LPS) by assessment of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Overproduction of both nitric oxide (NO) and prostaglandins (PGE) has been associated with numerous pathological conditions including chronic inflammation and cancer. Our results demonstrate that LPS (1 microg/ml approximately 24 h) induced nitrite and prostaglandin E2 (PGE-2) synthesis in Raw 264.7 cells was attenuated by both isothiocyanates (ITCs) in a concentration-dependent manner. Both PEITC and MSO decreased (iNOS) and (COX-2) protein expression levels leading to reduced secretion of both pro-inflammatory mediators. Interestingly, the reduction in both iNOS and COX-2 expression were associated with the inactivation of nuclear factor-kappaB and stabilization of IkappaBalpha. Taken together our data gives further insight into the possible chemopreventative properties of two dietary derived isothiocyanates from watercress.  相似文献   

5.
We found that CKD712, an S enantiomer of YS49, strongly inhibited inducible nitric oxide synthase (iNOS) and NO induction but showed a weak inhibitory effect on cyclooxygenase-2 (COX-2) and PGE(2) induction in LPS-stimulated RAW 264.7 cells. We, therefore, investigated the molecular mechanism(s) responsible for this by using CKD712 in LPS-activated RAW264.7 cells. Treatment with either SP600125, a specific JNK inhibitor or TPCK, a NF-kappaB inhibitor, but neither ERK inhibitor PD98059 nor p38 inhibitor SB203580, significantly inhibited LPS-mediated iNOS and COX-2 induction. CKD712 inhibited NF-kappaB (p65) activity and translocation but failed to prevent JNK activation. However, AG490, a specific JAK-2/STAT-1 inhibitor, efficiently prevented LPS-mediated iNOS induction but not the induction of COX-2, and CKD712 completely blocked STAT-1 phosphorylation by LPS, suggesting that the NF-kappaB and JAK-2/STAT-1 pathways but not the JNK pathway are important for CKD712 action. Interestingly, CKD712 induced heme oxygenase 1 (HO-1) gene expression in LPS-treated cells. LPS-induced NF-kappaB and STAT-1 activation was partially prevented by HO-1 overexpression. Furthermore, HO-1 siRNA partly reversed not only the LPS-induced NF-kappaB activation and STAT-1 phosphorylation but also inhibition of these actions by CKD 712. Additionally, silencing HO-1 by siRNA prevented CKD712 from inhibiting iNOS expression but not COX-2. When examined plasma NO and PGE(2) levels and iNOS and COX-2 protein levels in lung tissues of mice injected with LPS (10 mg/kg), pretreatment with CKD712 greatly prevented NO and iNOS induction in a dose-dependent manner and slightly affected PGE(2) and COX-2 production as expected. Taken together, we conclude that inhibition of JAK-2/STAT-1 pathways by CKD 712 is critical for the differential inhibition of iNOS and COX-2 by LPS in vitro and in vivo where HO-1 induction also contributes to this by partially modulating JAK-2/STAT-1 pathways.  相似文献   

6.
We investigated the effect of lipopolysaccharide (LPS) on the induction of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in muscularis resident macrophages of rat intestine in situ. When the tissue was incubated with LPS for 4 h, mRNA levels of iNOS and COX-2 were increased. The majority of iNOS and COX-2 proteins appeared to be localized to the dense network of muscularis resident macrophages immunoreactive to ED2. LPS treatment also increased the production of nitric oxide (NO), PGE(2), and PGI(2). The increased expression of iNOS mRNA by LPS was suppressed by indomethacin but not by N(G)-monomethyl-L-arginine (L-NMMA). The increased expression of COX-2 mRNA by LPS was affected neither by indomethacin nor by L-NMMA. Muscle contractility stimulated by 3 microM carbachol was significantly inhibited in the LPS-treated muscle, which was restored by treatment of the tissue with L-NMMA, aminoguanidine, indomethacin, or NS-398. Together, these findings show that LPS increases iNOS expression and stimulates NO production in muscularis resident macrophages to inhibit smooth muscle contraction. LPS-induced iNOS gene expression may be mediated by autocrine regulation of PGs through the induction of COX-2 gene expression.  相似文献   

