首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of mutR, a mutator closely linked to thyA, have been further characterized. We have found that the mutator gene is carried on a specialized transducing phage (lambdapcI857 thyA) generated by the excision of lambdacI857 integrated at a secondary attachment site between lysA and thyA. We present three lines of evidence indicating that mutR is a nonessential gene. (i) Deletions of the mutator can be found amoung survivors of heat induction of lambdacI857 when the phage is integrated between lysA and thyA. (ii) Mutations in mutR can be induced with the frameshift mutagen ICR-191. (iii) An amber mutant in mutR has been found. Viable strains could be made by combining the mutator with polB, polA polR, ligts7, and uvrA mutations. The mutator was still able to increase the spontaneous mutation frequency in these genetic backgrounds. When the reversion patterns of a series of well-characterized trpA mutations were analyzed, the results suggested that mutR is more efficient at causing transitions than transversion mutations.  相似文献   

2.
Over the course of thousands of generations of growth in a glucose-limited environment, 3 of 12 experimental populations of Escherichia coli spontaneously and independently evolved greatly increased mutation rates. In two of the populations, the mutations responsible for this increased mutation rate lie in the same region of the mismatch repair gene mutL. In this region, a 6-bp repeat is present in three copies in the gene of the wild-type ancestor of the experimental populations but is present in four copies in one of the experimental populations and two copies in the other. These in-frame mutations either add or delete the amino acid sequence LA in the MutL protein. We determined that the replacement of the wild-type sequence with either of these mutations was sufficient to increase the mutation rate of the wild-type strain to a level comparable to that of the mutator strains. Complementation of strains bearing the mutator mutations with wild-type copies of either mutL or the mismatch repair gene uvrD rescued the wild-type mutation rate. The position of the mutator mutations-in the region of MutL known as the ATP lid-suggests a possible deficiency in MutL's ATPase activity as the cause of the mutator phenotype. The similarity of the two mutator mutations (despite the independent evolutionary histories of the populations that gave rise to them) leads to a discussion of the potential adaptive role of DNA repeats.  相似文献   

3.
We have used bacteriophage lambda to characterize the mutator effect of the SOS response induced by u.v. irradiation of Escherichia coli. Mutagenesis of unirradiated phages grown in irradiated or unirradiated bacteria was detected by measuring forward mutagenesis in the immunity genes or reversion mutagenesis of an amber codon in the R gene. Relative to the wild-type, the SOS mutator effect was higher in E. coli mismatch correction-deficient mutants (mutH, mutL and mutS) and lower in an adenine methylation-deficient mutant ( dam3 ). We conclude that a large proportion of SOS-induced 'untargeted' mutations are removed by the methyl-directed mismatch correction system, which acts on newly synthesized DNA strands. The lower SOS mutator effect observed in E. coli dam mutants may be due to a selective killing of mismatch-bearing chromosomes resulting from undirected mismatch repair. The SOS mutator effect on undamaged lambda DNA, induced by u.v. irradiation of the host, appears to result from decreased fidelity of DNA synthesis.  相似文献   

4.
Using a papillation method, a large number of Escherichia coli K-12 mutator mutations have been isolated. Only one of these (out of 1,250) mutator mutations has proved to be conditionally lethal at high temperatures. In vivo complementation tests indicated that this mutation, dnaE9, lies in dnaE, the structural gene for DNA polymerase III. The dnaE9 polymerase was not thermolabile in vitro; however, it showed a slow decline in specific activity in vivo at the nonpermissive temperature. Cultures of this mutant exhibited a comparably slow shutoff of DNA synthesis on shift to a nonpermissive temperature. dnaE9 showed temperature-sensitive mutator activity, which is not dependent on recA.  相似文献   

5.
We have shown previously that dam mutants of Escherichia coli have a weak mutator phenotype which generates mostly transition mutations in the P22 mnt gene. In contrast, in mutD5 cells, which have a strong mutator phenotype, transversion mutations were the most prevalent. A dam-16 mutD5 strain, defective in both DNA polymerase III associated-proofreading and Dam-directed mismatch repair exhibits a strong mutator phenotype but, surprisingly, its mutation spectrum is similar to that of the dam rather than the mutD parent. The most likely explanation is that Dam-directed mismatch repair in the mutD5 strain corrects most of the potential transition mutations (therefore yielding transversions) in the newly synthesised strand. When the dam-16 allele is present together with mutD5 a reduced efficiency of repair as well as loss of strand discrimination and misdirected repair results in the appearance of transition mutations at high frequency.  相似文献   