7.
Bismuth subgallate (BSG) is used widely in clinics, including Vincent's angina, syphilis, and adenotonsillectomy. This study examined the effects of BSG on nitric oxide (NO) and prostaglandin E2 (PGE2) production in activated RAW 264.7 cells. BSG suppressed production of NO and PGE2 in a dose-dependent manner. BSG could increase TGF-beta1 production, which in turn might promote degradation of iNOS mRNA, thus inhibiting NO production. Additionally, BSG inhibited mPGES protein expression and COX-2 activity in activated RAW 264.7 cells. Exogenous addition of SNP reversed the inhibition effect of PGE2 production by BSG. This behavior indicates that PGE2 inhibition by BSG exerts an indirect effect through NO inhibition.  相似文献   

8.
9.
Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) are involved in various pathophysiological processes such as inflammation and carcinogenesis. In a search for inhibitors of COX-2 and iNOS production we found that extracts of Stewartia koreana strongly inhibited NO and PGE2 production in LPS-treated macrophage RAW 264.7 cells. We have now shown that the mRNA and protein levels of iNOS and COX-2 are reduced by the Stewartia koreana extract (SKE). SKE inhibited expression of an NF-kappaB reporter gene in response to LPS, and gel mobility shift assays revealed that SKE reduced NF-kappaB DNA-binding activity. The extract also inhibited LPS-induced phosphorylation of IkappaB-alpha and nuclear translocation of p65. Administration of the extract reduced the symptoms of arthritis in a collagen-induced arthritic mouse model. These results indicate that Stewartia extracts contain potentially useful agents for preventing and treating inflammatory diseases.  相似文献   

10.
11.
We recently reported that lipoteichoic acid (LTA), a cell wall component of the gram-positive bacterium Staphylococcus aureus, stimulated inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO) release, and cyclooxygenase-2 (COX-2) expression in RAW 264.7 macrophages. This study was carried out to further investigate the roles of COX-2 and prostaglandin E2 (PGE2) in LTA-induced iNOS expression and NO release in RAW 264.7 macrophages. Treatment of RAW 264.7 macrophages with LTA caused a time-dependent increase in PGE2 release. LTA-induced iNOS expression and NO release were inhibited by a non-selective COX inhibitor (indomethacin), a selective COX-2 inhibitor (NS-398), an adenylyl cyclase (AC) inhibitor (dideoxyadenosine, DDA), and a protein kinase A (PKA) inhibitor (KT-5720). Furthermore, both PGE2 and the direct PKA activator, dibutyryl-cAMP, also induced iNOS expression in a concentration-dependent manner. Stimulation of RAW 264.7 macrophages with LTA, PGE2, and dibutyryl-cAMP all caused p38 MAPK activation in a time-dependent manner. LTA-mediated p38 MAPK activation was inhibited by indomethacin, NS-398, and SB 203580, but not by PD 98059. The PGE2-mediated p38 MAPK activation was inhibited by DDA, KT-5720, and SB 203580, but not by PD 98059. LTA caused time-dependent activation of the nuclear factor-kappaB (NF-kappaB)-specific DNA-protein complex formation. The LTA-induced increase in kappaB-luciferase activity was inhibited by indomethacin, NS-398, KT-5720, and a dominant negative mutant of p38 alphaMAPK (p38 alphaMAPK DN). These results suggest that LTA-induced iNOS expression and NO release involve COX-2-generated PGE2 production, and AC, PKA, p38 MAPK, and NF-kappaB activation in RAW 264.7 macrophages.  相似文献   