6.
Using a general form of the directional mutation theory, this paper analyzes the effect of mutations in mutator genes on the G + C content of DNA, the frequency of substitution mutations, and evolutionary changes (cumulative mutations) under various degrees of selective constraints. Directional mutation theory predicts that when the mutational bias between A/T and G/C nucleotide pairs is equilibrated with the base composition of a neutral set of DNA nucleotides, the mutation frequency per gene will be much lower than the frequency immediately after the mutator mutation takes place. This prediction explains the wide variation of the DNA G + C content among unicellular organisms and possibly also the wide intragenomic heterogeneity of third codon positions for the genes of multicellular eukaryotes. The present analyses lead to several predictions that are not consistent with a number of the frequently held assumptions in the field of molecular evolution, including belief in a constant rate of evolution, symmetric branching of phylogenetic trees, the generality of higher mutation frequency for neutral sets of nucleotides, the notion that mutator mutations are generally deleterious because of their high mutation rates, and teleological explanations of DNA base composition. Presented at the NATO Advanced Research Workshop onGenome Organization and Evolution, Spetsai, Greece, 16–22 September 1992  相似文献   

7.
Summary The nucleotide sequences of the recessivednaQ49 and the dominantmutD5 mutator were determined. ThednaQ49 mutator has a single base substitution in thednaQ gene, thus causing one amino acid change,96Val (GTG)→ Gly (GGG), in the DnaQ protein (ε subunit of DNA polymerase III holoenzyme). ThemutD5 mutator possesses two base substitutions in the same gene, resulting in two amino acid changes,73Leu (TTG)→Trp (TGG) and164Ala (GCA)→Val (GTA), which were designated themutD52 andmutD51 mutations, respectively. Construction of chimaeric genes carrying one or two of these mutations revealed: (1) eithermutD51 ormutD52 alone causes the dominant mutator phenotype when present in a multi-copy plasmid; (2)mutD51, but notmutD52, exerts the dominant mutator phenotype when present in a low-copy plasmid; (3) the dominantmutD51 mutator activity is suppressed by thednaQ49 mutation when both mutations are present in the same gene. Based on these findings, we devised a model for the action of these mutators.  相似文献   

8.
We have constructed strains that allow a direct selection for mutators of Escherichia coli on a single plate medium. The plate selection is based on using two different markers whose reversion is enhanced by a given mutator. Plates containing limiting amounts of each respective nutrient allow the growth of ghost colonies or microcolonies that give rise to full-size colonies only if a reversion event occurs. Because two successive mutational events are required, mutator cells are favored to generate full-size colonies. Reversion of a third marker allows direct visualization of the mutator phenotype by the large number of blue papillae in the full-size colonies. We also describe plate selections involving three successive nutrient markers followed by a fourth papillation step. Different frameshift or base substitution mutations are used to select for mismatch-repair-defective strains (mutHLS and uvrD). We can detect and monitor mutator cells arising spontaneously, at frequencies lower than 10(-5) in the population. Also, we can measure a mutator cascade, in which one type of mutator (mutT) generates a second mutator (mutHLS) that then allows stepwise frameshift mutations. We discuss the relevance of mutators arising on a single medium as a result of cells overcoming successive growth barriers to the development and progression of cancerous tumors, some of which are mutator cell lines.  相似文献   

9.
The bacteriophage T4 rnh gene encodes T4 RNase H, a relative of a family of flap endonucleases. T4 rnh null mutations reduce burst sizes, increase sensitivity to DNA damage, and increase the frequency of acriflavin resistance (Acr) mutations. Because mutations in the related Saccharomyces cerevisiae RAD27 gene display a remarkable duplication mutator phenotype, we further explored the impact of rnh mutations upon the mutation process. We observed that most Acr mutants in an rnh+ strain contain ac mutations, whereas only roughly half of the Acr mutants detected in an rnhDelta strain bear ac mutations. In contrast to the mutational specificity displayed by most mutators, the DNA alterations of ac mutations arising in rnhDelta and rnh+ backgrounds are indistinguishable. Thus, the increase in Acr mutants in an rnhDelta background is probably not due to a mutator effect. This conclusion is supported by the lack of increase in the frequency of rI mutations in an rnhDelta background. In a screen that detects mutations at both the rI locus and the much larger rII locus, the r frequency was severalfold lower in an rnhDelta background. This decrease was due to the phenotype of rnh rII double mutants, which display an r+ plaque morphology but retain the characteristic inability of rII mutants to grow on lambda lysogens. Finally, we summarize those aspects of T4 forward-mutation systems which are relevant to optimal choices for investigating quantitative and qualitative aspects of the mutation process.  相似文献   

10.
Thin map of gene 43, controlling the synthesis of T4 DNA polymerase, is obtained by mapping experiments performed with 39 amber mutants, and is used for analysis of the sites of DNA polymerase gene from the point of view of displaying the mutator effect. The mutant sites studied possessed different reaction on amino acid substitutions in the polypeptide chain of the enzyme. Most of sites of the DNA polymerase gene, with the exception of two "supersensitive", responsed only on the apparent type of the amino acid substitutions: the mutator effect of amber mutations, which are located at these sites, was exhibited only in the case of insertion of the definite amino acid in the respective point of polypeptide chain. The proposed system of amber mutations for studying the mutator effect, allowed the authors to obtain the data on the effect of concrete alterations in the polypeptide chain of the enzyme on the development of its mutator properties.  相似文献   

11.
We developed a system to examine forward mutations that occurred in the rpsL gene of Escherichia coli placed on a multicopy plasmid. Using this system we determined the mutational specificity for a dnaE173 mutator strain in which the editing function of DNA polymerase III is impeded. The frequency of rpsL- mutations increased 32,000-fold, due to the dnaE173 mutator, and 87 independent rpsL- mutations in the mutator strain were analyzed by DNA sequencing, together with 100 mutants recovered from dnaE+ strain, as the control. While half the number of mutations that occurred in the wild-type strain were caused by insertion elements, no such mutations were recovered from the mutator strain. A novel class of mutation, named "sequence substitution" was present in mutants raised in the dnaE173 strain; seven sequence substitutions induced in the mutator strain occurred at six sites, and all were located in quasipalindromic sequences, carrying the GTG or CAC sequence at one or both endpoints. While other types of mutation were found in both strains, single-base frameshifts were the most frequent events in the mutator strain. Thus, the mutator effect on this class of mutation was 175,000-fold. A total of 95% of the single-base frameshifts in the mutator strain were additions, most of which occurred at runs of A or C bases so as to increase the number of identical residues. Base substitutions, the frequency of which was enhanced 25,000-fold by the mutator effect, occurred primarily at several hotspots in the mutator strain, whereas those induced in the wild-type strain were more randomly distributed throughout the rpsL sequence. The dnaE173 mutator also increased the frequency of duplications 28,000-fold. Of the three duplications recovered from the mutator strain, one was a simple duplication, the region of which was flanked by direct repeats. The other duplications were complex, one half part of which was in the inverted orientation of a region containing two sets of inverted repeats. The same duplications were also recovered from the wild-type strain. The present data suggest that dnaE173 is a novel class of mutator that sharply induces sequence-directed mutagenesis, yielding high frequencies of single base frameshifts, duplications with inversions, sequence substitutions and base substitutions at hotspots.  相似文献   

12.
Loss of DNA mismatch repair due to mutation or diminished expression of the MLH1 gene is associated with genome instability and cancer. In this study, we used a yeast model system to examine three circumstances relevant to modulation of MLH1 function. First, overexpression of wild-type MLH1 was found to cause a strong elevation of mutation rates at three different loci, similar to the mutator effect of MLH1 gene inactivation. Second, haploid yeast strains with any of six mlh1 missense mutations that mimic germ line mutations found in human cancer patients displayed a strong mutator phenotype consistent with loss of mismatch repair function. Five of these mutations affect amino acids that are homologous to residues suggested by recent crystal structure and biochemical analysis of Escherichia coli MutL to participate in ATP binding and hydrolysis. Finally, using a highly sensitive reporter gene, we detected a mutator phenotype of diploid yeast strains that are heterozygous for mlh1 mutations. Evidence suggesting that this mutator effect results not from reduced mismatch repair in the MLH1/mlh1 cells but rather from loss of the wild-type MLH1 allele in a fraction of cells is presented. Exposure to bleomycin or to UV irradiation strongly enhanced mutagenesis in the heterozygous strain but had little effect on the mutation rate in the wild-type strain. This damage-induced hypermutability may be relevant to cancer in humans with germ line mutations in only one MLH1 allele.  相似文献   