12.
13.
Tetracyclines (doxycycline and minocycline) augmented (one- to twofold) the PGE2 production in human osteoarthritis-affected cartilage (in the presence or absence of cytokines and endotoxin) in ex vivo conditions. Similarly, bovine chondrocytes stimulated with LPS showed (one- to fivefold) an increase in PGE2 accumulation in the presence of doxycycline. This effect was observed at drug concentrations that did not affect nitric oxide (NO) production. In murine macrophages (RAW 264.7) stimulated with LPS, tetracyclines inhibited NO release and increased PGE2 production. Tetracycline(s) and L-N-monomethylarginine (L-NMMA) (NO synthase inhibitor) showed an additive effect on inhibition of NO and PGE2 accumulation, thereby uncoupling the effects of tetracyclines on NO and PGE2 production. The enhancement of PGE2 production in RAW 264.7 cells by tetracyclines was accompanied by the accumulation of both cyclooxygenase (COX)-2 mRNA and cytosolic COX-2 protein. In contrast to tetracyclines, L-NMMA at low concentrations (< or = 100 microM) inhibited the spontaneous release of No in osteoarthritis-affected explants and LPS-stimulated macrophages but had no significant effect on the PGE2 production. At higher concentrations, L-NMMA (500 microM) inhibited NO release but augmented PGE2 production. This study indicates a novel mechanism of action of tetracyclines to augment the expression of COX-2 and PGE2 production, an effect that is independent of endogenous concentration of NO.  相似文献   

14.
We examined the effects of chitosan oligosaccharides (COSs) with different molecular weights (COS-A, 10 kDa < MW < 20 kDa; COS-C, 1 kDa < MW < 3 kDa) on the lipopolysaccharide (LPS)-induced production of prostaglandin E2 and nitric oxide and on the expression of cyclooxygenase-2 and inducible nitric oxide synthase in RAW264.7 macrophages. COS-A (0.4%) and COS-C (0.2%) significantly inhibited PGE2 production in LPS-stimulated macrophages without cytotoxicity. The effect of COS-A and COS-C on COX-2 expression in activated macrophages was also investigated by immunoblotting. The inhibition of PGE2 by COS-A and COS-C can be attributed to the blocking of COX-2 protein expression. COS-A (0.4%) and COS-C (0.2%) also markedly inhibited the LPS-induced NO production of RAW 264.7 cells by 50.2% and 44.1%, respectively. The inhibition of NO by COSs was consistent with decreases in inducible nitric oxide synthase (iNOS) protein expression. To test the inhibitory effects of COS-A and COS-C on other cytokines, we also performed ELISA assays for IL-1β in LPS-stimulated RAW 264.7 macrophage cells, but only a dose-dependent decrease in the IL-1β production exerted by COS-A was observed. In order to test for irritation and the potential sensitization of COS-A and COS-C for use as cosmetic materials, human skin primary irritation tests were performed on 32 volunteers; no adverse reactions of COSs usage were observed. Based on these results, we suggest that COS-A and COS-C be considered possible anti-inflammatory candidates for topical application.  相似文献   

15.
In activated macrophage, large amounts of nitric oxide (NO) are generated by inducible nitric oxide synthase (iNOS), resulting in acute or chronic inflammatory disorders. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, 8-hydroxyquinoline (8HQ) inhibited the LPS-induced expression of both iNOS protein and mRNA in a parallel dose-dependent manner. 8HQ did not enhance the degradation of iNOS mRNA. To investigate the mechanism by which 8HQ inhibits iNOS gene expression, we examined the activation of MAP kinases in Raw 264.7 cells. We did not observe any significant change in the phosphorylation of MAPKs between LPS alone and LPS plus 8HQ-treated cells. Moreover, 8HQ significantly inhibited the DNA-binding activity of nuclear factor-kappaB (NF-kappaB) and CCAAT/enhancer-binding protein beta (C/EBPbeta), but not activator protein-1 and cAMP response element-binding protein. Taken together, these results suggest that 8HQ acts to inhibit inflammation through inhibition of NO production and iNOS expression through blockade of C/EBPbeta DNA-binding activity and NF-kappaB activation.  相似文献   