13.
The expression of mutA, an allele of the glycine tRNA gene glyV, can confer a novel mutator phenotype that correlates with its ability to promote Asp-->Gly mistranslation. Both activities are mediated by a single base change within the anticodon such that the mutant tRNA can decode aspartate codons (GAC/U) instead of the normal glycine codons (GCC/U). Here, we investigate whether specific Asp-->Gly mistranslation is required for the unexpected mutator phenotype. To address this question, we created and expressed 18 individual alleles of alaV, the gene encoding an alanine tRNA, in which the alanine anticodon was replaced with those specifying other amino acids such that the mutant (alaVX) tRNAs are expected to potentiate X-->Ala mistranslation, where X is one of the other amino acids. Almost all alaVX alleles proved to be mutators in an assay that measured the frequency of rifampicin-resistant mutants, with one allele (alaVGlu) being a stronger mutator than mutA. The alaVGlu mutator phenotype resembles that of mutA in mutational specificity (predominantly transversions), as well as SOS independence, but in a puzzling twist differs from mutA in that it does not require a functional recA gene. Our results suggest that general mistranslation (as opposed to Asp-->Gly alone) can induce a mutator phenotype. Furthermore, these findings predict that a large number of conditions that increase translational errors, such as genetic defects in the translational apparatus, as well as environmental and physiological stimuli (such as amino acid starvation or exposure to antibiotics) are likely to activate a mutator response. Thus, both genetic and epigenetic mechanisms can accelerate the acquisition of mutations.  相似文献   

14.
A series of X-irradiation experiments was carried out using Drosophila melanogaster females homozygous for a third chromosome mutator gene and females which had a similar genetic background except that the mutator-bearing third chromosomes were substituted by normal wild-type chromosomes. The mutator females had been previously shown by Gold and Green to manifest a higher level of radiation-induced mutability (as measured by the X-ray-induction of sex-linked recessive lethals) in their pre-meiotic germ cells compared to normal females at an exposure of 100 R. In the presence work, the sensitivity of the pre-meiotic germ cells of mutator and normal females to the X-ray induction (2000 R) of sex-linked recessive lethals was studied. In addition, experiments were conducted to examine the sensitivity of the immature (stage 7; prophase I of meiosis) oocytes of both kinds of females to the induction of dominant lethals, X-linked recessive lethals and X-chromosome losses. The result show that in pre-meiotic germ cells, the frequencies of radiation-induced recessive lethals are similar in both kinds of females. However, the proportion of these mutations that occur in clusters of size 3 and higher, is higher in mutator than in normal females. In stage-7 oocytes, the frequencies of radiation-induced dominant lethals and sex-linked recessive lethals were similar in both kinds of females. The X-loss frequencies however, were consistently higher in mutator females although statistical significance was obtained only at higher exposures (3000 and 3750 R) and not at lower ones (750-2250 R). Possible reasons for the discrepancy between the present results and those of Gold and Green with respect to pre-meiotic germ cells are discussed.  相似文献   

15.
mut-25, a mutation to mutator linked to purA in Escherichia coli.   总被引:5,自引:3,他引:2       下载免费PDF全文
The mutation mut-25 that results in a mutator phenotype is closely linked to purA on the chromosome of Escherichia coli. The gene order in this region is ampA mut-25 purA. purA mut-25 double mutants retained mutator activity indicating that mut-25 is not a mutation in the purA gene. The repair mutations uvrA6, recA56, and exrA1 had no effect on mutation frequencies in mut-25 strains, and mut-25 strains were normally resistant to ultraviolet irradiation. Frequencies of host range mutations were not increased in phages T1, T2, and T7 grown on mut-25 strains. mut-25 could act trans, reverting the trpA46 mutation either on the chromosome or on an F episome. The transitions AT yields GC (adenine-thymine yields guanine-cytosine) and GC yields AT were induced by mut-25.  相似文献   

16.
Recent studies have demonstrated that transgenic mice with an increased rate of somatic point mutations in mitochondrial DNA (mtDNA mutator mice) display a premature aging phenotype reminiscent of human aging. These results are widely interpreted as implying that mtDNA mutations may be a central mechanism in mammalian aging. However, the levels of mutations in the mutator mice typically are more than an order of magnitude higher than typical levels in aged humans. Furthermore, most of the aging-like features are not specific to the mtDNA mutator mice, but are shared with several other premature aging mouse models, where no mtDNA mutations are involved. We conclude that, although mtDNA mutator mouse is a very useful model for studies of phenotypes associated with mtDNA mutations, the aging-like phenotypes of the mouse do not imply that mtDNA mutations are necessarily involved in natural mammalian aging. On the other hand, the fact that point mutations in aged human tissues are much less abundant than those causing premature aging in mutator mice does not mean that mtDNA mutations are not involved in human aging. Thus, mtDNA mutations may indeed be relevant to human aging, but they probably differ by origin, type, distribution, and spectra of affected tissues from those observed in mutator mice.  相似文献   