16.
Foods of plant origin, especially fruits and vegetables, draw increased attention because of their potential benefits to human health. The aim of the present study was to determine in vitro anti-inflammatory activity of four different extracts obtained from the fruits of Rubus coreanus (aqueous and ethanol extracts of unripe and ripe fruits). Among the four extracts, the ethanol extract of unripe fruits of R. coreanus (URCE) suppressed nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production in lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophages. We also demonstrated that URCE by itself is a potent inducer of heme oxygenase-1 (HO-1). Inhibition of HO-1 activity by tin protoporphyrin, a specific HO-1 inhibitor, suppressed the URCE-induced reductions in the production of NO and PGE(2) as well as the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2). Our data suggest that URCE exerts anti-inflammatory effects in macrophages via activation of the HO-1 pathway and helps to elucidate the mechanism underlying the potential therapeutic value of R. coreanus extracts.  相似文献   

17.
In this study, we showed that nitric oxide (NO) donors induced the mesangial cell proliferation and cyclooxygenase-2 (COX-2) protein expression in murine mesangial cells. An inflammatory condition [lipopolysaccharide (LPS) plus interferon-gamma (IFN-gamma)] could also induce cell proliferation and significantly enhance inducible nitric oxide synthase (iNOS) and COX-2 expression. Phosphoinositide 3-kinase (PI3K) inhibitor, LY294002, inhibited these responses. LPS/IFN-gamma-induced COX-2 expression in mesangial cells could be inhibited by iNOS inhibitor, aminoguanidine. Selective COX-2 inhibitor, NS398, was capable of inhibiting NO donor- or LPS/IFN-gamma-induced mesangial cell proliferation. Both NO donor and LPS/IFN-gamma markedly activated the PI3K activity and the phosphorylation of Akt and nuclear factor (NF)-kappaB DNA binding activity in mesangial cells, which could be inhibited by LY294002 and transfection of dominant-negative vectors of PI3K/p85 and Akt. These results indicate that a PI3K/Akt-dependent pathway involved in the NO-regulated COX-2 expression and cell proliferation in mesangial cells under inflammatory condition.  相似文献   

18.
Exposure of macrophages to heat shock induces rapid synthesis of heat shock proteins (HSPs) which are important for cell homeostasis. Prostaglandins (PGs) and nitric oxide (NO) are important cell regulatory molecules. We have therefore investigated the interactions between these molecules in the LPS-induced expression of iNOS and COX-2 and in the mitochondrial activity of macrophages. Cultures of the murine macrophage cell line, J774, were exposed to heat shock (43 degrees C, 30 min) and stimulated with LPS (1 microg/ml), concomitantly or after 8h of cell recovery. NO production was measured by Griess reaction; PGE(2) by ELISA; HSP70, iNOS and COX-2 by immunobloting; mitochondrial activity by MTT assay. Heat shock induced HSP70, but not iNOS or COX-2 whereas LPS induced iNOS and COX-2 but not HSP70. When heat shock and LPS were given concomitantly, iNOS but not COX-2 expression was reduced. When a period of 8h was given between heat shock and LPS stimulation, iNOS, COX-2, PGE(2) and NO levels were significantly increased. Under these conditions, the expression of COX-2 was reduced by L-NAME (NO-synthesis inhibitor) and of iNOS by nimesulide (PGs-synthesis inhibitor). Such cross-regulation was not observed in cells at 37 degrees C. These treatments significantly reduced MTT levels in cells at 37 degrees C but not in cells submitted to heat shock. These results suggest that HSPs and cross-regulation of iNOS and COX-2 by their products might be of relevance in the control of cell homeostasis during stress conditions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号