17.
A screen was conducted for lethal mutations in the nematode Caenorhabditis elegans in a strain containing the mutator mut-4 (st700)I to examine the nature of mutator-induced lethal mutations within two large chromosomal regions comprising a total of 49 map units (linkage group IV (right) and linkage group V (left)). The genetic analysis of 28 lethal mutations has revealed that the mutator locus mut-4(st700)I causes both putative single-gene mutations and deficiencies. We have identified lethal mutations in three different genes, in addition to seven deficiencies. There is a mutational hot spot on linkage group V (left) around the lin-40 locus. Six mutations appear to be alleles of lin-40. In addition, 5 of 7 deficiencies have breakpoints at or very near lin-40. All seven deficiencies delete the left-most known gene on linkage group V (left) and thus appear to delete the tip of the chromosome. This is in contrast to gamma ray and formaldehyde induced deficiencies, which infrequently delete the closest known gene to the tip of a chromosome.  相似文献   

18.
Polynucleotide phosphorylase (PNP) plays a central role in RNA degradation, generating a pool of ribonucleoside diphosphates (rNDPs) that can be converted to deoxyribonucleoside diphosphates (dNDPs) by ribonucleotide reductase. We report here that spontaneous mutations resulting from replication errors, which are normally repaired by the mismatch repair (MMR) system, are sharply reduced in a PNP-deficient Escherichia coli strain. This is true for base substitution mutations that occur in the rpoB gene leading to Rifr and the gyrB gene leading to Nalr and for base substitution and frameshift mutations that occur in the lacZ gene. These results suggest that the increase in the rNDP pools generated by polynucleotide phosphorylase (PNP) degradation of RNA is responsible for the spontaneous mutations observed in an MMR-deficient background. The PNP-derived pool also appears responsible for the observed mutations in the mutT mutator background and those that occur after treatment with 5-bromodeoxyuridine, as these mutations are also drastically reduced in a PNP-deficient strain. However, mutation frequencies are not reduced in a mutY mutator background or after treatment with 2-aminopurine. These results highlight the central role in mutagenesis played by the rNDP pools (and the subsequent dNTP pools) derived from RNA degradation.  相似文献   

19.
EXO1 interacts with MSH2 and MLH1 and has been proposed to be a redundant exonuclease that functions in mismatch repair (MMR). To better understand the role of EXO1 in mismatch repair, a genetic screen was performed to identify mutations that increase the mutation rates caused by weak mutator mutations such as exo1Delta and pms1-A130V mutations. In a screen starting with an exo1 mutation, exo1-dependent mutator mutations were obtained in MLH1, PMS1, MSH2, MSH3, POL30 (PCNA), POL32, and RNR1, whereas starting with the weak pms1 allele pms1-A130V, pms1-dependent mutator mutations were identified in MLH1, MSH2, MSH3, MSH6, and EXO1. These mutations only cause weak MMR defects as single mutants but cause strong MMR defects when combined with each other. Most of the mutations obtained caused amino acid substitutions in MLH1 or PMS1, and these clustered in either the ATP-binding region or the MLH1-PMS1 interaction regions of these proteins. The mutations showed two other types of interactions: specific pairs of mutations showed unlinked noncomplementation in diploid strains, and the defect caused by pairs of mutations could be suppressed by high-copy-number expression of a third gene, an effect that showed allele and overexpressed gene specificity. These results support a model in which EXO1 plays a structural role in MMR and stabilizes multiprotein complexes containing a number of MMR proteins. A similar role is proposed for PCNA based on the data presented.  相似文献   

20.
The mutator gene DEL1 in the yeast Saccharomyces cerevisiae causes a high rate of formation of multisite mutations that encompass the following three adjacent genes: CYC1, which determines the structure of iso-1-cytochrome c; RAD7, which controls UV sensitivity; and OSM1, which controls osomotic sensitivity. The simplest hypothesis is that these multisite mutations are deletions, although it has not been excluded that they may involve other types of gross chromosomal aberrations. In contrast, normal strains do not produce such multisite mutations even after mutagenic treatments. The multisite mutations arise at a rate of approximately 10(-5) to 10(-6) per cell per division in DEL1 strains, which is much higher than rates observed for mutation of genes in normal strains. For example, normal strains produce all types of cyc1 mutants at a low rate of approximately 10(-8) to 10(-9). No evidence for multisite mutations was obtained upon analysis of numerous spontaneous ade1, ade2, met2 and met15 mutants isolated in a DEL1 strain. DEL1 appears to be both cis- and trans-dominant. The location of the DEL1 gene and the lack of effect on other genes suggest that the mutator acts only on a region adjacent to itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号